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Simple Summary: Linking imaging-derived radiomics features to underlying tumor biology and
pathogenesis is a developing field of increasing interest, given the wide availability of imaging
data in contrast to costs, expenses and logistical issues of molecular analyses. While invasive tissue
sampling remains the gold standard for histologic characterization, the usage of noninvasive imaging
techniques for diagnosis and detection of specific tumor characteristics could represent a potential
additive or eventually an alternative, especially in patients with advanced, inoperable disease or
when inaccessible to biopsy. Biomarkers are continuously expanding and several actionable targets
have already been identified in pancreatic ductal adenocarcinoma (PDAC), in order to guide clinical
decision making and help to develop novel treatment strategies. Our study indicates acceptable
correlation of CT-derived radiomics features and driver gene mutations in PDAC.

Abstract: We investigate whether computed tomography (CT) derived radiomics may correlate
with driver gene mutations in patients with pancreatic ductal adenocarcinoma (PDAC). In this
retrospective study, 47 patients (mean age 64 ± 11 years; range: 42–86 years) with PDAC, who were
treated surgically and who underwent preoperative CT imaging at our institution were included
in the study. Image segmentation and feature extraction was performed semi-automatically with
a commonly used open-source software platform. Genomic data from whole genome sequencing
(WGS) were collected from our institution’s web-based resource. Two statistical models were then
built, in order to evaluate the predictive ability of CT-derived radiomics feature for driver gene
mutations in PDAC. 30/47 of all tumor samples harbored 2 or more gene mutations. Overall, 81% of
tumor samples demonstrated mutations in KRAS, 68% of samples had alterations in TP53, 26% in
SMAD4 and 19% in CDKN2A. Extended statistical analysis revealed acceptable predictive ability
for KRAS and TP53 (Youden Index 0.56 and 0.67, respectively) and mild to acceptable predictive
signal for SMAD4 and CDKN2A (Youden Index 0.5, respectively). Our study establishes acceptable
correlation of radiomics features and driver gene mutations in PDAC, indicating an acceptable
prognostication of genomic profiles using CT-derived radiomics. A larger and more homogenous
cohort may further enhance the predictive ability.

Keywords: computed tomography; pancreatic ductal adenocarcinoma; radiogenomics; whole
genome sequencing
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1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive solid tumor and is asso-
ciated with poor prognosis with a 5-year survival rate of 6–7% [1]. PDAC is considered
the fourth most common cause of cancer-associated death in the United States, reflected by
estimated 57,600 new cases and resulting in 47,050 deaths in 2020 [2]. Due to low detection
rates at initial stages, the majority of patients are diagnosed with locally advanced or
metastatic disease and are not candidates for potential curative surgery, resulting in median
survival between 6.1 and 11 months [3].

In recent years, advanced genomic sequencing technologies and molecular profiling
contributed to further characterization of recurrent genetic alterations in PDAC, yielding
important insights in tumor biology and improved understanding of familial predisposition
while delivering potentially valuable prognostic tools and targeted therapeutics approaches.
Recent genomic studies of PDAC have identified high-frequency alterations in the function
of many key oncogenes and tumor suppressor genes, including KRAS, TP53, SMAD4 and
CDKN2A [4–6]. Moreover, RNA analyses of PDAC resection specimens have demonstrated
gene expression signatures with prognostic and biological relevance [7,8].

Ongoing improvements in imaging modalities, techniques and postprocessing tools
have intensified the radiological assessment and management of PDAC. Particularly recent
developments of machine learning techniques and the huge growth of computational
power has driven the field of radiomics [9]. The principles of radiomics include extraction
of high-dimensional data from various sources of medical images, followed by an analysis
of different classes of radiomic features, aiming to support clinical decision-making to
overcome the limitations of solely visual image interpretation [10]. Previous studies have
demonstrated the potential to describe underlying tumor biology of various cancer types
using radiomics [11–13].

Therefore, decrypting pathogenesis and tumor biology in correlation with imaging-
derived radiomics would be highly desirable, in order to guide clinical decision making
and help to develop novel treatment strategies, including a targeted therapy approach.
Thus, the primary aim of our study was to investigate whether CT-derived radiomics
features may correlate with driver mutations from whole genome sequencing of PDAC
resection specimens.

