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Simple Summary: Neuroblastoma is a common childhood cancer with poor prognosis. Prior studies
suggest that inhibition of molecules called checkpoint proteins, which normally prevent one’s own
immune system from attacking itself, has been successfully used for treatment of multiple advanced
adult cancers but has yet to be fully explored in neuroblastoma. Cancer can hijack these pathways
to prevent the immune system from recognizing and destroying cancer cells. We investigated
checkpoint protein expression in pediatric neuroblastoma and its role in drug resistance. We created
drug-resistant neuroblastoma cell lines and compared expression of checkpoint proteins between
drug-resistant and parental cell lines. In total, 13 checkpoint proteins were expressed by all cell lines
regardless of drug resistance. Although PD-L1 and checkpoint proteins do not necessarily impart
drug resistance, they may be potential targets for drug therapy. Benchmarking checkpoint proteins
provides the basis for future studies identifying targets for directed therapy and biomarkers for
cancer detection or prognosis.

Abstract: Neuroblastoma is a common childhood cancer with poor prognosis when at its advanced
stage. Checkpoint molecule inhibition is successful in treating multiple advanced adult cancers.
We investigated PD-L1 and other checkpoint molecule expression to determine their roles in drug
resistance and usefulness as targets for drug therapy. We developed three doxorubicin-resistant
(DoxR) cell lines from parental cell lines. Matrigel in vitro invasion assays were used to compare
invasiveness. Western blot assays were used to compare PD-L1 expression. Immuno-oncology
checkpoint protein panels were used to compare concentrations of 17 checkpoint molecules both
cellular and soluble. PD-L1 and 12 other checkpoint molecules were present in all cell lysates of
each cell line without significantly different levels. Three were solubilized in the media of each cell
line. PD-L1 is expressed in all DoxR and parental neuroblastoma cells and may be a potential target
for drug therapy although its role in drug resistance remains unclear. Benchmarking checkpoint
molecules provides the basis for future studies identifying targets for directed therapy and biomarkers
for cancer detection or prognosis.

Keywords: neuroblastoma; doxorubicin; drug resistance; programmed death ligand 1; checkpoint
protein molecules; checkpoint molecule inhibition

1. Introduction

Neuroblastoma is a common solid malignancy in childhood that often presents with
late-stage disease. Therefore, it accounts for up to 15% of childhood cancer deaths with
less than 40% survival despite aggressive therapy [1,2]. For intermediate- and high-risk
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neuroblastoma, patients often require chemotherapy with doxorubicin as a key compo-
nent [1,2]. Unfortunately, resistance and relapse are common, making a cure difficult
to achieve. Despite therapeutic advances, new treatments are still urgently needed for
advanced disease.

A novel method successful in the treatment of chemotherapy-resistant cancers in
adults is inhibiting immunomodulatory checkpoint molecules (ICMs), which normally
serve to prevent the immune system from reacting against healthy cells [3–5]. However,
these regulatory pathways can be hijacked by cancer too, which prevents one’s immune sys-
tem from recognizing and destroying it [5]. The programmed death 1 (PD-1)–programmed
death ligand 1 (PD-L1) interaction is one of the best-studied pathways. When PD-L1 ex-
pressed on cancer cells interacts with PD-1, a tyrosine-kinase receptor protein expressed by
B and T lymphocytes, lymphocyte proliferation is inhibited, leading to cancer survival [6–8].
Inhibitors of PD-1, PD-L1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) are
currently and successfully used in the treatment of non-small-cell lung cancer, advanced
melanoma, and Hodgkin’s lymphoma, among others [9–13]. Immunotherapies that in-
hibit other checkpoint pathways are also under investigation including drugs that inhibit
lymphocyte-activation gene-3 (LAG-3), B- and T-lymphocyte attenuator (BTLA) and T-cell
immunoglobulin-3 (TIM-3) [5,14–18].

In regard to pediatric solid tumors, inhibition of checkpoint molecules as targeted
drug therapy is still in the early stages. Although a few phase I/II trials are underway,
preliminary studies have demonstrated conflicting evidence in regard to which checkpoint
molecules are expressed across the various tumor types [16,19–24]. Regarding neurob-
lastoma, a few trends have emerged and mouse models for targeted inhibition of the
PD-1–PD-L1 pathway have been developed. First, PD-L1 is expressed in varying levels
among patients with NB and seems to portend a worse prognosis [24–27]. Second, in
murine models, PD-L1 inhibition does indeed lead to tumor cell death but is model depen-
dent and may not have a prolonged effect [28–32]. Third, in combination with CTLA-4 or
other chemotherapeutic regimens, a prolonged response may be seen [32,33]. These data
suggest that blockage of ICMs may provide viable treatment regimens in pediatric neurob-
lastoma. However, prior research has fallen short in terms of scope of checkpoint molecules
explored and evaluation across patients with chemotherapy-resistant or advanced disease.

