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Simple Summary: Prostate cancer (PCa) is a hormone-dependent tumor characterized by a highly
heterogeneous clinical outcome. This neoplastic process has become a leading cause of cancer
worldwide, with over 1.4 million new cases and a total of 375,000 deaths in 2020. Despite the efforts
to improve the diagnosis, risk stratification, and treatment of PCa patients, a number of challenges
still need to be addressed. In this context, integration of different multi-omics datasets may represent
a powerful approach for the development of novel metabolic signatures that could contribute to
the clinical management of PCa patients. This review aims to provide the most relevant findings of
recently published multi-omics studies with a particular focus on describing the metabolic alterations
associated with PCa.

Abstract: Prostate cancer (PCa), one of the most frequently diagnosed cancers among men worldwide,
is characterized by a diverse biological heterogeneity. It is well known that PCa cells rewire their
cellular metabolism to meet the higher demands required for survival, proliferation, and invasion.
In this context, a deeper understanding of metabolic reprogramming, an emerging hallmark of
cancer, could provide novel opportunities for cancer diagnosis, prognosis, and treatment. In this
setting, multi-omics data integration approaches, including genomics, epigenomics, transcriptomics,
proteomics, lipidomics, and metabolomics, could offer unprecedented opportunities for uncovering
the molecular changes underlying metabolic rewiring in complex diseases, such as PCa. Recent
studies, focused on the integrated analysis of multi-omics data derived from PCa patients, have in
fact revealed new insights into specific metabolic reprogramming events and vulnerabilities that have
the potential to better guide therapy and improve outcomes for patients. This review aims to provide
an up-to-date summary of multi-omics studies focused on the characterization of the metabolomic
phenotype of PCa, as well as an in-depth analysis of the correlation between changes identified in the
multi-omics studies and the metabolic profile of PCa tumors.

Keywords: prostate cancer; metabolism; multi-omics; metabolomics

1. Introduction

Prostate cancer (PCa) is the second most frequent cancer and represents the fifth
leading cause of cancer-related death in men worldwide [1]. According to the Global
Cancer Incidence, Mortality, and Prevalence (GLOBOCAN) database, new PCa cases were
estimated to account for almost 1.4 million, with a total of 375,000 cancer-related deaths
in 2020 [1]. Clinically, PCa is characterized by a heterogeneous behavior, ranging from
indolent phenotypes to a rapid progression into an aggressive metastatic disease [2]. Early
PCa diagnosis mainly relies on prostate-specific antigen (PSA) tests, although this screening
method exhibits several limitations as it is prostate-specific but not cancer-specific [3],
leading to overdiagnosis and overtreatment [4–6]. Thus, histopathological evaluation
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of biopsies, graded on the basis of the Gleason Score (GS) [7], is required to confirm the
presence of PCa [8] and to determine the treatment strategy to follow [9]. However, prostate
biopsy is an invasive procedure that might cause health complications (e.g., hematospermia,
hematuria, fever, bleeding, urinary retention) [10,11]. In addition, although the grading
system has been modified several times, there remains no classification scheme that allows
accurately discriminating indolent from aggressive PCa stages [12]. Thus, there is a need
for more precise and robust PCa biomarkers to improve diagnosis and risk stratification
of patients.

In recent years, metabolic phenotyping has become a powerful approach for the
identification of new molecular biomarkers and metabolic vulnerabilities that could rep-
resent novel therapeutic opportunities in oncological diseases [13–18]. Hence, several
metabolomics analyses have been carried out on PCa samples (e.g., tissue, urine, serum,
plasma, and seminal fluid) to characterize the specific metabolic profile associated with
PCa progression and identify metabolic alterations that may potentially be used as clinical
biomarkers (reviewed in [19–22]). Together, these studies have revealed a specific metabolic
phenotype that could distinguish between healthy and PCa samples [23]. Healthy prostate
cells accumulate high concentrations of zinc, which results in the inhibition of mitochon-
drial aconitase (ACO2) and consequently decreases citrate oxidation, thus disrupting the
tricarboxylic acid (TCA) cycle metabolism [24]. In contrast, decreased zinc levels in PCa
tumors enable the activation of ACO2 for citrate oxidation and subsequent re-establishment
of the TCA cycle [23,25]. In line with this, metabolic studies have reported decreased citrate
levels and increased concentrations of several TCA cycle intermediates (e.g., fumarate,
malate, and succinate) in PCa tumor samples when compared with healthy prostate tissues,
suggesting an increased TCA cycle metabolism [26–29]. In addition, other studies have
reported lower levels of polyamines and sarcosine metabolism (e.g., spermine, spermidine,
sarcosine) [29–33], as well as dysregulations of several amino acids (e.g., alanine, glutamate,
arginine, tyrosine, phenylalanine) [26–28,34–39] and other metabolites involved in cellular
membrane metabolism (e.g., choline, phospholipids) [26,27,40–44].

These metabolic alterations have been observed at different omics levels [45–47]. For
instance, transcriptomics analyses facilitated the identification of three distinct metabolism-
associated PCa clusters and the development of a six-gene metabolic signature associated
with disease-free survival [47]. In addition, following a loss-of-function genetic screen, the
glycolytic 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 4 (PFKFB4) enzyme was
identified as an essential gene for PCa cell survival and evaluated as a potential therapeutic
target for PCa treatment [48]. On the other hand, proteomics analyses carried out on PCa
cell lines and tissue samples revealed that enzymes involved in the ketogenic metabolism
pathway were overexpressed in high-grade PCa [49]. Furthermore, the characterization
of the proteomics landscape of exosomes, isolated from primary prostate epithelial and
PCa cell lines, identified four exosomal proteins (PDCD6IP, FASN, XPO1, and ENO1) as
potential new candidate biomarkers for PCa [50]. Moreover, lipidomics, an emerging omics
approach [51], has also demonstrated its potential as an alternative diagnostic tool in PCa,
revealing specific associations between alterations in glycerophospholipid metabolism and
fatty-acid synthesis and oxidation with PCa progression [52,53].

