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Simple Summary: RBM22 is a gene that encodes an essential RNA-Binding Protein involved in
pre-mRNA splicing and transcription, with a DNA-binding function. This dual RNA/DNA-Binding
activity provides a new insight of the regulation of gene expression by RBM22. Many studies have
reported that RBM22 is essential for cell survival, mitosis, and differentiation processes. Consequently,
RBM22 alterations are observed in several diseases and notably in cancer. It is suggested that RBM22
haploinsufficiency and dosage may be critical for its proper function. In this review, we aim at making
a state-of-the-art review of this intriguing gene, encoding an RNA/DNA-binding protein that is
understudied, and that could represent a potential therapeutic target in specific diseases and cancer.

Abstract: RNA-Binding Proteins (RBP) are very diverse and cover a large number of functions in the
cells. This review focuses on RBM22, a gene encoding an RBP and belonging to the RNA-Binding
Motif (RBM) family of genes. RBM22 presents a Zinc Finger like and a Zinc Finger domain, an RNA-
Recognition Motif (RRM), and a Proline-Rich domain with a general structure suggesting a fusion of
two yeast genes during evolution: Cwc2 and Ecm2. RBM22 is mainly involved in pre-mRNA splicing,
playing the essential role of maintaining the conformation of the catalytic core of the spliceosome
and acting as a bridge between the catalytic core and other essential protein components of the
spliceosome. RBM22 is also involved in gene regulation, and is able to bind DNA, acting as a bona
fide transcription factor on a large number of target genes. Undoubtedly due to its wide scope in the
regulation of gene expression, RBM22 has been associated with several pathologies and, notably, with
the aggressiveness of cancer cells and with the phenotype of a myelodysplastic syndrome. Mutations,
enforced expression level, and haploinsufficiency of RBM22 gene are observed in those diseases.
RBM22 could represent a potential therapeutic target in specific diseases, and, notably, in cancer.

Keywords: RBM22; pre-mRNA splicing; alternative splicing; RBP; RNA binding protein; RRM motif;
myelodysplasia; gene regulation; cancer

1. Introduction

Proposed to be the first genetic-information carrier for the history of life [1], ribonucleic
acids (RNA) are one of the most important molecules—if not the most important—in every
living organism. Mostly known as the intermediate between DNA and proteins, it is no
longer necessary to prove that RNA is also involved in many other processes. During
its whole lifetime, an RNA molecule will be in contact with numerous proteins. All of
these RNA-Binding Proteins (RBP) must have at least one RNA-Binding Domain (RBD)
to do so [2]. Numerous RBDs are involved in the binding to a large variety of types and
secondary structures of RNA. In 2014, Gerstberger and coworkers studied the extent of
RBPs and RBDs within the human genome. Among the 1542 RBPs (encoded by 7.5% of all
human protein-coding genes) reported in the Protein families (Pfam) database, the team
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identified ~600 different RBDs [3]. Most of them are found in only 1 or 2 genes and only 20
classes of RBDs are found in more than 10 genes. These domains include: the K homology
domain (KH), the Zinc Finger type CCCH, the DEAD motif, the Arginine-Glyine-Glycine
(RGG) box, and, most frequently, the RNA-Recognition Motif (RRM) [3].

RNA-Binding Proteins are involved in numerous RNA-related processes. The majority
of them are involved in protein synthesis. Most of them interact with mRNA and pre-mRNA
and are involved in their processing: splicing, stabilization, and transport [3–5]; the rest are
ribosomal proteins, or proteins involved in the biogenesis of all the necessary components
for protein synthesis: tRNA, snRNA, snRNPs, rRNAs, or snoRNAs [2]. Additionally,
a non-negligible proportion of RBPs (~10%) are involved in non-coding RNA (ncRNA)
processing, and thus, in all the functions that accompany it [3,6].

It is important to note that many RBPs are able to contact several types of RNA at a
time due to an important feature: most of them bear more than one RBD in their structure.
It can either be a repetition of the same RBD, or other types of RBDs [7]. This allows the
proteins to have more complex roles, such as, for instance, putting pre-mRNA and snRNAs
in close proximity during pre-mRNA splicing.

RBM22 is a gene encoding an RBP that is mostly involved in pre-mRNA splicing,
which has been, for a long time, understudied. However, recent studies have revealed
the major role that RBM22 plays in pre-mRNA splicing and have shown its implication in
different malignancies, thus arousing new interest for this gene.

In this review, we aim at making a state-of-the-art review of the current knowledge
about RBM22, from its normal function to its pathological role.

2. The RNA-Binding Motif (RBM) Family
2.1. The Unity of the Family: The RNA-Recognition Motif

The RNA-Binding Motif (RBM) family was created two decades ago to fulfil the need
of classifying a group of genes, of which their function was then not really known, on
the basis of a common structural feature: the presence of at least one RNA-Recognition
Motif (RRM) in their sequence [8]. Among all the RNA-Binding Domains (RBD), the RRM
is the most frequent in higher vertebrates, being present in 10% of all human RBPs, and
representing 0.5 to 1% of all human genes [3]. The RRM is found in many other proteins
such as hnRNPs, nucleolin, and poly(A)-binding proteins, which are involved in RNA
processing [9].

