
����������
�������

Citation: Guo, S.; Wang, X.; Zhou, H.;

Gao, Y.; Wang, P.; Zhi, H.; Sun, Y.;

Hao, Y.; Gan, J.; Zhang, Y.; et al.

Identification and Characterization of

Immunogene-Related Alternative

Splicing Patterns and Tumor

Microenvironment Infiltration

Patterns in Breast Cancer. Cancers

2022, 14, 595. https://doi.org/

10.3390/cancers14030595

Academic Editor: Craig N. Craig

Robson

Received: 22 December 2021

Accepted: 19 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Identification and Characterization of Immunogene-Related
Alternative Splicing Patterns and Tumor Microenvironment
Infiltration Patterns in Breast Cancer
Shuang Guo, Xinyue Wang, Hanxiao Zhou, Yue Gao, Peng Wang, Hui Zhi, Yue Sun, Yangyang Hao, Jing Gan,
Yakun Zhang, Jie Sun, Wen Zheng, Xiaoxi Zhao, Yun Xiao * and Shangwei Ning *

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China;
guoshuang@hrbmu.edu.cn (S.G.); 2020020455@hrbmu.edu.cn (X.W.); zhouhanxiao@hrbmu.edu.cn (H.Z.);
102530@hrbmu.edu.cn (Y.G.); wpgqy@hrbmu.edu.cn (P.W.); zhihui@ems.hrbmu.edu.cn (H.Z.);
2019020354@hrbmu.edu.cn (Y.S.); 2019020369@hrbmu.edu.cn (Y.H.); 2019020361@hrbmu.edu.cn (J.G.);
2019020355@hrbmu.edu.cn (Y.Z.); 2019020387@hrbmu.edu.cn (J.S.); 2020020499@hrbmu.edu.cn (W.Z.);
2020020483@hrbmu.edu.cn (X.Z.)
* Correspondence: xiaoyun@ems.hrbmu.edu.cn (Y.X.); ningsw@ems.hrbmu.edu.cn (S.N.)

Simple Summary: Aberrant immunogene-related alternative splicing (IGAS) pattern plays a pivotal
role in pathogenesis, progression, and tumor microenvironment. However, the IGAS pattern of
post-transcriptional mechanisms in breast cancer remains limited. Here, we performed a systematic
analysis of IGAS patterns in breast cancer to assess the association between aberrant IGAS events,
prognosis signatures, AS regulatory network, immune cell infiltration level and its marker gene
expression, sensitivity to immunotherapy and chemotherapy, and heterogeneity of IGAS clusters.
Generally, we demonstrated the prognostic signatures for IGAS events and immune cells, which were
valuable information for breast cancer patients in predicting survival and directing immunotherapy
and chemotherapy.

Abstract: Alternative splicing (AS) plays a crucial role in tumor development and tumor microen-
vironment (TME) formation. However, our current knowledge about AS, especially immunogene-
related alternative splicing (IGAS) patterns in cancers, remains limited. Herein, we identified and
characterized post-transcriptional mechanisms of breast cancer based on IGAS, TME, prognosis, and
immuno/chemotherapy. We screened the differentially spliced IGAS events and constructed the
IGAS prognostic model (p-values < 0.001, AUC = 0.939), which could be used as an independent
prognostic factor. Besides, the AS regulatory network suggested a complex cooperative or competi-
tive relationship between splicing factors and IGAS events, which explained the diversity of splice
isoforms. In addition, more than half of the immune cells displayed varying degrees of infiltration in
the IGAS risk groups, and the prognostic characteristics of IGAS demonstrated a remarkable and
consistent trend correlation with the infiltration levels of immune cell types. The IGAS risk groups
showed substantial differences in the sensitivity of immunotherapy and chemotherapy. Finally, IGAS
clusters defined by unsupervised cluster analysis had distinct prognostic patterns, suggesting an
essential heterogeneity of IGAS events. Significant differences in immune infiltration and unique
prognostic capacity of immune cells were also detected in each IGAS cluster. In conclusion, our
comprehensive analysis remarkably enhanced the understanding of IGAS patterns and TME in breast
cancer, which may help clarify the underlying mechanisms of IGAS in neoplasia and provide clues to
molecular mechanisms of oncogenesis and progression.

Keywords: immunogene-related alternative splicing; tumor microenvironment; prognosis signatures;
immuno/chemotherapy; breast cancer
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1. Introduction

Breast cancer is the most common malignancy among women and is a heterogeneous
disease at the molecular level [1]. Breast cancer treatment is multidisciplinary, since thera-
peutic strategies depend on different molecular subtypes [2]. Emerging immunotherapies
had shown promise in many solid tumors, including melanoma [3] and non-small cell lung
cancer [4], and an important role in breast cancer is evolving. However, improving the
overall survival of breast cancer patients remains a common challenge worldwide.