2. Materials and Methods

Based on a database search in cBioPortal, 55 patients with PDAC who underwent
Whipple’s procedure or distal pancreatectomy between June 2008 and November 2015
were identified. Patients were excluded due to the lack of preoperative CT imaging (n = 5)
and/or missing whole genome sequencing data (n = 3).

Demographic patient data is provided in Table 1. Our study received institutional
review board and local ethics committee approval (CAPCR/UHN REB #: 20-6105). All
patients provided a written informed consent prior to the study inclusion for evaluation of
genome sequencing.

2.1. Image Acquisition

All CT examinations were performed on a 64-slice single source CT scanner
(SOMATOM Definition, Siemens Healthineers, Erlangen, Germany). Acquisition param-
eters were as follows: tube voltage, 120 kVp, maximum allowable tube current set at
200 mAs using automated exposure control (CAREDose 4D), gantry rotation time, 500 ms,
pitch 1, beam collimation 32 × 0.6 mm. A bolus of 140 mL of iopromide (Ultravist 370;
Bayer Schering Pharma AG, Berlin, Germany) was administered at a rate of 3 mL/s through
a 20-gauge angiographic catheter inserted into an antecubital vein. Portalvenous phase im-
ages were performed using a bolus tracking technique, 75 s delay after the aortic attenuation
at the level of the diaphragm had reached 100 Hounsfield units (HU). Additional arterial
phase was performed in 19/47 patients. Images with a transverse pixel size of 1.00 and
slice thickness of 5 mm were reconstructed in the axial plane using a soft tissue kernel.
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Table 1. Demographic data of the study cohort.

Characteristics n = 47

Age (mean ± SD; range) 63.7 ± 10.7 (42–86)
Sex

Females 21 (45%)
Male 26 (55%)

Current or former smoker 21 (45%)
Race
Asian 6 (13%)

Non-Asian 41 (87%)
Tumor Grade

G1 8 (17%)
G2 26 (55%)
G3 12 (26%)
G4 1 (2%)

TNM
T2 5 (11%)

T3-4 42 (89%)
N1 37 (78%)
M1 8 (17%)

Treatment
Surgery 47 (100%)

Whipple’s procedure 41 (87%)
Distal Pancreatectomy 6 (13%)

Adjuvant Chemotherapy 42 (89%)

2.2. Image Segmentation, Radiomic Feature Extraction and Genomic Data

Image segmentation and radiomics features extraction was performed with a com-
monly used open-source software platform (LIFEx, Version 6.30; [14]) by one independent
reader with 7 years of experience in oncologic radiology. The contours of the primary pan-
creatic tumor were manually delineated and segmented in venous phase of the preoperative
CT in slice-by-slice fashion (Figure 1).
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Figure 1. Axial CT image (a) and triplanar CT images with segmentation (displayed in pink; b, c, d)
in a representative 62-year-old woman with PDAC in the pancreatic head.
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Next generation sequencing for whole genome sequencing was performed using Il-
lumina HiSeq 2000/2500 reagents and instruments on paired-end library at the Ontario
Cancer Research Institute (Toronto, ON, Canada). Data analysis protocol was based on
previously described methods [15]. Illumina’s CASAVA software (version 1.8.2) converted
the sequencing base calls to fastq format reads. Reads were aligned to the human reference
genome (hg19_random) using Burrows-Wheeler Aligner (version 0.6.2) [16]. Somatic sin-
gle nucleotide mutations were called using both Strelka (version 1.0.7) [17], and MuTect
(version 1.1.4) [18], while indels were called using only Strelka (version 1.0.7). ANNO-
VAR [19] was used to annotate all the final mutation calls. Somatic copy number variation
was assessed using CELLULOID [20].

Multiple genes, that have been previously reported as altered in PDCA were collected
from a web-based resource (cBioPortal.ca for Cancer Genomics [21,22]) and were catego-
rized as follows: significantly mutated genes, oncogenes, DNA damage repair genes and
chromatin modification genes [7,8,23]. The 4 most prevalent genes were then included for
statistical analysis (KRAS, TP53, SMAD4, CDKN2A) (Table 2).