The RRM, which is about 90 amino acids long, presents a relatively conserved structure
of four antiparallel β-strands, forming a β-sheet, packed against two α-helices, following
the sequence β1α1β2β3α2β4 [10]. Most commonly, the RRM binds single stranded RNA by
three aromatic residues located in 2 conserved subdomains: RNP1 and RNP2, respectively,
found in β3 and β1 strands. The interaction with RNA is made by the bond between a
dinucleotide and two aromatic cycles in RNP1 and RNP2. A third aromatic cycle, also
located in RNP1, gets in between the two sugars of the dinucleotide [10]. More precisely,
the 5′ nucleotide binds to the RNP2 aromatic cycle and the 3′ nucleotide binds to the RNP1
C-terminal aromatic cycle. However, the RRM is well known for its very high variety of
conformations, allowing it to interact with different types and shapes of RNA, or even
to interact with proteins [10,11]. In most cases, additional elements in the external parts
of the RRM are able to modulate the sequence specificity and affinity of the bond. The
presence of additional β-strands or α-helices can change the capacity of the domain to bind
RNA. Some elements will increase the specificity and/or the affinity (e.g., by increasing
the surface available for the interaction or, sometimes, changing the conformation of the
domain), while other elements will lower it [12]. The RNA-binding capacity can also be
increased by the internal loops of the RRM, which can contact the RNA [13], or by the
presence of β-hairpins, which allow protein-protein interactions [14–16]. Alternatively,
some proteins present multiple RBDs, eventually including RRMs, modifying the RNA-
binding capacity of the protein [17]. At last, one feature of the RRM that is important to
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highlight is its capacity of accommodating H2O molecules in order to modulate its RNA
sequence specificity [18,19]. This allows it to be less specific to an RNA motif.

Thereby, due to this variability in RRM structures and functions, a single RRM is able to
contact up to 8 ribonucleotides in a single-stranded manner at a time [20–24]. Additionally,
due to those differences in RRMs, an up-to-date, no consensus RNA sequence is described
for this domain. Nevertheless, some RRMs show sequence specificity over their binding
with RNA, such as RBM20 RRM, whose structure has recently been resolved [25]. However,
defining a consensus sequence for all the RRMs seems yet unfeasible.

In an attempt to reference and organize the data on RRMs, Nowacka and colleagues
developed a database compiling information about all the existing RRMs: RRMdb (available
online: http://iimcb.genesilico.pl/rrm/) (accessed on 26 November 2021). Briefly, starting
with a core of well-characterized RRM motifs from SCOP and PFAM databases, they
interrogated the NCBI protein database for additional RRM-like motifs using PSI-BLAST.
The obtained sequences were filtered with CD-HIT and clustered into 415 families using
different Markov algorithms. Next, the families were associated with the relevant literature
and organized into a network according to their pairwise sequence similarity. This tool
identifies 415 families of distinct RRMs [26]. However, some clusters of RRM, determined
by sequence homology, show evidence of a certain homogeneity between different families.
Forty-six families of RRM are found in RBM genes (Table 1). Of note, RBM22 is the sole
member of its RRM family (number 77). Although, its family is identified as closely related
to the family of its yeast homologue Cwc2 (number 142).

Table 1. The members of the RBM gene family are listed in the first column and the family numbers
of their RRM(s) are indicated in the corresponding row. The colors correspond to clusters of families
based on structural homology.

IDs of RRM Families
RBMYA1 0

RBMX 0
RBM7 72
RBM8 60
RBM11 72
RBM18 129
RBM23 32 88
RBM24 25
RBM25 21
RBM28 36 92 112
RBM34 41 98
RBM38 25
RBM39 32 88 52
RBM44 210
RBM45 414 149 235
RBM19 19 29 43 120 2 37 58
RBM12 161 185 2 205
RBMS 10 133
RBM17 50
RBM4 102

RBM4B 102
RBM14 102
RBM15 136 153 243
RBM16 23
RBM22 77

http://iimcb.genesilico.pl/rrm/
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Table 1. Cont.

IDs of RRM Families
RBM26 87 172
RBM27 87 172
RBM30 102
RBM46 20 82
RBM47 20 82
RBM5 130 213
RBM6 213
RBM10 130 213
RBM40 113 169
RBM41 113
RBM9 141
RBM20 46
RBM21 232
RBM36 152
RBM42 81
RBM48 151

2.2. The Functions of RBM Proteins in RNA-Related Metabolism

RBM proteins, consisting in a family of about 50 members, are involved in RNA
metabolism due to their capacity of binding this molecule (Table 2). Most RBMs are directly
involved in multiple steps of pre-mRNA splicing. For instance, RBM5 and RBM17 are
implicated at the very beginning of splicing where the intron and its junctions with the
exons are recognized by the first components of the spliceosome (A complex) [27,28],
while RBM22 intervenes during the first trans-esterification of splicing [29] and RBM8 is
involved in the late stages of the process [30]. Many RBM proteins are regulators of the
splicing process, such as RBMY1, RBM9, RBM10, and RBM24, which regulate alternative
splicing [31–34]. Their functions also comprise RNA metabolism-related processes, such as
RNA-transport, stability, or translation. For instance, RBM26/27, by its interaction with
the Poly(A) tail eXosome Targeting (PAXT) Complex, modulates the degradation of some
RNAs [35]. RBM3, which is mainly located in the cytoplasm, modulates the translation
of some mRNAs in response to a cold-shock [36]. All the functions of the RBM family
members are compiled in Table 2, based on data found in the literature and databases
(Genecards®, Uniprot, Ensembl).

Table 2. Global functions of all RBM-family members.

Biological Processes Biological Functions

mRNA
Splicing

RNA
Stability

RNA
Transport Translation Apoptosis Cell

Cycle Differentiation Other Functions

RBMY1A1 [31] Sperm cells
[37]

Sperm motility
[38,39]

RBMX [40] [41]

Zebrafish brain
development [42]
Cohesion of sister
chromatids [43,44]

Genome
maintenance [45]

RBM3 [46,47] [41,48]

DNA Damage
Response [49]

Circadian cycle
[50]

Cell proliferation
[51,52]
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Table 2. Cont.