The tumor microenvironment (TME) is a highly heterogeneous and dynamic network,
which influences tumor initiation and progression by promoting cancer cell survival,
migration, metastasis, chemoresistance, and evading immune responses [5]. An increasing
number of studies had suggested that immune cell subtypes have demonstrated differential
prognostic values. For example, there was a significant correlation between the high
occupancy of T-cells and a good clinical outcome in breast cancer [6]. Nevertheless, the
prognostic values of multiple immune cells remain unclear.

Alternative splicing (AS) is a widespread regulatory mechanism of gene expression
in eukaryotic transcripts that significantly contributes to the diversity of gene and protein
functions by removing introns and ligating exons to form pre-mRNA [7]. Approximately
90–95% of human protein-coding genes in genome-wide studies had undergone AS [8].
The primary mechanism of AS in cancer has been firmly established in recent extensive
genomic and functional studies, including immune escape, metastasis, cell proliferation,
apoptosis, hypoxia, and angiogenesis [9]. However, AS events, especially those associated
with immunogenes, have not been sufficiently studied in breast cancer.

Over the past decades, studies have paid attention to understanding the crucial role of
transcriptional regulation in the immune system. However, less attention has been paid
to the post-transcriptional mechanisms of gene regulation as important regulators of im-
mune cell function. In particular, immune cells are constantly dividing and differentiating
throughout their lifetime, and they particularly need to utilize AS to ensure transcriptional
diversity and regulation of gene expression [10]. Therefore, we urgently need to identify
immunogene-related alternative splicing (IGAS) events to predict patient prognostic ability
and treatment response and to understand the regulatory role of AS in the immune system.

In this study, we systematically profiled the IGAS events and the TME in breast cancer
from TCGA. We implemented a series of rigorous screens to identify IGAS events and
explored the relationship of IGAS events to clinical outcomes and immune characteristics.
The low-risk group had better prognostic outcomes, higher levels of immune infiltration,
and higher sensitivity to immunotherapy and chemotherapy than the high-risk group,
potentially assisting oncologists in clinical decision-making. In addition, AS regulatory
networks with complex cooperative or competitive relationships between splicing factors
and AS events provided an insight into the diversity of AS. Notably, we distinguished
highly heterogeneous IGAS clusters based on IGAS events, which were significantly associ-
ated with overall survival status, immune characteristics, and tumor-infiltrating immune
cells. This study will help identify reliable prognostic signatures and develop appropriate
therapeutic approaches to breast cancer.

2. Material and Methods
2.1. Data Acquisition and Processing

TCGA SpliceSeq (https://bioinformatics.mdanderson.org/TCGASpliceSeq/, accessed
on 26 August 2020) provides a comprehensive and detailed view of mRNA AS patterns [11].
There are seven types of AS events, including Alternate Acceptor site (AA), Alternate Donor
site (AD), Alternate Promoter (AP), Alternate Terminator (AT), Exon Skip (ES), Mutually
Exclusive Exons (ME), and Retained Intron (RI). The Percent Spliced In (PSI) value is a
common and intuitive ratio to quantify splicing events, representing the number of reads
present for transcriptional elements divided by the total number of reads covering splicing
events. We obtained the AS patterns of protein-coding genes in breast cancer samples

https://bioinformatics.mdanderson.org/TCGASpliceSeq/
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according to the percentage of samples with PSI value ≥ 75% and a minimum PSI standard
deviation ≥ 0.10.

RNA-Seq data and corresponding clinicopathological characteristics (including T,
N, M, pathological stage, number of positive lymph nodes, hormonal receptor status,
overall survival (OS), and relapse-free survival (RFS)) of breast cancer were obtained from
The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/, accessed on 26
August 2020).

The ESTIMATE (https://bioinformatics.mdanderson.org/estimate/, accessed on 26
August 2020) algorithm predicts tumor purity and the presence of infiltrating immune/stromal
cells in tumor tissue based on single-sample genomic enrichment analysis (ssGSEA) and
generates immune and stromal scores [12]. We employed the ESTIMATE algorithm to
calculate the immune score and stromal score for each breast cancer sample.

Then, samples were included due to the inclusion criteria: (i) OS time of patient
>30 days; (ii) primary tumor samples; (iii) samples included in all the above three databases.
Finally, 918 primary breast cancer samples and 113 corresponding normal samples with
11,307 AS events were enrolled for subsequent analysis (Table S1).

As a comparison, we also downloaded the mRNA expression profile and clinical
information of the validation cohort GSE20685 [13] from Gene Expression Omnibus (GEO,
https://www.ncbi.nlm.nih.gov/geo/, accessed on 18 March 2021).

2.2. Identification of the Differentially Spliced IGAS Events

To identify differences in AS events between primary breast cancer and corresponding
normal samples, we applied Student’s t-test to identify differentially spliced AS (DSAS)
events (p-values < 0.05). We divided the patients into high and low immune groups accord-
ing to the median immune score. Similarly, differentially expressed immunogenes (DEIGs)
were identified between high and low immune groups (edgeR R package, p-values < 0.05).
Furthermore, we defined the gene intersection of DSAS parent genes and DEIGs as IGAS
parent genes, followed by the extraction of differentially spliced IGAS events based on
IGAS parent genes in DSAS events.