Table 2. Prevalence of genomic alterations in PDAC resection specimens. The 4 most prevalent gene
mutations are presented in bold.

Genes Prevalence of Mutations N (%)

Significantly mutated genes
KRAS 38 (81)
TP53 32 (68)

SMAD4 12 (26)
CDKN2A 9 (19)
ARID1A 2 (4)
TGFBR2 1 (2)

NF1 1 (2)
Oncogenes

BRAF 1 (2)
EGFR 1 (2)
ERBB2 1 (2)
FGFR1 1 (2)
GNAS 1 (2)
MET 1 (2)
PAK4 1 (2)

DNA damage repair genes
BRCA2 1 (2)

ATM 1 (2)
Tumor suppressor genes

RNF43 2 (4)
ACVR2A 2 (4)
SMAD3 1 (2)

TSC2 1 (2)
Chromatin modification genes

KDM6A 1 (2)
KMT2C 3 (6)
PBRM1 1 (2)

SMARCA2 1 (2)
SMARCA4 1 (2)

2.3. Statistical Analysis and Modelling
2.3.1. Feature Selection

To reduce the number of radiomic features fed into the model building, a complete clus-
tering algorithm was used to group correlated features to form a feature dendogram. Prior
to clustering, features were normalized using a data-dependent normalization algorithm
(R package bestNormalize, Version 1.8.3 [24]).
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Features were selected from seven clusters, based on visual inspection of the cluster
trees to strike a balance between cluster size and number of clusters. These clusters were
independent of mutation status and clustering was performed once for the entire feature set.
A reduced set of features was then selected for each mutation by choosing the feature from
each cluster with the largest squared Spearman correlation with mutation status. Because
our goal was to build a verifiable prediction model independent of our sample, we used
raw values for the modelling of normally distributed features and a log transformation for
those features with a mean/median ratio of >1.5. This step resulted in a reduced data set of
seven features for each mutation.

2.3.2. Model Building

Prior to model building, 1000 cross-validation (CV) sets were selected for internal
validation. Each set was comprised of 37 training participants and 10 testing participants,
randomly allocated.

From the reduced set of features identified for each mutation all possible subset
logistic regression (APS-LR) was performed to determine which combination of variables
maximized the Youden Index (Sensitivity + Specificity − 1). APS-LR is computationally
intensive, with processing time increasing exponentially with the number of variables
under consideration and is possible because of the pre-selection of influential features.
Two approaches were used for model building.

Method 1 involved performing APS-LR for each of the 1000 CV training sets and
evaluating the model on the corresponding testing set. This approach allowed us to
determine the most important features, defined as those appearing most frequently in the
list of model predictors.

Method 2 involved performing the APS-LR step once, on the complete dataset to
identify the model most predictive of each mutation, fixing the feature set for each mutation.
The regression parameters from this model were then re-estimated on each of the 1000 CV
training sets and evaluated on the testing sets.

Both methods allow us to inspect the distribution of the statistics associated with the
model and therefore to estimate the distribution of the performance statistics, which cannot
be achieved with a single testing/training set.

3. Results
3.1. Baseline Characteristics of the Study Cohort

Overall, 47 patients (21 females, 26 males; mean age 64 ± 11 years, range: 42–86 years)
who received preoperative CT imaging and whole genome sequencing of the pancreatic
resection specimen were included in our study. No systemic treatment was administered
prior to surgery.

At the time of diagnosis, the majority of patients presented with advanced local disease
with T3 or T4 PDAC in 42/47 (89%) patients, lymph node metastasis (N1) in 37/47 (78%)
patients and M1 disease in 12/47 (26%) patients.

All patients were treated surgically, either with Whipple’s procedure (41/47; 87%) or
distal pancreatectomy (6/47; 13%). The majority of patients underwent adjuvant chemother-
apy (42/47; 89%) (Table 1).

3.2. Whole Genome Sequencing

More than half (30/47) of the analyzed tumor samples harbored 2 or more gene
mutations. Overall, 81% of tumor samples demonstrated a missense mutation in KRAS,
68% of samples had alterations in TP53, 26% in SMAD4 and 19% in CDKN2A (Table 2).