Biological Processes Biological Functions

mRNA
Splicing

RNA
Stability

RNA
Transport Translation Apoptosis Cell

Cycle Differentiation Other Functions

RBM4 [34,53,
54] [53]

Muscle [55]
Neuronal [56]
Pancreas [57]

Circadian cycle
[58]

RBM4B Circadian cycle
[58]

RBM5 [34,59] [8] [60] Sperm cells
[61]

Cell proliferation
[59]

RBM6 [34,59] [8] Cell proliferation
[59]

RBM7 [62]

RBM8A [63] [63] [64] [65] [66,67] [66,67] Neural [68]

Cell proliferation
[68]

DNA damage
signaling &

response [67,69]
Cortical

development [63]

RBM9 [33] Pluripotent
stem cells [70]

RBM10 [34,59,
71] [8,72] [73] Cell proliferation

[59,74]

RBM11 [75] Neuro/Germinal
[75]

RBM12
RBM13

RBM14 [76]

Mouse embryo
development [77]

DNA damage
response [76,78]

RBM15 [79] [80] [81] Blood cells
[82,83]

RNA-methylation
regulation [84]

RBM16 Transcription [85]

RBM17 [86] [87,88] Cell proliferation
[88,89]

RBM18

RBM19 Digestive tube
[90,91]

rRNA processing
[92]

Pre-implantation
development of

mouse embryo [93]
RBM20 [94]

RBM21 [95]
RNA

poly-adenylation
[96]

RBM22 [29,97–
101] [102] Erythroid [103]

Transcription
regulation
[104,105]
Zebrafish

development [90]
Drosophila

development [106]
RBM23 [107]
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Table 2. Cont.

Biological Processes Biological Functions

mRNA
Splicing

RNA
Stability

RNA
Transport Translation Apoptosis Cell

Cycle Differentiation Other Functions

RBM24 [108,109] [110] [111] Embryo [108]
Heart [111]

Cell proliferation
[112]

RBM25 [113–
115] [115] Cell proliferation

[115]
RBM26 [35]
RBM27 [35]
RBM28 [116]

RBM29
Cell hair

development in
cochlea [117,118]

RBM30 Circadian cycle
[58]

RBM33
RBM34
RBM36 [119]

RBM38 [109,120] [121,122] [121,123] [121]
Heart [124]

Erythrocytes
[120,125]

Cell proliferation
[126]

RBM39 [127]
RBM40 [119]
RBM41
RBM42 [128] [129] [128]

RBM43 [130] [130] Cell proliferation
[130]

RBM44 Meiosis [131]
RBM45 [132] Neural [133]

RBM46 [134]

Spermatogenesis
[135]

Mouse embryo
development [134]

RBM47 [136,137]
RNA editing [138]
Cell proliferation

[136]
RBM48 [139]

Importantly, due to their activity with RNAs, RBM members are involved in crucial
biological functions like apoptosis, control of the cell cycle, and the differentiation of several
cell types. This inevitably leads to a large number of diseases when their function is altered.
Recently, Li and coworkers reviewed the role played by RBM members in cancer [140].

In this review, we particularly focus on the cellular and molecular functions of RBM22,
due to its crucial role in pre-mRNA splicing.

3. RBM22 Is an RNA-Binding Protein
3.1. Structural Features of RBM22

RBM22—also referred to as ZC3H16, FSAP47, or FLJ10290—is a 10,318 base-pair gene
located on the reverse strand of the long arm of chromosome 5, at the locus 5q33.1 in human.
Containing 11 exons, this gene encodes a protein of 420 amino acids, with an apparent
molecular weight of 46.9 kDa (Figure 1A,B). Other transcripts are described, but none of
them are predicted as protein-coding.
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representation aims at respecting as much as possible the adjacent structures, as described in [10]. 
For this representation, the structures are annotated in a N-ter to C-ter manner, from 1 to 4. The α-
helix 1 in the right panel corresponds to α-helix 9 in [141]. ZnF: Zinc Finger Domain; RRM: RNA-
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Zing-Finger Domain of the uncommon type C7C5C3H from amino acids 162 to 186, which 

Figure 1. (A) Scheme of RBM22 gene. Exons are represented by green and grey boxes when they are
translated and are either in the 5′-UTR or 3′-UTR, respectively. Introns are represented by yellow lines.
The correspondence of exons with the domains of the protein is indicated, when known, with the
grey dashed line between (A) and (B); (B) Scheme of the domains of the human protein RBM22 and
the two yeast proteins Cwc2 and Ecm2. The structural homology between the three proteins suggests
that RBM22 is a fusion gene of the two yeast genes; (C) Two-dimension representation of the structure
of the RNA-Recognition Motif (RRM). Left panel shows the consensus structure of the RRM. Right
panel shows the RRM of Cwc2, the yeast orthologue of RBM22. The latter presents an additional
amino acid between the two aromatic residues of RNP1, and another α-helix between β1 and α1. The
aromatic residues of the RNP subdomains are represented by red dots. This 2D representation aims
at respecting as much as possible the adjacent structures, as described in [10]. For this representation,
the structures are annotated in a N-ter to C-ter manner, from 1 to 4. The α-helix 1 in the right panel
corresponds to α-helix 9 in [141]. ZnF: Zinc Finger Domain; RRM: RNA-Recognition Motif; PRD:
Proline-Rich Domain; Aa: Amino acid.

In its N-terminal region, RBM22 contains a Zinc Finger like domain and a CCCH
Zing-Finger Domain of the uncommon type C7C5C3H from amino acids 162 to 186, which
is described as an extended loop able to bind a zinc ion [29,97,141,142]. Additionally,
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in accordance with the common feature of the other RBM members, the protein RBM22
contains an RNA-Recognition Motif (RRM), which is located in its C-terminal portion, from
amino acids 222 to 303 [29] (Figure 1B). Finally, it also contains a Proline-Rich Domain
(PRD) in its C-terminal region, the function of which is not yet described and is broadly
unclear in RBPs. Only a few studies described in the past a role in RNA/DNA-binding or
protein-protein interactions [143–145]. The arrangement of these domains shows a strong
evidence of a fusion of two yeast genes: Ecm2 and Cwc2 (Figure 1B) [97]. Indeed, RBM22
carries structural homology with Ecm2 in its N-terminal region containing the Zinc Finger
like domain, and structural homology with Cwc2 in its C-terminal region, which contains
the Zinc Finger (ZnF) Domain and the RRM. However, the region downstream of the RRM,
containing the PRD, is less conserved between the yeast Cwc2 and RBM22 [142].