In summary, the information derived from different omics studies offers new avenues
for better understanding the biological and molecular processes underlying metabolic
changes occurring during cancer progression, as well as for developing novel molecular
biomarkers to improve the clinical management of cancer patients. Moreover, a number of
studies have demonstrated that the combination of multi-omics data can provide deeper
insight into the metabolic changes associated with the progression of different oncological
diseases than any of these omics on their own [54–57]. Thus, the integration of different
omics platforms has emerged as a powerful and promising strategy for the elucidation
of potential genetic and epigenetic alterations, changes in gene expression levels and
signaling pathways, and other biological dysregulations that could be driving metabolic
rewiring during cancer progression. Hence, this review aims to provide the most relevant



Cancers 2022, 14, 596 3 of 20

findings reported in recently published multi-omics-based studies focused on the analysis
of metabolic alterations associated with PCa initiation and progression (Figure 1). To
that end, a literature search was conducted on PubMed, using different combinations of
the following terms: “(omics OR multi-omics OR omics integration OR (metabolomics
OR lipidomics) AND (metabolomics OR lipidomics OR transcriptomics OR genomics
OR epigenomics OR proteomics) AND (metabol * OR metabolic profiling OR metabolic
phenotype)) AND prostate cancer”. Then, titles and abstracts of the selected publications
were examined to evaluate their eligibility according to their relevance on the issue of
interest and to determine their inclusion in the review.
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Figure 1. Graphical representation of different omics-based approaches and multi-omics analyses
applied to the characterization of PCa-related metabolic alterations.

2. PCa Multi-Omics Studies

Between 2013 and 2021, 21 studies, focused on characterizing the specific metabolic
profile associated with PCa, reported the integration of data from at least two different
omics platforms. Tissue was by far the most frequently analyzed sample (15 studies),
cell lines were harvested in four studies, biofluids (urine, serum) from Pca patients were
collected in three of the studies, and only one of them relied on using murine models.
Integration of transcriptomics and metabolomics was conducted in most of the studies,
while transcriptomics, metabolomics, and lipidomics were only combined in two of them.
Lastly, mass spectroscopy (MS) was preferentially chosen over nuclear magnetic resonance
(NMR) as analytical platform for proteomics, metabolomics, or lipidomics analyses.

2.1. Benign Tissue vs. PCa Tumor

Nine of the studies discussed in this review relied on the analysis of benign prostate
and PCa samples for identifying specific metabolic alterations associated with the metabolic
phenotype of PCa patients (Table 1). Integration of transcriptomics and metabolomics data
was the primary approach followed in these studies, and tissue samples were the biological
specimens preferentially collected.
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Table 1. Most relevant metabolic alterations reported in recent multi-omics studies focused on the
characterization of the specific metabolic phenotype of PCa patients.

Study Sample Omics Data Major Findings *

Meller et al. [58] Tissue M + T
↑ ACC, ACLY, FASN, SCD, 2-hydroxybehenic acid, cerebronic acid,

glycerol phosphate, palmitic acid, GSH/GSSG, and spermidine
↓ putrescine and spermine

Li et al. [59] Tissue L + T ↑ PLA2s, free MUFA and PUFA, and LPLATs
↓ free SFA, PUFA-acyl, and ether-linked chains in PLs

Torrano et al. [60] Cell lines M + T ↓ PGC1A, FAO, and TCA cycle

Lima et al. [61] Tissue L + M ↑ amino-acid metabolism, nicotinate and nicotinamide metabolism,
purine metabolism, and glycerophospholipid metabolism

Shao et al. [62] Tissue M + T
↑ fumarate, malate, succinate, 2-hydroxyglutaric acid,

2-ketoglutarate, glutamine, glutamate, PDH, GLS, GLUD1, GLUD2,
and BCAA degradation enzymes

Tessem et al. [63] Tissue M + T ↑ ACLY, ACACA, FASN, SAT1, SMOX, SRM, and succinate,
↓ ACO1, SDHD, SUCLA2, putrescine, and citrate

Kaushik et al. [64] Tissue M + T ↑ HBP, GNPNAT1, UAP1, and UDP-GlcNAc

Ren et al. [65] Tissue M + T ↑ HBP, UDP-GlcNAc, and sphingosine

Lee et al. [66] Urine M + T ↑ GOT1 and glutamate
ACACA: acetyl-CoA carboxylase alpha, ACC: acetyl-CoA carboxylase, ACLY: ATP citrate lyase, ACO1: aconitase,
BCAA: branched-chain amino acids, FAO: fatty-acid oxidation, FASN: fatty-acid synthase, GLS: glutaminase,
GLUD1: glutamate dehydrogenase 1, GLUD2: glutamate dehydrogenase 2, GNPNAT1: glucosamine-phosphate
N-acetyltransferase 1, GOT1: glutamate oxaloacetate transaminase 1, GSH: reduced glutathione, GSSG: oxidized
glutathione, HBP: hexosamine biosynthesis pathway, L: lipidomics, LPLATs: lysophospholipid acyltransferase, M:
metabolomics, MUFA: mono-unsaturated fatty acids, PDH: pyruvate dehydrogenase, PGC1A: PPARG coactivator
1 alpha, PLs: phospholipids, PLA2s: phospholipase A2, PUFA: polyunsaturated fatty acids, SAT1: spermi-
dine/spermine N1-acetyltransferase 1, SCD: acyl-CoA desaturase, SDHD: succinate dehydrogenase complex sub-
unit D, SFA: saturated fatty acids, SMOX: spermine oxidase, SRM: spermidine synthase, SUCLA2: succinate-CoA
ligase ADP-forming beta subunit, T: transcriptomics, TCA: tricarboxylic acid, UAP1: UDP N-acetyl glucosamine
pyrophosphate 1. * Direction of variation, considering the benign group as reference. Up and down arrows
indicate direction of the variation observed in PCa samples.