Our goal was to explore PD-L1 expression of cell lines of doxorubicin resistance (DoxR)
neuroblastoma to investigate its role as a mechanism for drug resistance. Our prior re-
search with doxorubicin-resistant osteosarcoma suggests a correlation between checkpoint
molecule expression and drug resistance [34]. This has also been demonstrated in a few
adult cancers such as squamous cell carcinoma of the neck and prostate cancer [35,36].
We also aimed to identify and benchmark additional checkpoint proteins to direct future
studies on drug resistance and metastasis mechanisms, for use as potential biomarkers for
diagnosis and prognosis, and for possible drug targets. We hypothesized that drug-resistant
cell lines would have greater expression of ICMs.

2. Materials and Methods
2.1. Cell Lines

The SKN-SH, SKN-AS, and SKN-DZ cell lines were purchased from the American
Type Culture Collection (Manassas, VA, USA). SKN-SH is a human neuroblastoma cell line
derived from brain tissue of a 4-year-old female. SKN-AS is human neuroblastoma derived
from brain tissue of a 6-year-old female. SKN-DZ is human neuroblastoma derived from
brain tissue of a 2-year-old female [37].

2.2. Reagents

Dulbecco’s modified Eagle’s medium (DMEM) and heat-inactivated fetal bovine
serum (FBS) were obtained from Fisher Scientific (Chicago, IL, USA). Penicillin and strepto-
mycin were obtained from HyClone (Logan, UT, USA). Doxorubicin was obtained from
Sigma (St. Louis, MO, USA). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide
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(MTT) was purchased from Thermo Fisher Scientific (Asheville, NC, USA). Rabbit mono-
clonal antibodies for PD-L1 (clone E1L3N®) were obtained from Cell Signaling Technol-
ogy (Danvers, MA, USA), and monoclonal mouse anti-β-actin (clone AC-15) from Sigma
(St. Louis, MO, USA). Secondary goat anti-rabbit immunoglobin G (IgG)-HRP (W401B)
and goat anti-mouse IgG-HRP (W402B) monoclonal antibodies were purchased from
Promega (Madison, WI, USA). Enhanced chemiluminescence reagents were obtained from
Thermo Fisher Scientific (Asheville, NC, USA).

2.3. Cell Culture, Drug Treatment and Cytotoxicity Assay

All cell lines were maintained in complete media, which consisted of DMEM with 10%
heat-inactivated FBS, 100 units/mL penicillin and 100 µg/mL streptomycin and grown in a
humidified chamber (37 ◦C, 5% CO2). Doxorubicin-resistant (DoxR) cells were generated by
incubating parental WT cells with incremental concentrations of doxorubicin ranging from
1 nM to 1 µM over a six-month period. Treatment began with 1 nM and was increased to
the next 10-fold increment after surviving five consecutive passages. Cells were considered
to be resistant after surviving five consecutive passages in 1 µM doxorubicin. Cell viability
was determined by the quantitative colorimetric MTT assay according to Roche (previously
Boehringer Mannheim) and purchased from Sigma Aldrich (St. Louis, MO, USA) as
previously described [38]. For cell culture, drug treatment, and MTT assay, three separate
experiments were run. Within each experiment, samples were run in triplicate.

2.4. In Vitro Invasion Assay

Cell invasion was determined and analyzed using a membrane invasion culture system
purchased from Fisher Scientific (Chicago, IL, USA). The number of cells able to invade
through a membrane coated with the defined Matrigel extracellular matrix during a 24 h
period was compared to the number counted using a control insert with no Matrigel. Cells
were seeded at 2.5 × 104 and incubated for 24 h. Cells that migrated through the membrane
were fixed and stained with a Diff-Quik staining kit obtained from Electron Microscopy
Sciences (Hatfield, PA, USA). Three fields at 40× magnification were counted by light
microscopy (technical replicates) for each experiment. Three biologic experiments were
conducted (therefore nine replicates in total). Invasion was reported as the number of cells
on the membrane divided by the number on the control membrane (mean ± standard error).