3.3. Method 1

Method 1 revealed a set of important radiomics features for KRAS, TP53, SMAD4
and CDKN2, respectively (Table 3). Feature importance was calculated as the number
of cross-validation models a feature appeared in. The most important features for each
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gene were as follows: HU_Skewness for both KRAS (number of cross-validation 918/1000)
and TP53 (number of cross-validation 981/1000), GLZLM_SZLGE for SMAD 4 (number
of cross-validation 743/1000) and NGLDM_Coarseness for CDKN2A (number of cross-
validation 584/1000) (Table 3). The Youden Index for model 1 were as follows: 0.50 for
KRAS, 0.62 for TP53, 0.44 for SMAD4 and 0.50 for CDKN2A (Table 4 and Figure 2).

Table 3. Feature importance of method 1 for each gene mutation with a varying set of features.
Feature importance was calculated as the number of cross-validation models a feature appeared in
1000 sets.

Feature KRAS TP53 SMAD4 CDKN2A

HU_Skewness 918 981
HU_Q3 860

GLZLM_LZLGE 690
GLRLM_LRLGE 664
GLRLM_SRHGE 578
GLRLM_LGRE 514

NGLDM_Contrast 470
GLZLM_SZHGE 782

NGLDM_Coarseness 752 423 584
GLCM_Energy 617
GLZLM_ZLNU 502

PARAMS_ZSpatialResampling 353
HU_max 351

GLZLM_SZLGE 743 397
HU_peakSphere1mL 633

HUmin 541 465
GLZLM_GLNU 528 561

HU_Q1 491 580
SHAPE_Volume 396

GLCM_Correlation 526
SHAPE_Sphericity 461

Table 4. Statistical parameters (median and 95% CI) for method 1 and method 2 across the cross-
validation samples.

KRAS TP53 SMAD4 CDKN2A

Model 1
NPV 0.00 (0.00, 1.00) 0.50 (0.00, 1.00) 0.75 (0.44, 1.00) 0.80 (0.56, 1.00)
PPV 0.86 (0.56, 1.00) 0.75 (0.43, 1.00) 0.00 (0.00, 0.50) 0.00 (0.00, 0.50)

Sensitivity 0.88 (0.57, 1.00) 0.80 (0.44, 1.00) 0.00 (0.00, 0.67) 0.00 (0.00, 0.50)
Specificity 0.00 (0.00, 1.00) 0.50 (0.00, 1.00) 0.86 (0.50, 1.00) 0.89 (0.56, 1.00)

Youden Index 0.50 (0.31, 0.94) 0.62 (0.31, 0.94) 0.44 (0.28, 0.72) 0.50 (0.28, 0.69)
Model 2

NPV 0.33 (0.00, 1.00) 0.50 (0.00, 1.00) 0.75 (0.50, 1.00) 0.80 (0.56, 1.00)
PPV 0.88 (0.62, 1.00) 0.78 (0.43, 1.00) 0.00 (0.00, 1.00) 0.00 (0.00, 1.00)

Sensitivity 0.88 (0.62, 1.00) 0.83 (0.50, 1.00) 0.00 (0.00, 0.50) 0.00 (0.00, 0.50)
Specificity 0.25 (0.00, 1.00) 0.50 (0.00, 1.00) 0.89 (0.57, 1.00) 0.89 (0.56, 1.00)

Youden Index 0.56 (0.33, 0.97) 0.67 (0.33, 0.94) 0.50 (0.31, 0.69) 0.50 (0.31, 0.75)

3.4. Method 2

As compared to the model with varying radiomics features (method 1), the model
performance slightly improved with a fixed set of the most important radiomics features
(method 2). The most important features for each gene are displayed in Table 5. The Youden
Index for method 2 were as follows: 0.56 for KRAS, 0.67 for TP53 and 0.50 for both SMAD4
and CDKN2A (Table 4 and Figure 2).
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Figure 2. Boxplots demonstrating the Youden Index comparing method 1 (upper row) and method
2 (lower row).

Table 5. Feature importance of method 2 for each gene mutation with a fixed set of features based on
the complete sample.