Several of these studies reported alterations in enzymes and/or metabolites involved
in fatty-acid metabolism. Among them, Meller et al. observed a highly deregulated
metabolism of fatty acids, sphingolipids, and polyamines in malignant tissue [58]. Altered
fatty-acid and sphingolipid metabolism was associated with increased expression of acetyl-
CoA carboxylase (ACC), ATP citrate lyase (ACLY), fatty-acid synthase (FASN), and acyl-CoA
desaturase (SCD) as well as with elevated concentrations of several fatty acids, such as 2-
hydroxybehenic acid, cerebronic acid, glycerol phosphate, and palmitic acid. Furthermore,
a higher ratio of reduced (GSH) to oxidized (GSSG) glutathione and alterations in the levels
of several metabolites involved in polyamine metabolism, including putrescine, spermine,
and spermidine, were detected in PCa tumors. These observations were based on the
metabolomics, transcriptomics, and immunohistochemistry analysis of matched malignant
and nonmalignant prostatectomy samples from 106 PCa patients. These results are in
agreement with previous studies reporting FASN to be upregulated in PCa tumors [67–69],
and SCD to promote PCa proliferation [70], as its inhibition resulted in a reduction in
tumor growth [71]. Other studies reported higher glutathione reductase activity in PCa,
leading to higher GSH levels, which could confer higher oxidative stress resistance to these
tumors [72]. A recent study also showed that mTORC1 regulated polyamine synthesis as
part of an essential oncogenic metabolic reprograming in PCa [73].

Dysregulated lipid metabolism in PCa was also reported by Li et al., in a study fo-
cused on understanding the regulatory networks involved in adaptative transformation
of lipid metabolism in PCa tissues [59]. Following a network-wide integrated mapping
of lipid metabolism, including changes in the lipidome, transcript alterations, and post-
transcriptional regulations, the authors observed a significant upregulation of de novo
lipogenesis and a strengthened biosynthesis of phospholipids (PLs) via a de novo path-
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way in PCa lipogenesis, together with a reprogrammed composition in membrane PLs.
Overall, percentages of free mono- and polyunsaturated fatty acids (MUFAs and PUFAs,
respectively) were elevated, while free saturated fatty acids (SFA) were reduced. Moreover,
activated PL remodeling was characterized by enhanced activities of phospholipase A2
(PLA2s) and reduced lysophospholipid acyltransferase (LPLATs), which contributed to
increased MUFA-acyl residues and reduced PUFA-acyl and ether-linked chains in PCa
PLs. In fact, lipogenesis upregulation has been described as a hallmark of invasive cancers
and termed the “lipogenic phenotype” [74]. Furthermore, several studies have associated
changes in the PL content of the cellular membrane with PCa aggressiveness [27,75,76].

The characterization of relevant master regulators contributing to the metabolic switch
in PCa was also evaluated in a multi-omics study conducted by Torrano et al. [60]. In this
study, the analysis of the expression levels of several metabolic coregulators in five different
PCa datasets revealed that only alterations in the transcriptional coactivator PPARG coacti-
vator 1 alpha (PPARGC1A or PGC1A), PPARG coactivator 1 beta (PPARGC1B or PGC1B),
and histone deacetylase 1 (HDAC1) expression were present in the majority or all datasets.
Among them, PGC1A was the only coregulator negatively associated with GS. Additional
integrative metabolomics analysis demonstrated that the tumor suppressive activity of
PGC1A was associated with a global metabolic rewiring, leading to an enhanced fatty-acid
β-oxidation and TCA cycle activity. TCA cycle downregulation has also been associated
with PCa progression in other multi-omics studies [77], while upregulation of TCA cycle
activity has been observed when comparing PCa tumor vs. adjacent prostate tissue [62].
Notably, the results from these studies are in agreement with a previously undescribed two-
step metabolic shift in the TCA cycle during PCa development and progression, which was
recently identified by Latonen et al. [77]. Further in vitro and in vivo analyses performed
in this study demonstrated the role of PGC1A in tumor progression and metastatic dissemi-
nation, with these results also being in agreement with recent findings [78]. Moreover, a
recent study showed that downregulation of PGC1A could promote PCa aggressiveness
through activation of the polyamine pathway [79].

The comparison of benign and PCa tissue samples has also revealed additional changes
in energy-related metabolic pathways. Thus, in a study conducted by Lima et al., an analy-
sis of the metabolomics and lipidomics profiles of benign and PCa tissues by NMR and MS
revealed metabolic dysregulations associated with PCa development [61]. The multivariate
statistical analyses revealed that the levels of 26 metabolites, including different amino
acids, organic acids, and nucleotide derivatives, and 21 phospholipid species were signifi-
cantly altered between both groups. Furthermore, a metabolic pathway analysis revealed
11 dysregulated metabolic pathways associated with PCa development. Dysregulations in
these pathways were confirmed by strong correlations among metabolites participating in
the same pathway. The main metabolic pathways associated with PCa were amino-acid
metabolism, nicotinate and nicotinamide metabolism, purine metabolism, and glycerophos-
pholipid metabolism. Notably, metabolites involved in these pathways were upregulated
in PCa tissues, being in accordance with other results published in previous studies [21–23].
Many of these pathways provide metabolic intermediates for the TCA cycle, nucleotide
synthesis, and lipid synthesis, thus contributing to the production of high levels of cellular
building blocks required for rapid proliferation of cancer cells [13,80].

Shao et al. also reported accumulation and upregulation of metabolites and genes
related to the TCA cycle in another multi-omics-based study [62]. Metabolomics and
transcriptomics analysis of PCa tumors and matched adjacent normal tissues revealed
significant accumulations of key TCA metabolic intermediates (malate, fumarate, succinate,
and 2-hydroxyglutaric acid) and enrichment in genes from different anaplerotic routes, in-
cluding those involved in pyruvate, glutamine catabolism, and branched-chain amino-acid
(BCAA) degradation. Associations between TCA cycle and the potential anaplerotic routes
were supported by increased expression of pyruvate dehydrogenase (PDH) complex, higher
expression levels of different BCAA degradation genes, glutaminase (GLS) and glutamate
dehydrogenase (GLUD1 and GLUD2), and higher α-ketoglutarate, glutamine, and gluta-
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mate levels. Dysregulations in the TCA cycle were also identified in PCa tissues by Tessem
et al. after accounting for the confounding effect of stroma [63]. In this study, integration of
metabolomics and transcriptomics data revealed associations between increased succinate
levels, also observed in other studies [29,81], and downregulation of succinate-CoA ligase
ADP-forming subunit beta (SUCLA2) and succinate dehydrogenase complex subunit D
(SDHD). Additional observations included lower citrate levels and decreased expression
of ACO1, together with overexpression of fatty-acid synthesis genes ACLY, acetyl-CoA
carboxylase alpha (ACACA), and FASN, suggesting an enhanced fatty-acid synthesis in
these tissues. Reduced citrate concentrations and increased lipid synthesis are considered
relevant metabolic features of PCa [23,82]. Furthermore, the authors observed relevant
associations between reduced putrescine levels and upregulation of spermidine synthase
(SRM), as well as lower spermine and increased spermidine/spermine N1-acetyltransferase
1 (SAT1) and spermine oxidase (SMOX) expression. In agreement with these results, other
authors also reported a reduction in spermine and putrescine levels [34,58,74,75], as well as
an overexpression of enzymes involved in the polyamine pathway [83–85].