Though RBM22′s RRM is not extensively described, its function and structure can
be predicted by the homology it shares with Cwc2′s RRM. The latter is structured with
the common sequence β1α1β2β3α2β4 and the two domains RNP1 and RNP2 are located,
respectively, in β3 and β1. Nevertheless, Cwc2 RRM shows some atypical features such
as a small additional α-helix between β1 and α1 (Figure 1C), and an additional residue
between the two aromatic residues in RNP1 [142]. Surprisingly, the other domains of Cwc2
are required for its RRM to bind RNA [141], maintaining it in a tight conformation with
its neighbor ZnF Domain with the help of the Torus domain and a small loop between
them [146]. This loop is called the RNA-Binding loop (RB-loop); the positively charged
amino acids in its C-terminal portion facilitate RNA binding [141]. Nevertheless, in contrast
with the aromatic residues of the RRM, which are highly conserved between yeast and
human, the RB-loop residues are poorly conserved and there seems to be more residues in
the human RBM22 RB-loop [29,141].

3.2. RBM22 Is Essential for Gene Expression through Transcription Regulation and
Pre-mRNA Splicing
3.2.1. RBM22 Stabilizes the Catalytic Core of the Spliceosome

Precursor messenger RNA (Pre-mRNA) splicing is the process by which an immature
RNA—containing introns and exons—is rearranged to produce a mature messenger RNA
(mRNA). It is a very complex process, and thus, it will only be briefly described here.

Occurring simultaneously with transcription in the nucleus [147], pre-mRNA splicing
is carried out by the spliceosome, a complex involving small nuclear ribonucleoproteins
(snRNPs) associated with their respective small nuclear RNAs (snRNAs), called U1, U2,
U4, U5, and U6 snRNP/snRNA, and over 100 associated proteins [148]. Several conserved
sequences of the pre-mRNA will first be recognized by the snRNAs: U1-snRNA binds
the splice site located in the 5′-end of the intron (5′-SS) and U2-snRNA binds the Branch
Point (BP) located in the second half of the intron (Figure 2) [149,150]. Then the preformed
tri-snRNP U4/U6.U5 arrives on the complex: U5 binds exonic sequences such as a sequence
right upstream of the intronic 5′-SS, while U6-snRNA binds a sequence downstream of the
5′-SS by its ACAGA box, destabilizing its interaction with U4-snRNA and taking the place
of U1-snRNA. Thus, U1 and U4-snRNAs leave the complex. This change in base-pairing
allows U6-snRNA to form a helix with U2-snRNA, encompassing its AGC triad, and an
additional internal stem-loop (hereafter, U6-ISL). The ACAGA box, the triad, and the
U6-ISL are the 3 essential components of the spliceosome catalytic core. Two metal ions
will be bound by the catalytic core: one by the bulge of the U6-ISL, and the other one by the
triad of U6/U2 helix Ib. Those ions are then used to catalyze the splicing reactions [151].

Simultaneously, the structure and conformation of the complex is sequentially remod-
eled by DExD/H-box ATPases/Helicases (and successively named complex A, B, Bact, B*,
C, C*, P, and ILS) with highly dynamic protein interactions. During these conformation
changes, two transesterification steps will occur in order to remove the intron. The first
transesterification step, called branching reaction, occurs in the catalytically activated B*
complex and leads to the formation of an intron semi-lariat due to a nucleophilic attack
from the 2′-hydroxyl of the adenosine in the BP on the guanosine of the 5′-SS [98,152,153].
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Thus, in the C complex, the 3′-end of the 5′-exon is “free,” but yet, it is maintained in the
spliceosome. In the transition C-to-C*, the complex gets catalytically activated for the sec-
ond transesterification step, the exon ligation, in which another attack from the 3′-hydroxyl
of the 5′-exon to the phosphate of the 3′-SS will occur. Thereby, in the post-catalytic complex
(P), the two exons are ligated. They will then be removed from the complex, leaving the
intron-lariat with the rest of the components; this is the Intron-Lariat Spliceosome Complex
(ILS). Finally, all the components will be recycled for another splicing reaction on the same
pre-mRNA or another one. The entire process is only possible thanks to the specific confor-
mation adopted by the catalytic core of the spliceosome, at each step, which is governed by
all its protein partners.
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Figure 2. Brief scheme of pre-mRNA splicing. U1 and U2-snRNAs first recognize specific sequences:
U1 base-pairs with the 5′-splice site (5′-SS) and U2 base-pairs with the Branch Point (BP) sequence,
forming Complex A. The preformed tri-snRNP U4/U6.U5 then arrives on the complex, near the
5′-SS, to form the B Complex. In the Bact Complex, U5-snRNA binds exonic sequences while U6-
snRNA takes the place of U1; thus, the latter leaves the complex accompanied by U4-snRNP. It is
also in this complex that the NTC and RBM22 arrive. To form the B* complex, U6-snRNA will then
undergo conformational changes, forming its Internal Stem-Loop and a helix with U2-snRNA. This
conformation, maintained by RBM22, corresponds to the catalytic core of the spliceosome. In the
B* complex, the first transesterification reaction, corresponding to the first step of splicing and also
called branching, reaction occurs. It produces an intronic semi-lariat intermediate and a free 5′-exon
corresponding to Complex C. The second transesterification reaction, corresponding to the second
step, occurs in the C* complex. It ligates the two exons to form a mature mRNA. The ligated exons
are then removed from the Post-catalytic complex (P), leaving the rest of the spliceosome with the
intron lariat (ILS Complex). The position of RBM22 after the C* Complex is unclear, and thus is not
represented. At each step of the process, the different complexes are subjected to crucial conformation
changes carried out by ATPase proteins. 3′-SS stands for 3′ splice site.
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RBM22 is involved in maintaining the proper conformation of the catalytic core of
the spliceosome. It is considered a NineTeen Related (NTR) protein, which arrives on
the spliceosome with the rest of the Nineteen Complex (NTC) during the remodeling
B-to-Bact by Brr2 (Figure 2) [149,154]. RBM22 is able to contact several components of the
spliceosomal catalytic core, in accordance with its homology with the two yeast proteins
Cwc2 and Ecm2 (Figure 3). By its N-terminal region, containing the ZnF-like domain
homologous to that of Ecm2 and the ZnF domain homologous to that of Cwc2, RBM22
is in direct contact with a few nucleotides of U6-snRNA, downstream of the U6-ACAGA
box, and a few nucleotides of the pre-mRNA, downstream of the 5′-SS [97]. Recent studies
described crystal structures in which a part of the N-terminal region of RBM22 is folded in
a positively charged channel where the pre-mRNA is locked down [29,155]. The presence
of positively charged residues thus allows a direct protein-RNA interaction. However,
it is still unclear whether RBM22 is partially unfolded when arriving in the complex to
bind the pre-mRNA or if it needs to bind the pre-mRNA to correctly fold up [29]. A very
elegant hypothesis is that the RRM of RBM22 would transiently contact the U2 helix IIb,
maintaining it in an opened conformation. This would allow it contacting the intron before
disruption of the interaction with U2 and wrapping around the intron [156]. Surprisingly
though, while the RRM of the yeast Cwc2 is included in a single folding unit located over
the region of the U6-ISL and the pre-mRNA, downstream of the 5′SS [141], it is excluded
from that region in the human spliceosome, and is located in a more downstream region of
the intron [29,98,153]. Thus, by its RRM, RBM22 binds a few nucleotides downstream of the
U6-ACAGA box and interacts with the β-barrel of the RNA helicase Aquarius, maintaining
the rest of the intron away from the catalytic center of the spliceosome and potentially
preventing it from interfering with the reaction [29,155].
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Figure 3. Location of RBM22 in the Bact complex of the spliceosome. RBM22 contains a Zinc Finger
like domain, a Zinc Finger domain and an RNA-Recognition Motif. Through these three domains, it
is able to contact several parts of the catalytic core of the spliceosome: the Internal Stem Loop of U6
snRNA (U6-ISL); the ACAGA box of U6 snRNA, which interacts with the 5′-splice site (5′-SS) of the
pre-mRNA; and it also contacts and sequesters the pre-mRNA downstream of the 5′-SS. By all those
contacts, RBM22 maintains an active conformation of the catalytic core of the spliceosome, and thus,
it plays an essential role in the splicing process.
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Nevertheless, RBM22 holds the pre-mRNA from its arrival, in the Bact complex, until
the release of the intron lariat, in the ILS complex [29,97–101]. Additionally, RBM22 also
contacts the U6-ISL. Interestingly, the bound between RBM22 and the U6-ISL is relatively
weak in the Bact complex and becomes stronger during the first step of splicing [97]. This
suggests a change of conformation of the U6-ISL during the first step of splicing, leading to
a stronger binding by RBM22 [97,157]. Thus, by its N-terminal region and its contacts with
several elements of the catalytic core, RBM22 plays the role of an “RNA-folder,” maintaining
an active conformation during the first transesterification step of splicing. Indeed, several
experiments showed that the absence of the yeast orthologue Cwc2 was critical for the
catalytic core and the first step of splicing; a solution structure of the yeast U2/U6-snRNA
complex showed that the three elements of the catalytic core were away from each other,
in an unfolded conformation [157]. Likewise, an in vitro splicing experiment showed that
spliceosomes lacking Cwc2 were unable to achieve the first step of splicing. The correct
splicing could be restored when the spliceosomes were complemented with recombinant
Cwc2 [97].