2.3. Construction and Evaluation of the IGAS Prognostic Model

To calculate the relationships between IGAS events and overall survival in each AS
type, we divided patients into a high or low PSI group by the median PSI value of IGAS
events and performed the univariate Cox regression analysis. To remove any IGAS event
that might not be an independent prognostic signature, we applied LASSO-penalized
multivariate regression [14] that appeared >90% out of 500 repetitions to select prognostic-
related IGAS events. The linear combination of IGAS PSI multiplied by a corresponding
LASSO-penalized multivariate regression coefficient (λ) representing the weight of the
correlation was considered to denote an IGAS prognosis risk score. The IGAS prognosis
risk score formula was as follows:

Risk score = PSI of IGAS1 × λ1 + PSI of IGAS2 × λ2 + · · ·+ PSI of IGASn × λn

IGAS events with p-values < 0.05 in the univariate Cox regression among the seven
types were chosen as survival-related IGAS events and were used to establish candidate
prognostic signatures. Then, independent prognostic-related IGAS events of the AS types
were entered into the LASSO-penalized multivariate regression to construct the final IGAS
prognostic model. We used the Kaplan-Meier curves to determine whether the prognostic
models could distinguish good or poor prognostic outcomes and applied the receiver
operating characteristic (ROC) curve to judge the discriminatory ability of each prognostic
model at 5-year.

To further validate the clinical value of the IGAS prognostic model, we assessed
the prognostic ability of IGAS risk groups and important clinical information using Cox
regression analysis. Moreover, we applied the nomogram to predict the probability of
survival at 3-year, 5-year, and 7-year in breast cancer patients (rms R package).

https://tcga-data.nci.nih.gov/tcga/
https://bioinformatics.mdanderson.org/estimate/
https://www.ncbi.nlm.nih.gov/geo/
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2.4. Construction of the AS Regulatory Network

Splicing factors (SFs) are crucial regulators of AS events, a limited number of which
could adjust and control numerous AS events [15]. Hence, we further explored AS regu-
latory network of IGAS events and SFs. We firstly obtained a total of 67 experimentally
validated SFs from the SpliceAid-F [16] and SpliceAid 2 [17] databases (Table S2), and also
identified differentially expressed SFs (DESFs) and survival-related SFs using differential
expression analysis as well as survival analysis, respectively (p-values < 0.05). Furthermore,
the potential relationships between IGAS events and DESFs were established by calcu-
lating the Spearman correlation between the PSI values of AS events and the expression
levels of SFs. Finally, we constructed the AS regulatory network by extracting IGAS-DESF
interaction partners with p-values < 0.05 and |correlation coefficients (cor)| > 0.4.

2.5. Prediction of Immunotherapeutic and Chemotherapeutic Response

Following the approval of immune checkpoint inhibitors as common drugs for breast
cancer, immunotherapy has emerged as a promising approach for cancer treatment [18],
particularly immune checkpoint blockade therapy with immune checkpoints CTLA-4
and PD-1 [19]. Therefore, we assessed the difference in immunotherapeutic responses
between the high and low risk groups to reveal their potential for cancer treatment by
immune checkpoint blockade. The Tumor Immune Dysfunction and Exclusion (TIDE,
http://tide.dfci.harvard.edu/, accessed on 14 May 2021) [20] is a computational method,
which integrates the expression signatures of T cell dysfunction and T cell exclusion to
model tumor immune evasion. We performed TIDE to assess the individual likelihood of
responding to immunotherapy (Wilcoxon test, p-values < 0.05). Then, we also applied a
subclass mapping approach [21] to predict the clinical response of the IGAS risk groups
to immune checkpoint blockade (CTLA-4 and PD-1) by comparing the expression profile
of our defined IGAS risk groups with another published dataset containing 47 melanoma
patients who responded to immunotherapy [22].

Chemotherapy is one of the basic treatments for breast cancer patients. The Genomics
of Drug Sensitivity in Cancer (GDSC) database [23] (www.cancerRxgene.org, accessed
on 14 May 2021) is a public resource for drug sensitivity in cancer cells and molecular
markers of drug response. Five commonly used drugs were selected: camptothecin [24],
docetaxel [25], methotrexate [26], paclitaxel [27], and vinblastine [28]. The pRRophetic
algorithm [29] based on the GDSC database was performed to estimate drug response. We
assessed the samples’ half-maximal inhibitory concentration (IC50) in the IGAS risk groups
using ridge regression to predict drug response and used 10-fold cross-validation based on
the GDSC training set to assess prediction accuracy (Wilcoxon test, p-values < 0.05).