In another study conducted by Kaushik et al., transcriptomics and metabolomics
analyses were integrated, using a pathway-centric analytical framework that enabled the
combination of the rankings of biochemical pathways enriched independently by gene
expression and metabolic profiles in a single significance score [64]. Following this anal-
ysis, the hexosamine biosynthesis pathway (HBP) was found to be the most enriched
pathway in treatment-naïve localized PCa, when compared to benign adjacent prostate
tissues. Moreover, in silico analysis showed that the expression of glucosamine-phosphate
N-acetyltransferase 1 (GNPNAT1) and UDP N-acetyl glucosamine pyrophosphate 1 (UAP1)
were significantly elevated in PCa tumors. In contrast, HBP genes were significantly down-
regulated in castrate-resistant prostate cancer (CRPC) in comparison with localized PCa.
The opposite effect of the HBP on the growth of androgen-dependent PCa and CRPC cells
suggests the existence of metabolic rewiring during PCa progression. Moreover, on the ba-
sis of different in vitro and in vivo approaches, the authors concluded that downregulation
of HBP in CRPC cells modulates progression via either PI3K/Akt or specific protein 1 (SP1)-
regulated expression of carbohydrate response element-binding protein (ChREBP), depend-
ing on the androgen receptor variant. Previous studies have also reported several metabolic
rewiring mechanisms associated with different androgen receptor variants [86]. Lastly, in
this study, the authors evaluated the therapeutic efficacy of UDP-GlcNAc treatment, alone
and in combination with anti-androgen therapy, for the treatment of CRPC-like tumors
bearing different androgen receptor variants. Notably, in vivo UDP-GlcNAc treatment
significantly reduced the proliferation in all assayed CRPC-like tumors. These findings are
particularly relevant as CRPC cells containing the AR-V7 variant are essentially resistant to
anti-androgen therapy. Interestingly, Ren et al. also reported increased activity of the HBP
in PCa compared to adjacent prostate tissues [65]. In both studies, UDP-GlcNAc, the end
product of the HBP and a key substrate for the O-linked N-acetyl-glucosamine transferase
(OGT), which plays a vital role in O-GlcNAcylated modification of proteins, was found
to be increased in PCa tissues [64,65]. Interestingly, posttranslational O-GlcNAcylation of
chromatin is a significant feature of enhancers in the PCa genome [46,87]. In addition to the
HBP, Ren et al. reported metabolic perturbations in other metabolic pathways, including
the metabolism of cysteine and methionine and nucleotide sugars, glycerophospholipids,
lysine, and sphingolipids. Moreover, nine metabolites showed potential utility as metabolic
PCa biomarkers. Among them, sphingosine demonstrated high specificity and sensitivity
for distinguishing PCa from benign prostatic hyperplasia (BPH), particularly in patients
with low PSA levels. Other metabolomics studies have also reported alterations in the HBP
and sphingolipid metabolism when analyzing the metabolic profile of PCa patients [27,28].

More recently, Lee et al. carried out a transcriptomics and metabolomics analysis of
urine liquid biopsies from BPH, prostatitis, and PCa patients with a focus on the iden-
tification of PCa-specific biomarkers and the discovery of novel therapeutic targets for
PCa treatment [66]. Significantly enriched pathways in PCa patients included the TCA
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cycle and alanine, aspartate, and glutamate metabolism. Other metabolomics studies have
also reported alterations in urine levels of metabolites involved in these pathways in PCa
patients [36,88–90]. By examining the top 25 altered metabolites and corresponding genes,
the authors identified a regulatory metabolic node that influenced both pathways and was
mediated by changes in glutamate oxaloacetate transaminase 1 (GOT1)- and GOT2-related
metabolism. Notably, GOT1 expression was higher in PCa patients, and glutamate, the
product of GOT1, also exhibited elevated levels in these patients. Moreover, knock-down
of GOT1 in LNCaP and PC3 cells resulted in a significant decrease in cell viability, consis-
tent with previous studies where GOT1 repression suppressed tumor growth in different
tumors [91,92]. Overall, these results suggest that the metabolic alterations observed in
urine liquid biopsies obtained from PCa patients could reflect the specific changes already
observed in PCa cells and tumors.

Altogether, in agreement with other studies where metabolomics was the only analyt-
ical platform used for analyzing the metabolic profile of PCa patients [39–41,93–97], the
results from the multi-omics-based studies reviewed in this article suggest that the PCa-
specific metabolic phenotype is characterized by alterations in the TCA cycle, polyamine
synthesis, HBP, and nucleotide and lipid metabolism (Figure 2).
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Figure 2. Overview of metabolic pathways most consistently reported to be altered in PCa in the
multi-omics studies reviewed in this article, including: hexosamine biosynthesis pathway [64,65],
purine metabolism [61], fatty acid synthesis [58,59,63], amino acid metabolism [61], TCA cycle [60,62],
glutathione metabolism [58], glutaminolysis [62,66] and polyamine metabolism [58,63]. Thick
lines highlight the metabolic pathways found to be upregulated in PCa tumors when compared
with benign prostate tissue. References corresponding to the multi-omic studies describing alter-
ations in each metabolic pathway are included. α-KG: alpha-ketoglutarate, Fructose-6P: fructose-
6-phosphate, Glucosamine-6P: glucosamine-6-phosphate, Glucose-6P: glucose-6-phosphate, IMP:
inosine monophosphate, PRPP: phosphoribosyl diphosphate, Ribose-5P: ribose-5-phosphate.