Regarding the second step of splicing, RBM22 has been found in the C and C* com-
plexes, as mentioned earlier. However, up-to-date, its role in these complexes has not been
deeply studied.

Finally, it is interesting to note the reflection of Hoskins’ team, which states that RBM22
more accurately mimics Ecm2 instead of Cwc2, in terms of interaction with the U6-snRNA.
Thus, they believe Ecm2 is a closer structural homolog of RBM22 [156]. However, the
evolution of RBM22 has never been truly studied. Therefore, even if the literature mainly
underlines the analogies between RBM22 and Cwc2, making it appear, sometimes, as
its main homolog and forgetting about Ecm2, their evolution must be clarified to better
understand the origin and the role of each domain of RBM22.

3.2.2. RBM22 Organizes Several Protein Components around the Catalytic Core

Aside from its “RNA-folder” role, RBM22 is also important for the architectural
organization of the spliceosome. Indeed, RBM22 belongs to the NineTeen Related Complex
(NTR Complex), a group of 18 proteins associated to the NineTeen Complex (NTC), which
itself is a group of 8 proteins associated to the central PRP19 protein [152]. However, what
is often called the NTR does not seem to be a real protein complex, but a set of proteins that
independently come and go with the NTC [154].

The NTC is an essential, canonical component of the spliceosome, conserved from
yeast to human [154]. It arrives on the spliceosome during the B-to-Bact remodeling, along
with RBM22, before U4-snRNA removal. The NTC plays a major role in specifying the
interactions between the snRNAs and the pre-mRNA, ensuring the fidelity of splicing,
but also in maintaining and stabilizing an active conformation of the catalytic core of
the spliceosome during both steps of splicing [154]. Indeed, Cheng’s team showed that
the absence of the NTC destabilizes the association of U5 and U6-snRNAs with the pre-
mRNA [158,159]. Paradoxically, the main core of the NTC is located away from the catalytic
core of the spliceosome. Only two proteins make the link between the two regions: RBM22
and SRm300 (respectively, Cwc2 and Cwc21 in S. cerevisiae), with RBM22 being the only
RNA-binding protein in the NTR in direct contact with the spliceosomal catalytic core [160].

Apart from linking the NTC to the catalytic core of the spliceosome by its interaction
with PRP19, RBM22 also interacts with several NTR and non-NTR proteins, which also
play a major role in splicing (Table 3). Most of these interactions were established by recent
crystallography experiments, and some proteins could be crosslinked to RBM22: Aquarius,
Cdc5, Isy1, Prp17, Prp8, and SKIP [153].



Cancers 2022, 14, 643 12 of 24

Table 3. RBM22 protein partners in the spliceosome.