2.5. SDS-PAGE and Western Blot

Parental and DoxR cells were seeded in complete medium and cultured for 48 h.
Cells were lysed using NP40 Cell Lysis Buffer purchased from Thermo Fisher Scien-
tific (Asheville, NC, USA) with Protease Inhibitor Cocktail obtained from Sigma-Aldrich
(St. Louis, MO, USA). Total protein concentration was determined using the bicinchoninic
acid assay (BCA) assay from Thermo Fisher Scientific (Asheville, NC, USA) using the
supplied albumin as the analytical standard. Equal amounts of protein were reduced in
1× sample buffer (Laemmli) from Bio-Rad (Hercules, CA, USA), with 5% β-mercaptoethanol
from Fisher Scientific (Chicago, IL, USA) boiled for five minutes, separated by electrophoresis
on 4–20% Mini-Protean TGX Precast Protein Gels obtained from Bio-Rad (Hercules, CA, USA)
and transferred using the Invitrogen iBlot 2 Gel Transfer Device purchased from Thermo
Fisher Scientific (Asheville, NC, USA), onto nitrocellulose membranes via iBlot 2 Trans-
fer Stacks also purchased from Thermo Fisher Scientific (Asheville, NC, USA). Proteins of
interest were identified with specific primary antibodies followed by HRP-conjugated
secondary antibodies. Immunoreactive bands were detected by chemiluminescence with
image capture on an iBright CL 1500 Imaging System bought from Thermo Fischer Scientific
(Asheville, NC, USA). Three separate Western blot experiments were conducted.

2.6. Human Immuno-Oncology Checkpoint Protein Panel

Proteins from cell lysates, lysed using RIPA buffer from Thermo Fisher Scientific
(Asheville, NC, USA) in a 10% protease inhibitor cocktail (as above), were tested for
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17 checkpoint proteins using the Human Immuno-Oncology Checkpoint Protein Panel pur-
chased from MilliporeSigma (St. Louis, MO, USA). These were chosen based on prior work
with doxorubicin-resistant osteosarcoma and the commercial availability of the panel [34].
Similarly, the media from cell culture removed directly from the cell culture dishes af-
ter cells were plated for 24 h, for each cell line was collected and tested for the same
17 checkpoint proteins in a similar fashion. The 17 checkpoint protein molecules evaluated
included PD-1, PD-L1, programmed death ligand 2 (PD-L2), CTLA-4, LAG-3, TIM-3, BTLA,
cluster of differentiation 27 (CD27), cluster of differentiation (CD28), cluster of differenti-
ation 40 (CD40), cluster of differentiation 80 (CD80), cluster of differentiation 87 (CD86),
herpesvirus entry mediator (HVEM), inducible T-cell costimulatory (ICOS), glucocorticoid-
induced TNFR-related protein (GITR), ligand for receptor TNFRSF18/AITR/GITR (GITRL),
and Toll-like receptor 2 (TLR-2). All primary data points were collected via the Luminex
FLEXMAP 3D system from Lumine Corporation (Austin, TX, USA), and protein concentra-
tions were calculated using a five-parametric fit algorithm xPONENT v4.0.3 by Luminex
Corp (Austin, TX, USA). Three separate experiments were conducted and all samples were
run in triplicate using lysates or media from different passages.

2.7. Statistical Analysis

For in vitro invasion assays, categorical variables were compared between groups
using chi-square tests. For Western blot analysis, differences between parental and DoxR
cell lines were assessed using Student’s unpaired t-tests. For PD-L1 expression in tumor
samples across stages, a Kruskal–Wallis test was used. To compare expression of checkpoint
molecules between parental and DoxR cell lines (using results from the Human Immuno-
Oncology Checkpoint Protein Panel), Wilcoxon rank-sum tests were used. Statistical
differences were determined using p < 0.05 via SPSS 26 (Armonk, NY, USA).

3. Results
3.1. Doxorubicin-Resistant Cells Are More Invasive Than Their Parental Cells

Doxorubicin-resistant cell lines were more resistant than their parental cells as deter-
mined by a greater than 100-fold difference in half maximal inhibitory concentration (IC50)
than their parental, doxorubicin-sensitive, cell lines based on MTT assays, as shown in
Figure 1.