2.2. PCa Subtyping

Twelve of the multi-omics studies included in this review focused on the identification
of metabolic alterations associated with specific subtypes of PCa (Table 2). Half of the
studies combined transcriptomics and metabolomics analyses to characterize metabolic
dysregulations in different subgroups of PCa patients, and the other half relied on the
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analysis of proteomics and lipidomics profiles. Tissue was the biological sample most often
analyzed in these studies, whereas cell lines and biofluids were collected in only three
and two studies, respectively. Different subgroups of PCa patients showed alterations in
the TCA cycle and amino-acid, nucleotide, and lipid metabolism. Overall, these results
correlate with metabolic changes, observed in previous studies, where metabolomics was
the only analytical approach used to performed the analyses [26–28,75,98,99].

Table 2. Most relevant metabolic alterations reported in recent multi-omics studies focused on the
characterization the metabolic phenotypes of different PCa subtypes.

Study Sample Omics Data Group
Comparison Major Findings

Gómez-Cebrián
et al. [100]

Urine,
serum M + T Low- vs. high-

grade PCa High-grade: ↑ glucose, glycine, and 1-methylnicotinamide

Kiebish et al. [101] Serum L + M + P non-BCR vs.
BCR

BCR: ↑ TNC, APOA-IV, and 1-methyladenosine and ↓
phosphatidic acid

Liu et al. [102] Tissue G + M PCa vs.
metastatic

Metastatic Pca: ↑ CYP1A1, PNP, SMS, proline, cholesterol,
sarcosine, spermidine, and spermine

Li et al. [103] Tissue M + T PCa
vs.metastatic Metastatic PCa: ↓ histamine

Latonen et al. [77] Tissue E + G + P + T PCa vs. CRPC CRPC: ↓ ACO2, OGDH, SUCLG1, and IDH3A; ↑ MDH2

Gao et al. [104] Cell
lines L + M + T LNCaP vs.

SCNC

LNCaP: ↑ PHGDH, PSAT1, PSPH, TDH, GCAT, citrate,
isocitrate, and succinate; ↓ fumarate, glutamate, glutamine,

IDH1, GLUD1, GLUD2, carnitine, and short-chain
acylcarnitines

SCNC: ↑ lactate and LDH; ↓ G6P

Joshi et al. [105] Cell
lines M + T CPT1A KD vs.

CPT1A OE

CPT1A OE: ↑ PHGDH, PSAT1, SHMT2, CTH, GSTO2,
dimethylglycine, cystathionine, cystathionine, and cysteine;

↓ glycolysis

Chen et al. [106] Cell
lines M + T ARCaPE vs.

ARCaPM

ARCaPM: ↑malate, ACO2, SDHA, aspartate, ASS1, and SRR;
↓ glycolysis, succinate, and citrate

Hansen et al. [107] Tissue L + M ERGlow vs.
ERGhigh

ERGhigh: ↑ ethanolamine, glycine, phosphocholine,
phosphoethanolamine, ACACA, FASN, and SAT1; ↓ ACO2,

citrate, spermine, putrescine, and glucose

Yan et al. [108] Tissue L + M + T SPOP wt vs.
SPOP-mutant

SPOP-mutant:↑ ACADL, ELOVL2, FH, fatty acids, fumarate,
and malate

Andersen et al. [109] Tissue M + T Low vs. high
reactive stroma

High reactive stroma: ↑ taurine and leucine; ↓ citrate,
spermine, and scyllo-inositol

Oberhuber et al. [110] Tissue M + P + T STAT3low vs.
STAT3high

STAT3low: ↑ OXPHOS, TCA cycle, ribosomal activity,
pyruvate, fumarate, and malate; ↓ PDK4

ACACA: acetyl-CoA carboxylase alpha, ACADL: acyl-CoA dehydrogenase, long chain, ACO2: aconitase, APO-
AIV: apolipoprotein A1V, ARCaP: androgen-repressed prostate cancer cell, ASS1: arginosuccinate synthase 1,
BCR: biochemical recurrence, CPT1A: carnitine palmitoyl transferase I, CRPC: castrate-resistant prostate cancer,
CTH: cystathionine gamma-lyase, CYP1A1: cytochrome P450 family 1 subfamily A member 1, E: epigenomics,
ELOVL2: ELOVL fatty acid elongase 2, ERG: ETS transcription factor ERG, FASN: fatty-acid synthase, FH: fu-
marate hydratase, G: genomics, GSTO2: glutathione S-transferase omega 2, GCAT: glycine C-acetyltransferase,
GLUD1: glutamate dehydrogenase 1, GLUD2: glutamate dehydrogenase 2, G6P: glucose-6-phosphate, IDH1:
isocitrate dehydrogenase (NADP(+)) 1, IDH3A: isocitrate dehydrogenase (NAD(+)) 3 catalytic subunit alpha,
KD: knockdown, L: lipidomics, LDH: lactate dehydrogenase, LNCaP: lymph node carcinoma of the prostate,
M: metabolomics, OE: overexpressed, MDH2: malate dehydrogenase 2, OGDH: oxoglutarate dehydrogenase,
OXPHOS: oxidative phosphorylation, P: proteomics, PCa: prostate cancer, PDK4: pyruvate dehydrogenase kinase
4, PHGDH: D-3-phosphoglycerate dehydrogenase, PNP: purine nucleoside phosphorylase, PSAT1: phosphohy-
droxythreonine aminotransferase, PSPH: phosphoserine phosphatase, SAT1: spermidine N(1)-acetyltransferase,
SCNC: small-cell neuroendocrine carcinoma, SDHA: succinate dehydrogenase complex flavoprotein subunit A,
SHMT2: serine hydroxymethyltransferase, SMS: spermine synthase, SPOP: Speckle-type POZ protein, SRR: serine
racemase, STAT3: signal transducer and activator of transcription 3, SUCLG1: succinate-CoA ligase alpha subunit,
T: transcriptomics, TCA: tricarboxylic acid, TDH: threonine dehydrogenase, TNC: tenascin C.