2.6. Identification of the IGAS Clusters

To obtain a steady classification, we applied an unsupervised clustering algorithm
(ConsensusClusterPlus R package). The IGAS clusters were determined using hierarchical
clustering (k-means clustering algorithm and Euclidean distance) on the prognostic-related
IGAS events. Survival analysis was performed to determine the associations between IGAS
clusters and overall survival. The different PSI values of the IGAS prognostic signatures and
immune and stromal scores in each IGAS cluster were assessed using the Kruskal-Wallis
test (p-values < 0.05).

2.7. Correlation of Immune Cell Infiltration between IGAS Prognosis Signatures and Clusters

On account of tumor-infiltrating immune cells playing essential roles in cancer devel-
opment and progression, the infiltration levels of immune cell populations were quantified
by ssGSEA and systematically correlated with IGAS prognosis signatures and clusters.
Firstly, we selected the genesets from Bindea et al. [30], including 461 genes, for predict-
ing the abundance of 24 immune cells. Secondly, we compared the infiltration levels of
immune cells by the Wilcoxon test and identified the difference between high and low risk
groups (p-values < 0.05). Next, we performed correlation analysis to identify the correlation

http://tide.dfci.harvard.edu/
www.cancerRxgene.org
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between IGAS prognostic signatures, immune cell infiltration level and its marker genes.
In addition, we assessed the differences in immune cell infiltration of each IGAS cluster
(Kruskal-Wallis test, p-values < 0.05). Considering the vital role of the TME in prognosis,
we applied multivariate Cox regression analysis to explore the prognostic significance of
immune cells in each IGAS cluster.

3. Results
3.1. The Differentially Spliced IGAS Event Is an Important Part of AS

Overall, we identified a total of 11,307 AS events of 4908 genes in breast cancer patients,
and ES was the most common AS type (>33%, Figure 1A). Differential AS analysis showed
up to 8000 DSAS events of 3925 genes. ES was also the most common type among all
dysregulated AS events, followed by AP, AT, RI, AD, AA, and ME (Table S3). In particular,
Figure 1B demonstrated that 4–5 types of AS patterns can occur in specific parent genes of
DSAS (two orange sections), such as RASSF7, MOK, IL32, and NR1H3. We identified the
DEIGs using differential expression analysis. Interestingly, we observed that more than
half of DSAS parent genes belonged to DEIGs, called IGAS parent genes (Figure 1C). As
previously reported, pre-mRNAs of human immune-related genes are known to undergo
extensive AS [31]. Furthermore, we investigated the distribution of DSAS and IGAS parent
genes on chromosomes and detected that they were predominant on Chr1, Chr2, Chr17,
and Chr19 and did not appear on ChrY (Figure 1D and Table S4). Eventually, we extracted
4464 differentially spliced IGAS events among DSAS events based on IGAS parent genes as
the subject of the subsequent analysis (Figure 1E and Table S5).
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In addition, we calculated IGAS events for ER+ vs. ER− subgroups, PR+ vs. PR− sub-
groups, HER2+ vs. HER2− subgroups, and triple-negative breast cancer (TNBC) vs.
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non-TNBC subgroups, respectively (Figure S1A). We identified 6492, 6115, 2663, and
6339 IGAS events in ER, PR, HER2, and TNBC subgroups, respectively. By comparing
the differentially spliced IGAS events of each subgroup, we found multiple intersection
patterns among subgroups (Figure S1B). There were 604 common IGAS that existed in all
subgroups. Moreover, we detected specific IGAS events in each subgroup, with cancer vs.
normal subgroups having the most specific IGAS events, indicating the importance of each
pathological subtype.

3.2. The IGAS Prognostic Model Is an Independent Prognostic Factor

To investigate the relationship between IGAS events and OS of patients, we performed
a univariate Cox regression analysis of the 4464 differentially spliced IGAS events. The
result showed up to 489 survival-related IGAS events occurring in 354 genes (Table S6).
Among all survival-related IGAS events, AP, ES, and AT were the TOP3 most common
type (approaching 85%), followed by AD, RI, AA, ME (Table S3). The circle plot showed
the distribution of survival-related IGAS parent genes in chromosomes (Figure S2A). Most
survival-related IGAS events occurred with 1-2 AS types and could serve as protective fac-
tors (HR < 1). For each AS type, the hazard ratios (HRs) and 95% confidence intervals (95%
CIs) of the TOP10 IGAS events with the smallest p-values are visualized in Figure S2B–H.
By further analyzing biological functions of survival-related IGAS events, we found that
they were significantly enriched in several biological processes (Figure S2I) and KEGG
pathways (Figure S2J). For example, the MAPK signaling pathway was crucial for apoptosis
and tumor induction.

In each AS type using LASSO-penalized multivariate regression, prognostic mod-
els exhibited significant power to distinguish well from poor outcomes (p-values < 0.05,
Figure S3A–G). Especially, the prognostic model based on the single AT model displayed
the greatest discriminatory ability, with an AUC of 0.856, and the single ES or AP prognostic
model also performed promising discriminatory ability, with an AUC > 0.75 (Figure S3H).