The invasiveness of the SKN-SH, SKN-AS, and SKN-DZ parental and DoxR cell lines
was determined using Matrigel invasion assays and compared. For each cell line, the DoxR
cells were more invasive than their parental cell lines. SKN-SH DoxR cells were significantly
more invasive than their parental cells (fraction of invasion 0.32 vs. 0.09, p < 0.026) as were
SKN-AS DoxR cells compared to parental (0.36 vs. 0.13, p = 0.008). SKN-DZ DoxR cells
were not significantly more invasive than parental cells (0.33 vs. 0.17, p = 0.134), as shown
in Figure 2.

3.2. Neuroblastoma Expresses PD-L1 Regardless of Doxorubicin Resistance

The PD-L1 protein level from whole-cell lysates was similar between SKN-SH DoxR
and parental cell lines as well as SKN-DZ DoxR and parental cell lines but was higher in
the SKN-AS DoxR cell line than its parental cell line, as shown in Figure 3.

3.3. Neuroblastoma Expresses Multiple Additional Checkpoint Molecules Both Cellular and Soluble

Cell lysates of SKN-SH, SKN-AS, and SKN-DZ DoxR and parental cell lines each
expressed 13 out of the 17 checkpoint molecules for which we tested without significant
difference between DoxR and parental cells for any checkpoint protein across all cell lines,
as shown in Table 1. Checkpoint proteins expressed included BTLA, CD27, CD28, TIM-3,
HVEM, CD40, GITR, LAG-3, CD80, CD86, PD-L1, PD-L2, and ICOS. In addition, SKN-
SH and SKN-AS parental cell lines also expressed PD-1 and CTLA-4. Log2-fold changes
between DoxR and parental cells for each protein expressed across each cell line are
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summarized via heat map in Figure 4. Conditioned media from culture of both DoxR and
parental cells across each cell line contained CD40, LAG-3, and PD-L2 without significant
differences between DoxR and parental cells, as shown in Table 2. SKN-SH DoxR cells also
secreted CD80, CD86 and PD-L1 into the cell media.
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Figure 3. Western blot demonstrating PD-L1 expression across SKN-SH, SKN-AS, and SKN-DZ
parental and doxorubicin-resistant (DoxR) cell lines. Numbers indicate relative band intensities
of PD-L1 protein normalized to β-actin. The uncropped western blot figures were presented in
Figure S1.

Table 1. Summary of immune checkpoint proteins present in parental versus doxorubicin-resistant
(DoxR) neuroblastoma cell lysates from SKN-SH, SKN-AS, and SKN-DZ cell lines. Values are reported
as medians in pg/mL/mg of cellular protein.

Cell Line SKN-SH SKN-AS SKN-DZ
Target Parenteral DoxR p-Value Parenteral DoxR p-Value Parenteral DoxR p-Value

BTLA 36.1 31.3 1 1136.0 32.1 0.2 99.3 52.9 0.667
CD27 4.9 3.0 0.4 1.9 2.6 0.4 2.8 4.3 0.4
CD28 11.4 2.1 0.1 6.2 3.1 0.8 3.3 17.4 0.5
TIM-3 3.5 2.3 0.1 2.5 2.2 0.7 2.2 3.2 0.4
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Table 1. Cont.

Cell Line SKN-SH SKN-AS SKN-DZ
Target Parenteral DoxR p-Value Parenteral DoxR p-Value Parenteral DoxR p-Value

HVEM 0.3 0.0 0.1 97.8 0.1 0.5 0.1 0.2 0.1
CD40 15.8 3.6 0.7 1820.0 23.1 0.1 6.5 0.8 0.4
GITR 4.4 4.0 0.1 2.4 3.1 0.1 2.7 4.0 0.1

LAG-3 107.1 62.0 0.1 34.0 63.7 0.4 45.8 90.5 0.7
TLR-2 <LLoQ <LLoQ <LLoQ <LLoQ <LLoQ <LLoQ
GITRL <LLoQ <LLoQ <LLoQ <LLoQ <LLoQ <LLoQ
PD-1 0.8 <LLoQ 2.8 <LLoQ 0.1 <LLoQ <LLoQ

CTLA-4 0.4 <LLoQ 2.0 <LLoQ 0.7 <LLoQ <LLoQ
CD80/B7-1 2.2 1.4 0.4 3.5 1.1 0.1 1.4 1.5 0.7
CD86/B7-2 2.9 0.8 0.1 4.4 0.8 0.1 1.1 1.0 1

PD-L1 4.5 3.6 0.7 29.5 3.1 0.1 2.8 3.8 0.7
PD-L2 8.4 4.7 0.1 246.8 8.0 0.1 5.8 9.0 0.2
ICOS 15.0 16.4 0.7 153.9 16.4 0.1 10.9 19.1 0.2
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Table 2. Summary of immune checkpoint proteins present in parental versus doxorubicin-resistant
(DoxR) neuroblastoma cell media from SKN-SH, SKN-AS, and SKN-DZ cell lines. Media was obtained
after cells were plated for 24 h. Values are reported as medians in pg/mL/mg of cellular protein.