Cancers 2022, 14, 596 9 of 20

Several studies have revealed specific metabolic alterations in PCa patients by compar-
ing prostate tumors of different grade. Furthermore, different systemic and local metabolic
alterations have consistently been associated with PCa risk and progression [111–116]. In
line with this, in a recent study by Gómez-Cebrián et al., the specific metabolomics profile
of high-grade PCa patients was characterized on the basis of the alterations in metabolite
levels identified in the serum and urine of PCa patients with different tumor grades [100]. A
gene set enrichment analysis (GSEA) of three publicly available Pca transcriptomics datasets
facilitated a targeted analysis of the metabolomics profiles, with a focus on metabolites
involved in potentially altered metabolic pathways in high-grade Pca patients. Statisti-
cally significant alterations in the levels of glucose, glycine, and 1-methylnicotinamide
were found in high-grade PCa patients. Interestingly, dysregulations in the levels of these
metabolites could be associated with different metabolic changes previously observed
in PCa patients [35,99,117–119]. Particularly, in other multi-omics studies based on the
analysis of tissue samples, glycine levels were found to be higher in PCa tumors enriched
in the TMPRSS2–ERG gene fusion set [107], and nicotinamide metabolism was elevated in
PCa tissues when compared with benign tissues [61]. In addition, Kiebish et al. recently
investigated the metabolic profile of presurgical serum samples of PCa patients with a focus
on selecting serum metabolic biomarkers that could be valuable for predicting biochemical
recurrence (BCR) [101]. In this study, the integration of proteomics, metabolomics, and
lipidomics data from PCa patients facilitated the identification of four analytes (tenascin
C (TNC), apolipoprotein A-IV (APOA-IV), 1-methyladenosine, and phosphatidic acid
18:0–22:0) as potential biomarkers to discriminate BCR from non-BCR patients. Of note,
TNC expression levels in PCa tumor tissues and stroma have previously been reported
to predict poor prognosis in PCa patients [120–122], and different serum studies have
described apolipoproteins as a potential biomarker for PCa [123,124]. The authors eval-
uated the association between the levels of each individual biomarker and survival, and
they found that higher levels of serum TNC, APO-AIV and 1-methyladenosine and lower
concentration of phosphatidic acid increased the probability of disease progression. The
predictive potential of these markers was further validated in a testing cohort of patients.
Overall, the combination of the four biomolecules resulted in a model with a predictive
performance for differentiating PCa patients with and without BCR characterized by an
AUC of 0.78, a value that increased to 0.89 after adding the pathological T stage and the GS
to the model.

Furthermore, other multi-omics studies have focused on the analysis of local metabolic
changes, as reflected in the metabolic profile of PCa tissues and cell lines. In a multi-omics
study conducted by Liu et al., the authors developed an approach to improve the accuracy
of PCa classification and risk evaluation [102]. According to the combined analysis of
genomics and metabolomics data from benign prostate samples, as well as localized and
metastatic PCa samples, the authors generated classifier models that proved to be infor-
mative for Pca prognosis in additional datasets. Following this approach, they found that
arginine and proline metabolism, purine metabolism, and steroid hormone biosynthesis
were relevant metabolic pathways for the discrimination between localized and metastatic
PCa. Next, topologically important genes and metabolites involved in these pathways
were selected as promising markers for PCa prognosis. Selected genes and metabolites
included cytochrome P450 family 1 subfamily A member 1 (CYP1A1), purine nucleoside
phosphorylase (PNP), spermine synthase (SMS), proline, cholesterol, sarcosine, spermidine,
and spermine. Interestingly, elevated PNP expression has been observed in aggressive
PCa cells [125], whereas alterations in the levels of some of the topologically relevant
metabolites have been associated with PCa progression and aggressiveness, including sar-
cosine [126,127], proline [99], and spermine [41,128]. Moreover, the classification method
achieved a more accurate overall performance compared to other existing classification
methods across additional datasets.

Efforts to discover dysregulated metabolic pathways in metastatic stages were also
made in another multi-omics study conducted by Li et al. In this study, the authors pro-
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posed an analytical method, referred to as Subpathway-GM, aiming to identify biologically
meaningful metabolic subpathways based on the combined analysis of metabolomics and
transcriptomics data [103]. This method allowed the identification of disease-relevant
subpathways that could go undetected on the basis of classical entire pathway identifi-
cation methods. After applying this method to the analysis of a PCa dataset including
data obtained from localized and metastatic tumors, 16 subpathways were identified as
relevant in metastatic PCa. Among these metabolic routes, nine of them were involved in
amino-acid metabolism, including glycine, serine, and threonine metabolism, tryptophan
metabolism, cysteine, and methionine metabolism, and histidine metabolism. Interestingly,
both tryptophan and histidine metabolism were not previously reported to be associated
with metastatic PCa. Specifically, in the histidine metabolism pathway, the histamine
region was accurately identified as a disease-relevant subpathway. On the basis of this
information, the authors explored the effect of different histamine concentrations on PCa
cell proliferation and migration. The results showed that high histamine concentrations
inhibited cell migration in a dose-dependent manner, confirming that this metabolite could
be associated with metastatic PCa. This finding is supplementary to other results included
in previous studies where histamine altered the response to radiation in PCa tumors and
significantly reduced proliferation of tumor cells compared with irradiation alone [129,130].

Other multi-omics studies have focused on the analysis of the metabolic profile associ-
ated with CRPC. Among them, the study by Latonen et al. was aimed at characterizing
the distinct protein profiles of BPH, PCa, and CRPC patients [77]. To that end, the authors
performed an integrated analysis of four different omics data. Following this experimental
approach, it was found that gene copy number, DNA methylation, and RNA expression
levels did not reliably predict proteomics changes in CRPC. These results suggested that
proteomics data could be associated with alterations not detectable at the transcriptomic
level. In fact, proteomics analyses revealed specific pathway alterations that were not
previously reported in CRPC. Interestingly, no significant alterations were observed in the
regulation of androgen receptor signaling at the mRNA or protein levels. The combined
analysis by transcriptomics and proteomics identified alterations in different cell-cycle
regulatory pathways, whereas changes in DNA repair pathways were only detected by pro-
teomics. The combined analysis of the omics data also revealed a previously undescribed
two-step modulation of the TCA cycle associated with metabolic changes occurring during
PCa development and progression. This pathway exhibited two different metabolic shifts: a
first one defined by the upregulation of most of TCA enzymes during initial PCa stages, and
a second metabolic shift during PCa progression, involving the downregulation of ACO2,
oxoglutarate dehydrogenase (OGDH), and succinate-CoA ligase alpha subunit (SUCLG1),
together with elevated expression of malate dehydrogenase 2 (MDH2). Previous studies
have already reported that PCa patients with MDH2 overexpression have a significantly
shorter period of relapse-free survival, and that stable knockdown of MDH2 PCa cell lines
decreased cell proliferation and increased docetaxel sensitivity, all suggesting that MDH2
inhibition could be a viable strategy to target CRPC [131].