From Complex Protein Partner References

NTC
Cdc5 Zhang et al., 2017 [29]

Isy1 McGrail et al., 2009 [142];
Hogg et al., 2014 [150]

PRP19 McGrail et al., 2009 [142]

NTR

Aquarius Bertram et al., 2017 [153];
Kastner et al., 2019 [155]

G10 Bertram et al., 2017 [153];
Zhang et al., 2017 [29]

PRP17 Zhang et al., 2017 [29]

SKIP Bertram et al., 2017 [153];
Zhang et al., 2017 [29]

Other
PPIL1

Bertram et al., 2017 [153];
Zhang et al., 2017 [29];
Zhan et al., 2018 [98]

PRP8 Bertram et al., 2017 [153]
SLU7 Xu et al., 2001 [161]

3.2.3. RBM22 Depletion Impacts Pre-mRNA Splicing

The apparent major role that RBM22/Cwc2 plays in splicing has been supported by a
few depletion experiments. In 2009, McGrail and coworkers showed in the yeast S. cerevisiae
that Cwc2 was essential for splicing in vivo as its depletion using a Gal-dependent-Cwc2-
expression strain led to the accumulation of unspliced transcripts. Of note, they observed an
intron retention in the RNA of U3 [142]. Later on, Rasche and coworkers showed that yeast
Cwc2-depleted spliceosome extracts failed to achieve the first step of splicing (formation of
the intron semi-lariat), leading to an intron retention in the actin RNA. However, Cwc2 was
not needed for Prp2 to catalytically activate the complex (remodeling Bact-to-B*), indicating
that the presence of Cwc2 is critical only during the transesterification step. Similarly, they
performed in vitro splicing experiments from HeLa RBM22-depleted nuclear extracts. The
same observation was made: the absence of RBM22 led to inhibition of the first step of
splicing on the synthetic MINX pre-mRNA. In both models (yeast and HeLa extracts),
the RNA splicing could be rescued when the depleted extracts were supplemented with
Cwc2 or RBM22 [97]. In another study, RBM22 was identified as an alternative-splicing
factor in an RNA interference screening in the Drosophila S2 cell line. Its knock-down led to
the alternative splicing of the exon 4 cluster—containing 12 mutually exclusive exons—of
Dscam [162].

Finally, more recently, a very exhaustive study presented a systematic characterization
of no less than 356 RBPs in HepG2 and K562 cell lines [104]. The knock-down of RBM22 by
small-hairpin RNAs (shRNAs) mainly induced Exon Skipping (ES) and Intron Retention
(IR) (Figure 4A). It is interesting to note that the knock-down of RBM22 induced one of the
highest proportions of Intron Retention among the RBPs tested: ranked 13th/237 RBPs in
HepG2 and 11th/235 RBPs in K562 (Figure 4B) (ranks calculated from data of [104]).

Altogether, those results reaffirm the paramount role that RBM22/Cwc2 plays in the
spliceosome, interestingly highlighting its potential implication in alternative splicing, and,
notably, intron retentions, when deleted.



Cancers 2022, 14, 643 13 of 24
Cancers 2022, 13, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 4. Effect of RBM22 knock-down on pre-mRNA splicing, calculated from data of Van 
Nostrand et al. [104]. (A) Proportion of alternative splicing events due to RBM22 knock-down in 
K562 and HepG2 cells; (B) Proportion of Intron Retention (IR) due to the successive knock-down 
(KD) of 235 or 237 RNA-Binding Proteins (RBP) in K562 or HepG2 cells, respectively. 

3.2.4. Emerging Evidence of Gene Regulation by RBM22 
It is well known that many DNA-Binding proteins, notably transcription factors (TF), 

can also bind RNA. For instance, the master regulator CTCF interacts with several RNAs 
to be specifically recruited to its target loci [163]. It is also the case for the regulator FUBP1 
that is able to bind single-stranded DNA and to activate promoters and enhancers as well 
as binding RNA [164,165]. Similarly, the TF YY1 was shown to interact with nascent RNA 
close to its targeted regulatory elements to improve its binding to the chromatin, thus 
reinforcing and stabilizing the expression of the gene [166]. 

On this basis, and knowing that transcription co-occurs with RNA processing, as 
mentioned earlier, a new idea that RBPs could also potentially contact DNA has recently 
emerged. In 2019, Xiao and coworkers addressed the question leading a large-scale study 
on 58 and 45 RBPs in HepG2 and K562 cells. They confirmed the aforementioned 
hypothesis, finding that a large number of RBPs would eventually bind chromatin, mainly 
around promoters. Moreover, they showed that this binding is enhanced in the presence 
of the nascent RNA. Interestingly, RBM22 is one of those DNA-binding RBPs, presenting 

Figure 4. Effect of RBM22 knock-down on pre-mRNA splicing, calculated from data of Van Nostrand
et al. [104]. (A) Proportion of alternative splicing events due to RBM22 knock-down in K562 and
HepG2 cells; (B) Proportion of Intron Retention (IR) due to the successive knock-down (KD) of 235 or
237 RNA-Binding Proteins (RBP) in K562 or HepG2 cells, respectively.

3.2.4. Emerging Evidence of Gene Regulation by RBM22

It is well known that many DNA-Binding proteins, notably transcription factors (TF),
can also bind RNA. For instance, the master regulator CTCF interacts with several RNAs to
be specifically recruited to its target loci [163]. It is also the case for the regulator FUBP1
that is able to bind single-stranded DNA and to activate promoters and enhancers as well
as binding RNA [164,165]. Similarly, the TF YY1 was shown to interact with nascent RNA
close to its targeted regulatory elements to improve its binding to the chromatin, thus
reinforcing and stabilizing the expression of the gene [166].