To obtain the final IGAS prognostic model, we selected all independent prognostic-
related IGAS events of each AS type, and further assessed them as candidates by the
LASSO-penalized multivariate regression. The result suggested that the final prognostic
model of all AS types exhibited significant power to distinguish good or poor outcomes in
breast cancer (p-values < 0.001, AUC = 0.939, Figure 2A–C). The ROC curves confirmed that
the final IGAS prognostic model had the highest efficiency than other prognostic models
of specific AS types (Figure 2D and Table S7). We also performed 1000 random samples
to validate the final IGAS prognostic model (80 percent of the samples were randomly
selected), and the results showed good stability (AUC > 0.89, Figure S4A). Notably, multiple
prognosis-related IGAS events occurring in DAPL1, MAATS1, and AKR1C2 induced good
survival (Figure S4B). The above results strongly suggested that IGAS events had not only
important biological functioning, but also potential clinical value.

Independent predictive value of the IGAS prognostic model for breast cancer pa-
tients with complete clinicopathological characteristics was assessed using Cox regression
analysis. Univariate Cox regression analysis indicated certain prognostic values of the
IGAS prognostic model, N stage, M stage, pathological stage, and the number of positive
lymph nodes in OS and RFS (Table S8). The results of multivariate Cox regression analysis
indicated that the IGAS prognostic model was still a robust independent prognostic factor,
and additionally, ER status showed independent prognostic value (Table S8). Given the
prognostic importance of ER status in breast cancer, we further analyzed the differences in
survival of patients with different ER statuses based on the high and low risk groups of the
IGAS prognostic model, respectively. Kaplan-Meier analysis revealed that there was still a
significant survival difference between the high and low risk groups when stratifying for
ER+ and ER− subgroups of breast cancer patients separately (Figure S4C,D). We also found
that the probability predicted by the IGAS-clinic nomogram showed optimal agreement
with the ideal reference lines for OS prediction (C-index = 0.805, Figure 2E–H).
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breast cancer. (A) During the construction of the final IGAS prognostic model, the AUC values were
calculated when selecting different prognosis-related IGAS events. (B) Maximum AUC value in ROC
curves and the number of optimal prognosis-related IGAS events in the final IGAS prognostic model.
(C) Kaplan-Meier curve of the final IGAS prognostic model. (D) The ROC curves with AUCs at
3-year, 5-year, and 7-year of the final IGAS prognostic model, respectively. (E) IGAS-clinic nomogram
for the IGAS risk groups and clinicopathological characteristics predicting 3-year, 5-year, and 7-year
overall survival. (F–H) The calibration curves for the 3-year, 5-year, and 7-year overall survival
predictions, respectively.

3.3. Diverse Regulatory Patterns of IGAS Events in the AS Regulatory Network

Given the important regulatory role of SF on AS events, we established the AS regu-
latory network to explore the association between DESFs and differentially spliced IGAS
events. Firstly, we identified 36 DESFs with aberrant expression in breast cancer (Figure 3A).
Then, we recognized co-expression relationships among DESFs using Spearman correlation
analysis and found that RBM5 was significantly associated with six DESFs (|cor| > 0.4,
Figure 3B). Furthermore, we constructed the AS regulatory network by calculating the
correlation between the PSI values of IGAS events and the expression levels of DESFs.
Figure 3C has illustrated the AS regulatory network, which contains 721 nodes (696 IGAS
events and 25 DESFs) and 1183 edges. By analyzing the topological properties of the
network, we sought five hub DESFs (DAZAP1, YBX1, RBM5, QKI, and SRSF5) with TOP5
degree. Especially, DAZAP1 was significantly associated with nearly 1/3 of IGAS events,
which was crucial to the network. Interestingly, one IGAS event could be regulated by
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several SFs, which reflected a complex cooperative or competitive relationship between
SFs and explained the diversity of AS events generated by a few SFs.
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Figure 3. AS regulatory network. (A) The difference of expression of the DESFs between primary
breast cancer and corresponding adjacent normal tissues. The asterisk character represents the
significance of the expression discrepancy. (B) The co-expression relationships between DESFs.
(C) AS regulatory network of IGAS events and DESFs. Ellipse nodes indicate IGAS events that
were up-regulated (red dots) or down-regulated (blue dots), and V nodes indicate SFs that were
differentially expressed. (D) Kaplan-Meier curves of survival-related SFs (ESRP1, RBM5, and SRSF5),
respectively. (E) The correlation between the risk scores of prognostic models and the expression of
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correlation coefficient, respectively. The asterisk character represents the significance of the difference
or correlation coefficient, * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.