Additionally, other multi-omics studies have focused on characterizing metabolic
dysregulations associated with specific PCa subtypes. In this context, Gao et al. inte-
grated transcriptomics and metabolomics data to characterize the metabolic profile of
two main types of PCa, adenocarcinoma (LNCaP), and small-cell neuroendocrine carci-
noma (SCNC) [104]. By conducting an individual GSEA on SCNC and adenocarcinoma
cell lines, a total of 62 and 112 genes, respectively, were found to be upregulated in each
subgroup. Metabolomics and lipidomics analyses also revealed significant differences
in 25 metabolite clusters. In particular, the LNCaP phenotype was characterized by an
increased serine biosynthesis, a finding supported by elevated levels of serine, glycine,
and threonine concentrations and higher expression of phosphoglycerate dehydrogenase
(PHGDH), phosphoserine aminotransferase 1 (PSAT1), phosphoserine phosphatase (PSPH),
threonine dehydrogenase (TDH), and glycine C-acetyltransferase (GCAT). This cell line
also exhibited increased levels of citrate, isocitrate, and succinate, together with higher



Cancers 2022, 14, 596 11 of 20

expression of many enzymes involved in the TCA, as well as decreased levels of fumarate,
glutamate, and glutamine and lower expression of isocitrate dehydrogenase (NADP(+))
1 (IDH1), GLUD1, and GLUD2, an indication of a citrate accumulation phenotype. Fur-
thermore, an enhanced alpha-linoleic acid, arachidonic acid, linoleic acid, fatty-acid, and
sphingolipid metabolism was also observed in the LNCaP group, along with a reduced
fatty-acid oxidation activity, suggested by the lower levels of carnitine and some short-chain
acylcarnitines and the overexpression of genes involved in biosynthesis, as well as the use
of acylcarnitines and members of the acyl-coenzyme A synthetase family. On the other
hand, SCNC was characterized by an enhanced glycerolipid, glycerophospholipid, and
ether lipid metabolism, as well as by an elevated pyruvate metabolism, which was sup-
ported by lower levels of glucose-6-phosphate and higher lactate concentrations together
with increased expression of lactate dehydrogenase isoforms (LDHA and LDHB). Although
a limited number of samples were included in this pilot study, the results highlight the
potential of multi-omics approaches for the identification of novel therapeutic targets in
specific subgroups of PCa. Furthermore, the integrated analysis of transcriptomics and
metabolomics data carried out by Joshi et al. revealed an enhanced lipid catabolism in the
carnitine palmitoyl transferase I (CPT1A) overexpressed (OE) phenotype, which was also as-
sociated with the elevated concentration of acyl-carnitine and higher lipase activity [105]. In
this study, the analysis of molecular differences between CPT1A gain- and loss-of-function
cellular models revealed genetic and metabolomics vulnerabilities associated with the
progression to neuroendocrine differentiation in PCa. Cellular models overexpressing
CPT1A were characterized by enhanced lipid metabolism, glycine and serine metabolism,
and glutathione homeostasis. In addition, the OE phenotype exhibited lower glycolysis
as glucose was preferentially shunted toward de novo serine biosynthesis. This finding
was correlated with the increased expression of key serine/glycine pathway genes, in-
cluding PHGDH, PSAT1, and serine hydroxymethyltransferase (SHMT2), together with
elevated levels of some metabolites involved in the folate cycle (e.g., dimethylglycine and
cystathionine). Furthermore, although cells overexpressing CPT1A showed increased levels
of mitochondrial reactive oxygen species (ROS), elevated concentrations of metabolites
involved in glutathione homeostasis, including overexpression of cystathionine gamma-
lyase (CTH) and glutathione S-transferase omega 2 (GSTO2), were also found, indicating a
key role of CPT1A in supporting adaptation to stress and antioxidant defense production.
Lastly, the analysis of data derived from patients, available from public databases, provided
evidence that lipid catabolism driven by CPT1A was associated with more aggressive
disease, suggesting that CPT1A activity could rewire metabolism to promote growth and
transformation in these patients.

Other multi-omics studies have focused on characterizing the metabolic features of
PCa cells undergoing epithelial–mesenchymal transition (EMT). In the study carried out by
Chen et al., two subclones derived from the androgen-repressed prostate cancer cell (AR-
CaP) line that exhibited epithelial and mesenchymal phenotypes, ARCaPE and ARCaPM,
respectively, were used as EMT PCa models [106]. Integration of transcriptomics and
metabolomics data revealed lower levels of glycolysis intermediates and decreased expres-
sion of several glucose metabolism-related genes in ARCAPM, indicating a downregulation
of glucose metabolism. In addition, this phenotype was characterized by exhibiting higher
malate levels, as well as by overexpressing ACO2 and succinate dehydrogenase complex
flavoprotein subunit A (SDHA) enzymes. At the same time, authors found lower succinate
and citrate levels, suggesting that TCA might be fueled by glutamine and aspartate in
addition to glucose in these cells. Notably, upregulation of ACO2 has been identified as
an important event in prostate carcinogenesis [23], whereas lower citrate levels have been
observed in PCa when compared to non-cancer epithelium [29,132]. Furthermore, malate
has been associated with Gleason progression [99] and found to be altered between differ-
ent PCa stages [133]. Additionally, increased aspartate and aspartate-derived metabolite
levels and upregulation of important enzymes involved in aspartate metabolism, including
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arginosuccinate synthase 1 (ASS1) and serine racemase (SRR), were observed in ARCaPM
cells, suggesting an enhanced aspartate metabolism.