On this basis, and knowing that transcription co-occurs with RNA processing, as
mentioned earlier, a new idea that RBPs could also potentially contact DNA has recently
emerged. In 2019, Xiao and coworkers addressed the question leading a large-scale study on
58 and 45 RBPs in HepG2 and K562 cells. They confirmed the aforementioned hypothesis,
finding that a large number of RBPs would eventually bind chromatin, mainly around
promoters. Moreover, they showed that this binding is enhanced in the presence of the
nascent RNA. Interestingly, RBM22 is one of those DNA-binding RBPs, presenting nearly
10,000 ChIP-Seq peaks on the genome, mainly on transcribed regions, with an enrichment
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on promoters of small RNA genes (tRNA, snoRNA, and miRNA) compared to promoters
of lncRNA and protein coding genes. Furthermore, they identified a positive correlation
between the expression of the target genes and the probability of RBM22 binding to it.
They showed that its binding to the chromatin requires the presence of a nascent RNA
as blocking transcription significantly reduced the number of ChIP-Seq peaks on a given
region. Strikingly, they observed a deregulation of about 3000 genes when RBM22 was
knocked-down. Genes giving rise to an RBM22-bound RNA were significantly more
deregulated than those giving non-RBM22-bound RNAs, showing that RBM22 plays a
role in transcription and gene regulation, and exhibiting, to some extent, transcription
factor-like function. [105]. A coupling between promoter binding and RBP-dependent
splicing was not observed in this work but was not definitively excluded either.

Later, Van Nostrand and coworkers confirmed that RBM22 could bind chromatin,
mainly on transcribed regions and promoters. They also showed a concordance between
eCLIP signals—corresponding to RNAs bound by RBM22—and ChIP-Seq signals, reaf-
firming the concept of RBP target genes. Finally, in RBM22 knock-down conditions, they
also showed a deregulation of a large number of genes (>5000 in HepG2 and >2000 in
K562 cells), ranking RBM22 as one of the RBPs that induces the most deregulation. These
deregulations were mainly down-regulations (accounting for 60% to 75% of deregulated
genes) [104]. This is in contrast with the previous study [105], which showed an equal
upward and downward deregulation. Thus, these data need to be strengthened.

These studies provide a new perspective on RBPs, and notably on RBM22, showing
that apart from their role in RNA splicing and processing, RBPs are also involved in
transcription and gene regulation. This opens a new door in the field of gene expression.

3.3. Implication of RBM22 in Ca2+-Dependent Regulation of mRNA Splicing

It is well known that calcium plays a major role in signal transduction in the cells. This
is in part due to its effect on gene transcription, notably through a few Ca2+-dependent
transcription factors (e.g., CREB and SRF) [167,168]. It also plays a role in alternative
splicing [169].

In 2006, Montaville et al. identified RBM22 as a protein interactor of the calcium-
binding protein Apoptosis Linked Gene 2 (ALG-2) by a yeast two-hybrid assay and con-
firmed their interaction using recombinant fluorescent proteins. Moreover, they showed
that overexpressed RBM22 was able to translocate ALG-2 from the cytoplasm to the nu-
cleus [170,171]. In another study, Kreb’s team also showed that, in stress conditions (espe-
cially calcium-stress conditions under treatment with Thapsigargin), a higher expression
of RBM22 would enhance the translocation of the second step splicing factor SLU7 from
the nucleus to the cytoplasm. Furthermore, the splicing of Xbp1 was affected. The latter
is a transcription factor that is normally alternatively spliced, in endoplasmic reticulum
(ER) stress conditions, into the Xbp1-s isoform, which promotes the transcription of ER
chaperones. Under treatment with Thapsigargin, the proportion of Xbp1-s was greatly re-
duced when the cells were transfected with vectors expressing RBM22 and/or ALG-2 [171].
This highlights a potential role of RBM22 in the Ca2+-dependent regulation of splicing that
needs to be further studied.

4. The Role of RBM22 in Mitosis and Differentiation
4.1. Spatio-Temporal Expression of RBM22

According to databases, RBM22 is a highly conserved gene. It is found in all vertebrates
and invertebrates, in plants, and even in yeasts as 2 separated genes, as mentioned above
(i.e., Cwc2 and Ecm2/Slt11).

In humans, the expression of RBM22 is ubiquitous, but it is interestingly more ex-
pressed in the bone marrow, where hematopoiesis takes place [172]. Unfortunately, there is
no report about the expression of RBM22 during human development. However, He and
coworkers reported its expression during zebrafish development. zRBM22 was expressed
as early as the 1-cell stage, and was then ubiquitously expressed in the fish embryo [173].
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4.2. Experimental Depletion of RBM22 Results in Mitotic and Differentiation Defects

The effect of RBM22 depletion on the phenotype of cells and organisms has been re-
ported by several studies. In a Cwc2-depleted yeast model, complementation with versions
of Cwc2 carrying mutations on its RRM or ZnF domains induced a growth defect for some
mutations [142]. Moreover, in screenings employing RNA interference technologies to
deplete a set of genes or every gene one by one, RBM22 was repeatedly identified as an
important or essential gene. In particular, Rbm22 depletion by RNA interference caused
an abnormal development of Drosophila embryonic heart [106]. It was also identified as
an essential gene for early zebrafish development by insertional mutagenesis [90]. In
concordance with this latter result, another Rbm22 knock-down experiment led to abnor-
mal development of zebrafish head and tail during embryogenesis [173]. However, no
link has been established between those phenotypes and any RBM22-defective splicing
so far. Recently, using CRISPR/Cas9 technology, Yamauchi et al. identified Rbm22 as an
important, if not essential, gene for the survival of transformed murine cell lines [174].
In 2004, Kittler et al. showed that the knock-down of RBM22 (called FLJ10290 at the
time) leads to cytokinesis defect and mitotic arrest in HeLa cells, without inducing cell
death [102]. As mentioned earlier, RBM22 is particularly expressed in the bone marrow.
Thus, unsurprisingly, Ebert and coworkers showed that RBM22 haploinsufficiency also im-
pairs the erythroid differentiation of human CD34+ hematopoietic stem or progenitor cells
(HSPCs), without impacting megakaryocytic differentiation. This mimicked the phenotype
of myelodysplastic syndromes (MDS) [103].

These results and the apparent essentialness of RBM22 for cell survival and differ-
entiation, as well as organism development, led us to wonder whether RBM22 could be
implicated in human diseases.

4.3. Implication of RBM22 in Human Diseases and Cancer: State-of-the-Art and Perspectives

During the last decade, RBM22 has been reported in a few studies about different
pathologies. Of note, if it is shown to be associated to the phenotype of the disease, RBM22
has never been identified as a driver gene. Herein, we draw on the state-of-the-art research
of what is known about RBM22 in diseases.