Cell Line SKN-SH SKN-AS SKN-DZ
Target Parenteral DoxR p-Value Parenteral DoxR p-Value Parenteral DoxR p-Value

CD40 3.205 4.65 0.667 16.97 1.34 0.121 0.285 1.83 0.121
LAG-3 24.755 32.62 1 17.13 32.28 0.439 11.12 71.33 0.121

CD80/B7-
1 <LLoQ 0.75 N/A <LLoQ <LLoQ N/A <LLoQ <LLoQ N/A

CD80/B7-
2 <LLoQ 0.04 N/A <LLoQ <LLoQ N/A <LLoQ <LLoQ N/A

PD-L1 <LLoQ 0.57 N/A <LLoQ <LLoQ N/A <LLoQ <LLoQ N/A
PD-L2 3.19 2.42 0.121 40.38 2.095 0.121 1.06 3.65 0.121
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4. Discussion

This study is the first to explore cellular and soluble ICM protein expression in
chemotherapy-resistant neuroblastoma cell lines. We successfully created drug-resistant
neuroblastoma cell lines that were more invasive than their parental cell lines serving as a
proxy for advanced disease. Next, we evaluated and confirmed PD-L1 expression in each
drug-resistant and parental cell line, demonstrating it unlikely plays a role in facilitating
drug resistance. Finally, 12 more ICMs were found to be expressed by all neuroblastoma
cell lines, three of which were also secreted into the cell culture media. Benchmarking
these ICMs may lay the foundation for other studies to explore checkpoint molecules as
biomarkers for disease detection or prognosis or for directed drug therapy.

The expression of PD-L1 in each parental and DoxR neuroblastoma cell line suggests
that the PD-1–PD-L1 pathway may not play a direct role in the development of drug
resistance. Rather, these cell lines likely all express PD-L1, as a mechanism of immune
escape and possibly indicate advanced disease rather than a mechanism for drug resistance.
However, the fact that it is expressed across all cell lines may make it a promising target
for directed drug therapy. This particular protein was chosen because there are already
commercially available drugs on the market that target the interaction between PD-1 and
PD-L1 for adult cancers. Moreover, preliminary studies regarding its expression and
inhibition in neuroblastoma have had conflicting results whether PD-L1 is expressed and if
its inhibition leads to tumor regression. Aoki et al. initially reported no PD-L1 expression in
NB patients, but was contradicted by Chowdhury et al. who reported a high level of PD-L1
expression which positively correlated with a worse survival [23,24]. Since that time, other
studies have confirmed its expression consistently in vitro [25,31,33,39–41]. Unfortunately,
evaluation of patient tumor tissue has had limited success, but expression does seem to
correlate with prognosis [24–27,40]. Therefore, we hypothesized that PD-L1 expression
may play a role in drug resistance. In this study, we did not consistently identify differing
levels of PD-L1 expression between parental and DoxR cell lines and its role as a mediator
of drug resistance seems less likely. Conversely, since PD-L1 was expressed in both parental
and DoxR cell lines, it still may be promising as a marker of advanced disease or target for
directed drug therapy.

The successful treatment of cancer with inhibition of the CTLA-4, PD-1, PD-L1, and
CD80/86 pathways in adults was the basis for our exploration into additional checkpoint
molecule expression in neuroblastoma. By better understanding the expression of these
proteins in the tumor microenvironment and how they control immune suppression may
expand their usefulness as biomarkers or targets for drug therapy into the pediatric popu-
lation. There are multiple advantages to using our drug-resistant and parental cell lines.
It preserves our biorepository, it can direct future study of checkpoint pathways, and
comparison between parental and drug-resistant groups may identify mechanisms of drug
resistance and metastasis.