Feature KRAS Mutations N (%) TP53 SMAD4 CDKN2A

HUSkewness x x
HU_Q3 x

GLZLM_LZLGE x
GLRLM_LRLGE x

NGLDM_Contrast x
GLZLM_SZHGE x

NGLDM_Coarseness x x x
GLCM_Energy x
GLZLM_ZLNU x
GLZLM_SZLGE x x

HUpeakSphere1mL x x
GLZLM_GLNU x x

HU_Q1 x
GLCM_Correlation x
SHAPE_Sphericity x

4. Discussion

In our study we assessed the association of CT-derived radiomics features with genetic
driver mutations in surgical PDAC resection specimens. The main finding of our study
demonstrates an acceptable correlation of the most important radiomics features with
TP53 and KRAS gene mutation (Youden index of 0.67 and 0.56, respectively), indicating a
reasonable predictive ability of genomic profiles using CT-derived radiomics.

Linking radiomics features to underlying tumor biology and pathogenesis is a devel-
oping field of increasing interest, given the wide availability of imaging data in contrast to
costs, expenses and logistical issues of molecular analyses. While invasive tissue sampling
remains the gold standard for histologic characterization, the usage of noninvasive imaging
techniques for diagnosis and detection of specific tumor characteristics could represent
a potential additive or eventually an alternative, especially in patients with advanced,
inoperable disease or when inaccessible to biopsy. Biomarkers are continuously expand-
ing and several actionable targets have already been identified in PDAC [25,26], partly
already guiding clinical decision making and helping to develop novel targeted treatment
strategies. Several genomic sequencing studies have also reported poor outcome in the
presence of driver gene mutations in the PDAC resection specimen [27–29]. Although early
stage precancerous lesions already appear to harbor driver genes mutations like KRAS and
TP53, suggesting that these gene alterations play an important role in tumor onset and
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progression, genomic analysis of resection specimens represents only a snapshot of existing
mutations [30,31].

Chemotherapy and combined chemo-radiotherapy is used both in adjuvant and neoad-
juvant treatment of PDAC, however many patients are either intrinsically resistant or will
acquire resistance to these treatments [32]. Therefore, it is crucial to understand related
molecular mechanisms and pathogenesis, since specific gene mutations have been identi-
fied to contribute to reduced drug sensitivity and effectiveness of alternative therapeutic
strategies. For example, a recent study showed that KRAS mutation plays an important
role in the metabolic reprogramming of cancer cells, shifting them towards an anabolic
metabolism and support unconstrained proliferation, leading to reduced activity of both
gemcitabine and paclitaxel [33,34]. Wang et al. [35] also demonstrated resistance to ra-
diotherapy in SMAD4-mutated PDAC through the induction of reactive oxygen species
production and increased level of radiation-induced autophagy. This may indicate that the
assessment of SMAD4 status represents a vital screening test, not only prior to radiotherapy
but also for overall disease estimation, since multiple clinical studies showed that SMAD4
mutated PDAC commonly had distant disease progression as compared to those with
intact SMAD4, who more commonly had local dominant disease pattern [36,37]. Several
studies demonstrated that functional CDKN2A inactivation caused by mutations and deep
deletions were associated with poor prognosis in PDAC patients [38–40]. Oshima et al. [41]
investigated 106 surgically treated patients with PDAC and discovered that the loss of
CDKN2A was significantly associated with lymphatic invasion and postoperative metas-
tases. Another study, however, investigating chemosensitivity profiling of PDAC cell lines
and patient-derived organoids, found that CDKN2A inactivation correlated with increased
sensitivity to paclitaxel and an active metabolite of irinotecan [38].

In general, radiomics features can be classified into three main categories [42]. Shape
features describe semantic and/or geometric properties (e.g., volume, maximum diameter).
First order features describe the distribution of individual voxel values without any concern
for their spatial relationships (e.g., skewness, kurtosis). Second order features describe
the statistical relationship between neighboring voxels, providing a measure of the spatial
arrangement of the voxel intensities and hence of intra-lesion heterogeneity (e.g., grey-level
co-occurrence matrix, grey-level run length matrix).