A combination of metabolomics and transcriptomics data was also used by Hansen
et al. to identify changes in PCa metabolism related to the TMPRSS2-ERG gene fusion [107].
In this study, PCa patients were classified in two cohorts, ERGlow or ERGhigh, as a func-
tion of specific enrichment of the ERG fusion gene set [134,135]. Multivariate analysis
of metabolomic data revealed decreased concentrations of citrate, spermine, putrescine,
and glucose, and higher levels of ethanolamine, glycine, phosphocholine, and phospho-
ethanolamine in ERGhigh PCa patients included in two independent patient cohorts. Fur-
thermore, a targeted analysis of genes involved in the metabolic pathways associated with
these metabolic changes revealed an upregulation of genes involved in the polyamine path-
way, together with a decrease in relevant genes in the TCA cycle and increased lipogenic
phenotype. In particular, N(1)-acetyltransferase (SAT1), involved in spermine depletion,
was highly expressed in ERGhigh tumors. In addition, this group of patients also exhibited
decreased expression of ACO2 and elevated activity of the lipogenic enzymes ACACA and
FASN, indicating that citrate might be preferentially derived from de novo lipid synthesis in
these tumors. Several studies have also reported increased expression of FASN [67,68,136]
and enhanced de novo fatty-acid synthesis in PCa [137] and PCa invasiveness [138]. Inter-
estingly, in a different multi-omics study performed by Yan et al., the integration of data
from three different omics platforms was used to analyze correlations between Speckle-type
POZ protein (SPOP) mutations and changes in PCa metabolism [108]. SPOP, a cullin-based
E3 ubiquitin ligase, has been identified as one of the most frequently mutated genes in
PCa [139]. Several studies have shown that SPOP could directly bind to androgen recep-
tor and contribute to its ubiquitination and degradation [140]. Interestingly, the authors
found a strong upregulation of acyl-CoA dehydrogenase, long chain (ACADL), and ELOVL
fatty-acid elongase 2 (ELOVL2) together with an increase in the levels of most fatty acids in
SPOP-mutated patients. Relevant upregulations were also observed in the levels of two
key intermediates of the TCA cycle (malate and fumarate) and fumarate hydratase (FH).
Although FH, ELOVL2, and ACADL were identified as key genes in SPOP-mutated PCa
patients in this study, their oncogenic role in PCa still needs to be proven.

Multi-omics studies have also focused on exploring specific metabolic alterations asso-
ciated with PCa progression. Andersen et al. focused on identifying correlations between
changes in genes and metabolites and high reactive stroma content in tumors [109], as it
has been linked to worse clinical outcome and earlier BCR in Pca [141–145]. High reactive
stroma samples were characterized by elevated levels of taurine and leucine, as well as by
decreased levels of citrate, spermine, and scyllo-inositol. Interestingly, metastatic CRPC
has previously been defined as leucine-dependent [146,147], and leucine deprivation has
been shown to inhibit PCa growth [148]. The metabolic changes observed in high reactive
stroma samples, together with the results from a gene enrichment analysis, indicated that
immune processes and extracellular matrix remodeling were particularly important in
these tumors. In a more recent study, Oberhuber et al. evaluated the correlation between
the PCa transcriptomics and proteomics profiles with signal transducer and activator of
transcription 3 (STAT3) expression looking for biomarkers associated with earlier BCR [110].
The integrative multi-omics analysis revealed enhanced oxidative phosphorylation (OX-
PHOS), TCA cycle, and ribosomal activity in the STAT3low group of tumors. These findings
were also observed in a PCa murine model, which showed enrichment of ribosomal gene
sets and elevated TCA cycle and OXPHOS, as well as elevated pyruvate, fumarate, and
malate levels in xenografts with loss of STAT3. The authors also observed that pyruvate
dehydrogenase kinase 4 (PDK4) was significantly downregulated in STAT3low samples.
Expression of PDK4 has already been reported to be significantly altered when comparing
PCa patients with healthy individuals [149]. The analysis of the correlation between PDK4
expression and BCR in primary and metastatic tumors demonstrated its ability to predict
disease recurrence independently of diagnostic risk factors, such as grading, staging, and
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PSA levels, thus suggesting its potential as a promising independent prognostic biomarker
for distinguishing between a good and bad prognostic PCa.

3. Future Perspectives and Conclusions

Altered cell metabolism is a well-established hallmark of cancer [150]. Metabolism
is dysregulated to support the metabolic requirements of uncontrolled proliferation in
cancer cells [151,152]. This rewiring of cellular metabolism leads to characteristic metabolic
phenotypes that can be used for the development of effective screening methods for early
cancer detection, patient selection strategies, or evaluation of treatment responses [153,154].
Altered metabolism also results in unique metabolic vulnerabilities that can be exploited to
develop novel therapeutic strategies in cancer, some of which are being evaluated in pre-
clinical models or clinical trials [17,155–157]. Recently, the availability and advances in the
development of different analytical platforms have prompted the application of new omics
approaches for the characterization of specific cancer-associated metabolic phenotypes. Par-
ticularly, metabolomics approaches have greatly contributed to metabolically characterize
the profile of PCa patients and to discover specific alterations associated with this dis-
ease [22,158,159]. However, compared with other omics (e.g., genomics, transcriptomics),
the metabolome coverage is limited, thus adding difficulty to the final interpretation of
the results [160]. In this context, the integration of different omics datasets could represent
a powerful strategy to develop more robust and consistent metabolic signatures with a
clinical impact on the management of cancer patients [161].

In this review, the most relevant findings reported in multi-omics studies focused on
the characterization of the metabolic phenotype associated with PCa were summarized.
Overall, the most frequently reported metabolic alterations associated with PCa onset
and progression include differences in the TCA cycle, polyamine synthesis, HBP, and
nucleotide and lipid metabolism, and the most widely applied multi-omics approach
was the combination of transcriptomics and metabolomics data. In most of the reviewed
studies, the different omics datasets were separately analyzed and only combined for
the final interpretation of the metabolic changes. In this scenario, the development and
implementation of novel computational tools, focused on the integrated analysis of different
omics datasets that enable the assessment of the interplay between the different components
of a biological system, would be greatly valuable [162,163]. Furthermore, although some
studies included a vast number of samples [61,63,101,107,109], a major limitation in the
majority of these studies was the lack of an external cohort of PCa patients/samples for
confirming the reproducibility and robustness of the results. Thus, future studies including
larger sample sizes and external datasets to increase the statistical power of the analyses
and validate the findings of selected metabolites, together with confirmatory experiments to
evaluate the clinical significance of these metabolic findings, are required. Lastly, access to
publicly accessible databases integrating all metabolic alterations reported in the literature,
associated with each tumor subtype, would greatly contribute to our understanding of the
metabolic heterogeneity in PCa [164,165].
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