We also identified three survival-related SFs, including ESRP1, RBM5, and SRSF5
(Figure 3D). Among them, RBM5 and SRSF5, the hub nodes of the AS regulatory network,
whose low expression predicted poor prognosis. KEGG pathway enrichment analysis
showed that three SFs associated IGAS genes have specific biological functions, respec-
tively (Table S9). For example, EGFR-associated IGAS genes were significantly enriched
in multiple signaling pathways, such as PI3K-Akt signaling pathway, VEGF signaling
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pathway, and p53 signaling pathway, while RBM5- and SRSF5-associated IGAS genes were
significantly enriched in primary immunodeficiency and biosynthesis of cofactors, respec-
tively. Interestingly, all survival-related SFs are powerfully associated with each prognostic
model (Figure 3E). Among three survival-related SFs, ESRP1 had positive correlations, and
RBM5 and SRSF5 had negative correlations with all prognostic models, consistent with
survival analysis.

3.4. IGAS Prognosis Signatures and Immune Cells Demonstrated Consistent Trends of Correlation

We further characterized the association of immune cells with the IGAS prognostic
model, particularly the difference in the infiltration levels of immune cells among risk
groups and the correlation with IGAS prognosis signatures. The violin plot visualized the
abundance of 24 infiltrating immune cell types in the high and low risk groups (Figure S5A).
Notably, more than half of the immune cells differed significantly between IGAS risk groups,
most of which had higher infiltration levels in the low-risk group (such as B cells, CD8 T
cells, NK cells, etc.). Moreover, we observed that some IGAS prognosis signatures were
significantly associated with immune cells and consistent correlation tendency (Figure 4A
and Table S10). Interestingly, we also found that T lymphocytes, especially Th1 cells,
cytotoxic cells, and T cells, possessed significant correlations with a range of IGAS prognosis
signatures (Table S11). In particular, the correlation coefficients of ARRB2 with Th1 cells,
cytotoxic cells, and T cells were all higher than 0.45 (Figure S5B). Furthermore, there were
also statistically significant correlations between ARRB2 and most marker genes of Th1
cells, cytotoxic cells, and T cells, respectively (Figure 4B). In the validation cohort GSE20685,
we observed a significant and consensus correlation between immune cells and most IGAS
prognosis signatures, consistent with the TCGA cohort (Figure S5C). Previous studies have
shown that tumor-infiltrating lymphocytes (TILs) are important prognostic indicators [32],
as well as increased levels of immune infiltration lead to a reduced risk of death and
distant recurrence [33]. To a certain extent, both the IGAS prognosis signatures and the
infiltration levels of immune cells (particularly TILs) explain the significant difference in
overall survival among the IGAS risk groups.

3.5. Differences in Sensitivity of Immunotherapy and Chemotherapy in the IGAS Risk Groups

To investigate the worth of the IGAS prognostic model in clinical therapies, we ex-
plored the possibilities of immunotherapy and chemotherapy in different risk groups. We
evaluated the potential clinical efficacy of immunotherapy in different IGAS risk groups
using TIDE (Figure 5A). Although TIDE scores were not significantly different in the IGAS
risk groups, we observed a higher microsatellite instability (MSI) in the low-risk group,
which remains consistent with the results of previous studies that a higher MSI is associ-
ated with a better prognosis and is sensitive to checkpoint immunotherapy [34]. Besides,
T-cell dysfunction scores were higher in the low-risk group than in the high-risk group.
We further applied the Submap algorithm to predict the therapeutic effect of immune
checkpoint blockades (CTLA-4 and PD-1). The result demonstrated that patients in the
low-risk group with higher levels of immune infiltration had higher sensitivity to anti-PD-1
immunotherapy (Bonferroni correction p-values = 0.024) (Figure 5B). It has been shown that
TILs are still useful as immune checkpoint inhibitors [35], and a larger number of TILs is
associated with higher patient response rates [36]. The presence of immune cells controlled
by PD-1 and PD-L1 in TILs may be a prerequisite for the usefulness of immune checkpoint
inhibitors [37].
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(A) The correlation of IGAS prognosis signatures with each immune cell, respectively (range from
blue to red, which represent significant negative correlation and significant positive correlation,
non-significant correlation part was not displayed yet). (B) The illustration showed the correlation
between ARRB2 and the marker genes of Th1, cytotoxic and T cells, respectively. The circle node
represents the significant correlation, and the triangle node represents the non-significant correlation
yet. The size of a node represents the weight of the correlation coefficient.

Considering that chemotherapy is a common treatment for breast cancer, we attempted
to assess the response of representative chemotherapeutic drugs in IGAS risk group patients.
Remarkably, all five chemotherapeutic drugs could be observed to present a significant
response sensitivity to the low-risk group compared with the high-risk group (Figure 5C).
Studies have demonstrated that incremental increases in the level of TILs both intra- and
peri-tumor predict an improved response to chemotherapy and survival in patients [38].
It is worth noting that the low-risk group with high levels of immune infiltration in our
study showed a trend consistent with previous studies. The differential sensitivity of
IGAS risk groups to immunotherapy and chemotherapy is expected to benefit from clinical
therapeutics and further guide the personalized medicine of breast cancer patients.
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(C) The boxplots illustrated differential chemotherapeutic response based on IC50 for five drugs
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difference, * p < 0.05; ** p < 0.01; **** p < 0.0001; ns: not significant.