Several studies so far investigated the correlation of radiomics feature and gene
expression profile in various malignancies with a main focus on Non-Small Cell Lung
Cancer (NSCLC) [43–45]. For example, Zhang et al. [44] constructed a clinical-radiological-
radiomics model (C-R-R), based on the combination of CT radiomics feature signature
with clinical and radiological features, aiming to predict epidermal growth factor receptor
(EGFR) status among 420 patients with lung adenocarcinoma. The model demonstrated
excellent diagnostic performance and high sensitivity in predicting EGFR mutation status.
Another study by Digumarthy et al. [46] concluded that CT-derived radiomics features of
NSCLC can help distinguish between EGFR positive and wild-type adenocarcinomas.

Further studies focused on the utility of CT radiomics features in PDAC, applied over a
wide range of study purposes. Chu et al. [47] determine the utility of CT radiomics features
in differentiating PDAC from normal pancreatic tissue in a cohort of 190 patients. The
authors concluded that radiomics can be used to differentiate between CT cases from pa-
tients with PDAC and healthy control subjects with normal pancreas, using the maximally
relevant-features, including gray-level-co-occurrence matrix, summation of the entropy and
shape features of the whole pancreas. A similar work by Chen et al. [48] assessed the ability
of CT radiomics features to distinguish between patients with and without PDAC in a large
retrospective study, including 436 patients. The authors identified several features in the
cancerous patch with lower values reflecting image intensity (first order: median, mean and
90th percentile) and higher values for features reflecting heterogeneity (NGTDM busyness,
GLDM gray-level nonuniformity and GLDM dependence nonuniformity), consistent with
the notion that PDACs typically manifest with heterogenous hypoenhancement on CT.
Multiple other studies investigated survival prediction in PDAC using radiomics [49–52].
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For example, Khalvati et al. [51] conducted a multicenter study, including 98 patients, aim-
ing to assess the reproducibility and prognostic value of CT-derived radiomics features for
resectable PDAC. The authors identified 2 significant second order features, among those,
entropy-related features. Entropy measures the degree of randomness or non-uniformity
in the image and it has been hypothesized that it can act as a surrogate for tumor het-
erogeneity. Notably, the majority of significant radiomics features, which were included
in our prediction models consistent of either grey-level zone length matrix (GLZLM) or
grey-level run length matrix (GLRLM), indicating spatial voxel distribution with estimation
of tumor heterogeneity.

To the best of our knowledge there is only very limited literature investigating the
correlation of CT radiomics features and gene expression profile in patients with PDAC.
Attiyeh et al. [53] demonstrated a strong correlation of CT derived radiomics features
with PDAC genetic alterations. In a cohort of 34 patients, 46% were found to have a
mutation in SMAD4 and 83% showed alterations in TP53 expression. The authors found a
good discriminatory power between patients with normal and abnormal SMAD4 status
using CT-derived radiomics, whereas the radiomics feature model for TP53 mutations
did not clearly discriminate between normal and those with altered TP53 status. The
results of our study, which included a larger set of patients with PDAC, demonstrated
superior predictive ability of TP53 mutation status (Youden Index 0.67). SMAD4 mutation
status demonstrated only acceptable predictive signal (Youden Index 0.5), which may be
explained by the relative low prevalence of SMAD4 mutations in our cohort (26% vs. 46%).
Further, we followed a more holistic approach searching for more than twenty important
gene mutations in PDAC, resulting in the inclusion of 4 main driver gene mutations (TP53,
KRAS, SMAD4, CDKN2A) in our analysis. This may be of particular importance, since
the interaction of synchronous gene mutations plays a crucial role in the development of
drug resistances [54].

A further study by Iwatate et al. [55] evaluated in 107 patients with PDAC whether
the expression of TP53 could be predicted using machine learning. The results of their
study revealed the expression of TP53 to be predictable from CT texture features with
a sensitivity of 0.667 and a specificity of 0.813 (AUC 0.795). The results of our analysis
demonstrated higher sensitivity for predicting TP53 mutation. Our models revealed a
maximal Youden Index of 0.67, with a sensitivity of 0.83 (95%CI 0.50–1.00) and a specificity
of 0.50 (95%CI 0.00–1.00). However, the authors only investigated TP53, whereas we
pursued a more holistic approach, including 4 main driver gene mutation in PDAC, which
adds value to the literature.