According to the COSMIC database (available at cancer.sanger.ac.uk) (accessed on
14 October 2021), RBM22 is most likely a stable gene, which is rarely mutated [175],
reinforcing the idea of its essentialness. Indeed, only a few mutations were reported for
RBM22—mainly missense and synonymous mutations—with no mutation hotspot. Only
two deletions were reported, both in the PRD domain and of 3 nucleotides, leaving the open
reading frame unchanged. No fusion gene but a few Copy Number Variants (CNV) were
described. This indicates that the pathological role of RBM22 is rather due to a change in
its expression than an altered or modified function. For instance, it was found deregulated
in heart tissues of cardio-insufficient patients and overexpressed in non-alcoholic fatty
liver patients [132,176]. In the latter case, the knock-down of RBM22 by RNA interference
diminished the expression of lipogenesis enzymes and reduced lipid accumulation in
HepG2 cells. Moreover, the authors described two treatments that could influence RBM22
expression: leptin reduced it while palmitic acid increased it [132].

RBM22 has also been reported in a few cancers. The OGEE v3 database describes
RBM22 as essential for cancer cells in several human tissues [177]. In 2017, Chan and
coworkers reported that RBM22 is overexpressed in triple-negative breast cancer cells.
Moreover, its knock-down reduced the viability of cells [178]. RBM22 was also found
overexpressed in glioblastoma. In that case, the knock-down of RBM22 affected several
functional parameters of the cells: it reduced their proliferation as well as their migration
potential; it reduced the secretion of the vascular endothelial growth factor (VEGF) and
the number of stem/progenitor cells in the tumorsphere; and finally, it increased apopto-
sis [179]. Surprisingly however, RBM22 was recently found to promote the proliferation
of gastrointestinal cancer cell lines without any change in its expression. Nevertheless,
its knock-down still strongly inhibited the proliferation of cells. Interestingly, only cancer
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cells were affected by the down-expression of RBM22 as non-cancer cells did not show any
significant reduction of proliferation. Thereby, for the first time, RBM22 was proposed as a
therapeutic target [180]. At the opposite of the aforementioned data, the overexpression of
RBM22 in lung cancer improved the prognosis of the patients [181]. All these data suggest
a critical dosage for RBM22 normal function.

Finally, in accordance with the higher expression of RBM22 in hematopoietic tissues
mentioned earlier, RBM22 alterations are also reported in hematological malignancies. In
2007, RBM22 was identified as one of the most downregulated genes in the 5q-syndrome, a
subtype of myelodysplastic syndrome [182]. The 5q- syndrome is defined by a partial hap-
loid deletion of the long arm of chromosome 5 (del(5q)) in which RBM22—along with about
40 genes on average—is lost, making it haploinsufficient. This malignancy is characterized
by erythroid hypoplasia and normal to elevated platelet and megakaryocyte counts with hy-
polobulated nuclei [183]. This is interestingly related to the aforementioned studies of Ebert
and coworkers—in which RBM22 is one of the genes affecting erythroid differentiation
the most when experimentally depleted [103]—and Yamauchi and coworkers—in which
RBM22 was identified as essential for the survival of mouse Acute Myeloid Leukemia cell
lines [174]. In another study, the haploinsufficiency of Rbm22 caused by the del(5q) was
shown to play a role in the alteration of the hematopoietic differentiation into mouse B
cells [184]. Finally, RBM22 was identified as a target gene of WDR5, which is overexpressed
in some Acute Lymphoblastic Leukemia and Acute Myeloblastic Leukemia. The expression
of RBM22 is positively correlated to that of WDR5, making it also overexpressed in those
cases [185]. Thus, RBM22 seems to be a major gene of hematopoiesis.

Altogether, these data suggest that even though RBM22 does not appear to be a driver
gene in cancers and other diseases, it seems that it plays an important role in survival,
mitosis and differentiation processes, and participates in pathological states. The RNA-
splicing and gene expression dependent on RBM22 should therefore be more extensively
studied to determine to what extent RBM22 contributes to oncogenesis or to the phenotype
of multigenic diseases.

5. Conclusions

RBM22 is a gene encoding an RNA-binding protein that was discovered two decades
ago. Being a fusion of two yeast genes—Cwc2 and Ecm2–, the human RBM22 encodes a
protein containing a Zinc Finger like domain, a Zinc Finger domain, and an RNA Recogni-
tion Motif. It was at first described to be involved in pre-mRNA splicing, in which it plays
a major, non-redundant role, making it a key protein of the spliceosome. Thus, when it is
depleted, the pre-mRNA splicing process is altered, mainly leading to intron retention and
exon skipping. Moreover, RBM22 has recently been described—conjointly with dozens
of other RBPs—as a transcription-factor-like protein, being able to bind chromatin in a
nascent-RNA-dependent fashion and to regulate the expression of thousands of genes. This
dual RNA- and DNA-binding activity gives RBM22 an essential role in the cell. There are
still many questions that need to be addressed about BRM22. Among them, the question of
its specific target genes and main target pre-mRNAs in different cellular context (lineages,
during cell cycle progression, under stress conditions . . . ) could be investigated by ChIP-
seq, RNA immunoprecipitation, RNA ChIP-IT, or equivalent techniques. The identification
of the RNA or DNA consensus motifs to be recognized by RBM22, possibly investigated by
minigenes or high-throughput techniques, again in different cellular contexts, will be of
interest for basic research but also to address the degree of pathogenicity of some SNPs if
they happen to affect those motifs. Indeed, being deregulated in several diseases, RBM22
was repeatedly described to play an oncogenic cooperation role with implications in cell
proliferation, migration, and tumor aggressiveness. Understanding those close cooper-
ations in which RBM22 is involved would elucidate comprehension for some diseases
progress. Future investigations of RBM22 will undoubtedly provide new insights in the
coupling of gene transcription and RNA processing, as well as a better understanding of
pathological situations, notably in cancer.
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