3.6. Prognosis-Related IGAS Clusters Demonstrated the Heterogeneity in Breast Cancer

Our findings suggested that prognosis-related IGAS events vary widely at an indi-
vidual level. To discriminate the distinct patterns of AS, we clustered prognosis-related
IGAS events using a consensus unsupervised clustering approach. The consensus matrix
of four IGAS clusters with robust classification was defined (Figure 6A). The number
of four IGAS clusters was determined as follows: Cluster1 (n = 337, 36.7%), Cluster2
(n = 137, 14.9%), Cluster3 (n = 263, 28.7%), Cluster4 (n = 181, 19.7%). To assess the difference
of IGAS clusters in overall survival, we applied Kaplan-Meier analysis to ascertain the
survivability of distinct IGAS clusters. As shown in Figure 6B, the IGAS clusters had
significantly different prognosis with important heterogeneity, in which both Cluster1 and
Cluster4 were associated with poor prognosis of patients, while Cluster2 was associated
with good prognosis of patients. Furthermore, we found that IGAS clusters had different
IGAS prognosis signatures (Figure 6C) and were significantly enriched in different bio-
logical processes (p-values < 0.01, Table S12). In particular, Cluster1 and Cluster4 were
significantly associated with important processes in cancer development and progression,
such as protein polyubiquitination and negative regulation of potassium ion transport. By
further comparing immune characteristics between IGAS clusters, we found that Cluster2
and Cluster4 had a higher immune score, while Cluster1 and Cluster3 had a higher stromal
score (Figure 6D). It suggested that specific immune cell-type mixtures, rather than the
total number of immune cells in the complex TME, may be responsible for the differential
prognostic ability of the IGAS clusters.



Cancers 2022, 14, 595 12 of 17

Cancers 2022, 14, x  12 of 17 
 

 

were associated with poor prognosis of patients, while Cluster2 was associated with good 
prognosis of patients. Furthermore, we found that IGAS clusters had different IGAS prog-
nosis signatures (Figure 6C) and were significantly enriched in different biological pro-
cesses (p-values < 0.01, Table S12). In particular, Cluster1 and Cluster4 were significantly 
associated with important processes in cancer development and progression, such as pro-
tein polyubiquitination and negative regulation of potassium ion transport. By further 
comparing immune characteristics between IGAS clusters, we found that Cluster2 and 
Cluster4 had a higher immune score, while Cluster1 and Cluster3 had a higher stromal 
score (Figure 6D). It suggested that specific immune cell-type mixtures, rather than the 
total number of immune cells in the complex TME, may be responsible for the differential 
prognostic ability of the IGAS clusters. 

 
Figure 6. Unsupervised classification identified four IGAS clusters. (A) The consensus clustering 
matrix showed the optimal four IGAS clusters. (B) Kaplan-Meier curves of patients within different 
IGAS clusters on overall survival. (C) The difference of PSI values of partial IGAS prognosis signa-
tures in each IGAS cluster. The asterisk character represents the significance of the difference, **** p 
< 0.0001. (D) Immune characteristics, including immune and stromal scores, exhibited significant 
differences in IGAS clusters. 

  

Figure 6. Unsupervised classification identified four IGAS clusters. (A) The consensus clustering
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3.7. Immune Cells Exhibited Different Prognostic Abilities in Different IGAS Clusters

Considering the vital role of immune cells, we evaluated their infiltrating differences
and prognostic capacity in the IGAS clusters. In the IGAS clusters, each immune cell
type expressed extremely significant differences (Figure 7A,B). We likewise investigated
whether each immune cell of the IGAS cluster plays an important role in prognosis using
the multivariate Cox regression analysis. In the whole cohort, neither one of the immune
cells could predict a better prognosis. However, a within-clusters analysis indicated that the
prognostic significance of immune cells in the three IGAS clusters was significant, diverse,
and even opposite (Figure 7C). One or more immune cells could serve as prognosis-related
cells in each IGAS cluster, besides Cluster2. For example, Treg, Th1 cells, Tgd, DC, pDC,
aDC, and NK CD56dim cells of immune cells could be prognosis-related cells in Cluster1,
Th2 cells, TFH, DC, pDC, and CD8 T cells of immune cells could be prognosis-related cells
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in Cluster3, as well as T cells, and NK CD56bringht cells could be prognosis-related cells in
Cluster4. In particular, most prognosis-related immune cells had prognostic significance in
only one IGAS cluster. These results indicated that immune cells had the ability to act as
prognostic indicators in IGAS clusters.
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Figure 7. Prognostic significance of immune cells in each IGAS cluster. (A) The infiltration levels of
immune cells among IGAS clusters. The red, yellow, blue, and green boxplots represent each IGAS
cluster, respectively. The asterisk character represents the significance of the difference, ** p < 0.01;
*** p < 0.001. (B) The density plot of NK CD56bringht cells and activated dendritic cells of immune
cell infiltration distributions among four IGAS clusters, respectively. (C) Estimation of the prognostic
significance of each immune cell for overall survival in the whole cohort and each IGAS cluster. The
circle represents the prognosis-related cell, the triangle node represents the non-prognosis-related
cell yet. The size and color of the circle represent –log10 (p-values) and hazard ratio (blue circle was
HR < 1, red circle was HR > 1), respectively.