In total, 15 of 17 ICMs were measurable in this study, 13 in all parental and DoxR cell
lines. Similar to our results with PD-L1 via Western blot analysis, there were no signifi-
cantly different levels between the groups when using our checkpoint protein panel as
visually demonstrated in the heat map, as shown in Figure 4 Therefore, while conclusions
as to their role in mediating drug resistance are difficult to make, measurable expression
across all cell lines still provides valuable information. All cell lines expressed PD-L1 and
there are currently six FDA-approved drugs inhibiting the PD-1–PD-L1 pathway on the
market [42]. Moreover, all cell lines expressed CD80/86 and two of the parental cell lines
expressed CTLA-4. Currently there is one FDA-approved drug inhibiting the CTLA-4,
CD80/86 pathway, where CD86 in particular, when bound to CTLA-4, serves as a costimu-
latory molecule inhibiting naïve and memory T-cell activation [42,43]. Multiple other adult
clinical trials are underway using novel checkpoint inhibitors including 10 evaluating the
use of anti-LAG-3 antibodies, and three studying anti-TIM-3 [44]. A recent in vivo study of
ovarian carcinoma in mice concluded and demonstrated a survival benefit to using BTLA
inhibition [45]. LAG-3, TIM-3, and BTLA are expressed across all cell lines. Our study
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expands the knowledge of checkpoint molecule activity in the tumor microenvironment
and provides translatable data to direct further in vitro and in vivo studies of ICMs not pre-
viously known to be expressed by neuroblastoma, especially as novel immunomodulatory
therapies become FDA approved.

Lastly, we measured the checkpoint protein levels in the cell culture media. Molecules
can be shed from cancer cells as a result of exosomal or proteolytic cleavage of membrane-
bound forms. In regard to checkpoint molecules, this can induce immunosuppression
and cancer survival [46,47]. In osteosarcoma, another common pediatric solid tumor, PD-
L1 seems to be mediated by exosomal shedding [48]. In other cancers such as esophageal
adenocarcinoma or invasive ductal carcinoma breast cancer, PD-L1 is shed via proteolytic
cleavage [47,49]. Regardless, levels of these soluble markers may vary based on the health
of the patient and advancement of the disease with multiple studies demonstrating the
utility of circulating levels of PD-L1 for prognosis including a recent meta-analysis of adult
solid tumors [50,51]. In neuroblastoma, there are no studies we are aware of evaluating the
shedding of immune checkpoint molecules. It is known that gangliosides are overexpressed
and actively shed, but their use as biomarkers although promising, has yet to come to
fruition [52,53]. However, identification of soluble markers has the potential to be useful
for early disease detection, identification of disease relapse, assisting with prognosis, or
directing future studies. Here, within, we identified CD40, LAG-3 and PD-L2 solubilized
in the cell culture media across all cell lines. Once again, we did not find significantly
different levels between the parental cell lines and DoxR cell lines, although the trend seems
to demonstrate higher levels in DoxR cell lines. We also only detected soluble PD-L1 in
SKN-SH DoxR cells. These results are still promising since we confirmed neuroblastoma
has soluble ICMs. However, additional studies are needed to better evaluate their utility
and to draw more concrete conclusions.

This study was not without limitations. First, although there appeared to be different
expression of PD-L1 in the parental SKN-AS and DoxR SKN-AS cell lines on Western blot,
both expressed PD-L1 when measured via checkpoint protein panel, which is more sensitive
and specific. The discrepancy may be secondary to the higher-than-expected molecular
weight of PD-L1 on Western blot; however, this molecular weight is not inconsistent with
other studies using the same antibody [54]. In addition, we were limited in the depth of
our checkpoint exploration. We used three cell lines, but we plan to expand testing to
patient tissue and serum samples which may better elucidate the use of ICMs for prognosis
and directed therapy. Finally, as an exploratory study, we did not evaluate inhibition of
PD-L1 or other checkpoint molecules in vivo since the goal was to lay the groundwork for
future research. However, this would be useful to determine the clinical utility of inhibiting
these ICMs.

5. Conclusions

This is one of the first studies to evaluate checkpoint molecule expression in drug-
resistant neuroblastoma. We demonstrated that PD-L1 is expressed across all cell lines
without significant change between parenteral and drug-resistant cell lines; therefore,
expression may not be related to drug resistance. We also demonstrated that many other
checkpoint molecules are expressed by neuroblastoma in the tumor microenvironment and
that some of these are secreted into the cell culture media. Therefore, they may still be
useful as targets for further directed drug therapy research or as cancer biomarkers.
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