4. Discussion

AS not only regulates gene expression levels, but also ensures gene product diversity.
In mammals, AS, which occurs in more than 90% of genes, is particularly prevalent in
the immune system [39]. There is growing evidence that AS has a tremendous impact
on various tumorigenic processes [40], such as cancer onset, progression, angiogenesis,
and immune escape. Although many immunogenes, such as pro-inflammatory cytokines
and chemokines [41], have been found to undergo AS, comprehensive profiling at the
whole genome level could better characterize IGAS as potential prognostic and predictive
signatures in breast cancer patients is still lacking. In our study, we obtained RNA splicing
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data from the TCGA SpliceSeq database, extracted IGAS events by filtering immunogenes,
and performed a systematic profiling analysis to elucidate its important roles in breast
cancer, which included prognostic ability, association of clinical information, sensitivity
to immuno/chemotherapy, regulation of the AS network, identification of heterogeneous
subtypes, and differences in the infiltration level of immune cells.

We specifically identified the differentially spliced IGAS events, screened and obtained
the prognosis-related IGAS events, and constructed prognostic models. In differentially
spliced IGAS events and survival-related IGAS events, AP, AT, and ES were the major
AS types, consistent with other studies [42]. Notably, multiple isoforms of TNC were
generated mainly through the ES type of AS and were significantly associated with survival.
Evidence showed that TNC affects the invasion and growth of cell lines in vitro and is
an important marker in breast malignancy [43]. Tumorigenesis is a complex regulatory
network, therefore, the IGAS prognostic model could improve prognostic efficiency by
integrating multiple signatures rather than single clinical indicators.

We constructed a potential AS regulatory network between differentially expressed
SFs and IGAS events. The overview of the network revealed apparent trends that one
IGAS event could be regulated by multiple SFs, which also reflected multiple interactions
between IGAS events and SFs. Meanwhile, three survival-related SFs were identified by
survival analysis, in which RBM5 and SRSF5 were confirmed to be hub nodes in the AS
regulatory network. There is evidence that overexpression of RBM5 is involved in the
regulation of AS and suppresses tumor growth by controlling apoptosis and cell cycle [44].
In particular, there was an extremely robust correlation between survival-related SF and
IGAS prognostic models, a phenomenon that may re-emphasize the complex cooperative
or competitive relationship between SFs and IGAS events [45].

Immunotherapy has shown promising efficacy in the clinical treatment of various
cancers. The TIDE algorithm could effectively predict immune responses in melanoma
and non-small cell lung cancer by characterizing dysfunctional T cells and cytotoxic T
lymphocytes [20]. We extended the TIDE algorithm to breast cancer patients in an attempt
to assess differences in immunotherapy response across IGAS risk groups. The low-risk
group had higher T-cell dysfunction scores, indicating that their patients are likely to
benefit from immunotherapy. We used the Submap algorithm to predict the response to
anti-PD1 and anti-CTLA4 immunotherapy in different risk groups and indicated that the
low-risk groups might respond better to anti-PD-1 immunotherapy. These results further
suggested that the IGAS risk groups might provide new insights for exploring breast cancer
therapeutics in the future.

Breast cancer is not only tumor cells, but also influenced by the TME. The TME is now
recognized as a key factor in tumorigenesis and progression, serving as a prognostic factor
or a potential therapeutic target [46]. In our study, there was higher immune infiltration of
TILs in the low-risk group, consistent with previous studies [33]. Many reports have shown
that the number and phenotype of TILs determine the clinical outcome [47]. T lymphocytes
are the predominant tumor lymphocyte type in the TME. In breast cancer, as in many other
cancer types, tumors rich in CD8 T cells, cytotoxic cells, and TFH were associated with a
better prognosis. Similarly, dendritic cells and natural killer cells followed a similar trend.
In contrast, the different prognostic capabilities exhibited by immune cells in IGAS clusters
may be related to the combined effect of other clinical information.

5. Conclusions

In summary, our study provided a systematic analysis of IGAS events in breast
cancer to assess the association between prognosis signatures, AS regulatory network,
infiltration level of immune cells, sensitivity to immuno/chemotherapy, and heterogeneous
IGAS clusters. This comprehensive analysis remarkably enhanced our understanding
of IGAS events and TME, which may be most valuable in deciphering the underlying
mechanisms of IGAS in oncogenesis and provided clues to molecular diagnostic biomarkers
and therapeutic targets for further validation.
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