As compared to the mentioned prior studies [53,55], we believe that we applied a more
extended and more rigorous statistical analysis, reflecting a possible explanation for certain
differences. It is common in high-dimensional studies, with many features relative to cases
to perform split-validation, where the sample is divided into a training set (typically 80%
of cases) and a distinct testing set. This strategy is used to ensure that the built model does
not over-fit the data and to provide information about the reproducibility of the findings.
Our strategy followed that of Papp et al. [56] whereby the sample was split into 1000 cross
validation samples, each containing distinct training and testing sub-samples. We feel this
approach is more robust because it enables us to obtain a distribution of the validation
statistics and thereby shows the distribution of predictive accuracies, as opposed to a single
feature estimate. While a single validation sample may indicate excellent discrimination the
most clinically useful results arise when a large proportion of validation samples display
high sensitivity and specificity. Additionally, the ability to place some confidence bounds
around the reproducibility of the results is gained when multiple validation sets are used.

The following study limitations must be acknowledged. First, there are inherent
drawbacks, due to the retrospective nature of the study and the relatively small sample
size. Second, we investigated a relative inhomogeneous set of patients consisting of various
tumor stages and grades, thus depicting different timepoints in the course of the disease.
Third, due the relatively small sample size of our cohort, we did not discriminate between
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different molecular subtypes of PDAC, although we are aware of clinical and prognostic
implications. Fourth, the Youden Index for the included mutations was 0.5–0.67, reflecting
acceptable predictive ability, however given applied extended and rigorous statistical
analysis, the respective values may demonstrate a reasonable result in this setting.

5. Conclusions

In conclusion, our study indicates acceptable correlation of CT-derived radiomics
features and driver gene mutations in PDAC. Given small sample size and relative hetero-
geneity of the study cohort, we believe that a larger and more homogenous cohort may
enhance the predictive ability.
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45. Veeraraghavan, H.; Friedman, C.F.; DeLair, D.F.; Ninčević, J.; Himoto, Y.; Bruni, S.G.; Cappello, G.; Petkovska, I.; Nougaret, S.;
Nikolovski, I. Machine learning-based prediction of microsatellite instability and high tumor mutation burden from contrast-
enhanced computed tomography in endometrial cancers. Sci. Rep. 2020, 10, 17769. [CrossRef] [PubMed]

46. Digumarthy, S.R.; Padole, A.M.; Gullo, R.L.; Sequist, L.V.; Kalra, M.K. Can CT radiomic analysis in NSCLC predict histology and
EGFR mutation status? Medicine 2019, 98, e13963. [CrossRef]

47. Chu, L.C.; Park, S.; Kawamoto, S.; Fouladi, D.F.; Shayesteh, S.; Zinreich, E.S.; Graves, J.S.; Horton, K.M.; Hruban, R.H.; Yuille, A.L.
Utility of CT radiomics features in differentiation of pancreatic ductal adenocarcinoma from normal pancreatic tissue. Am. J.
Roentgenol. 2019, 213, 349–357. [CrossRef]

48. Chen, P.-T.; Chang, D.; Yen, H.; Liu, K.-L.; Huang, S.-Y.; Roth, H.; Wu, M.-S.; Liao, W.-C.; Wang, W. Radiomic features at CT can
distinguish pancreatic cancer from noncancerous pancreas. Radiol. Imaging Cancer 2021, 3, e210010. [CrossRef] [PubMed]

49. Park, S.; Sham, J.G.; Kawamoto, S.; Blair, A.B.; Rozich, N.; Fouladi, D.F.; Shayesteh, S.; Hruban, R.H.; He, J.; Wolfgang, C.L. CT
Radiomics–Based Preoperative Survival Prediction in Patients with Pancreatic Ductal Adenocarcinoma. Am. J. Roentgenol. 2021,
217, 1104–1112. [CrossRef]

50. Gao, Y.; Cheng, S.; Zhu, L.; Wang, Q.; Deng, W.; Sun, Z.; Wang, S.; Xue, H. A systematic review of prognosis predictive role of
radiomics in pancreatic cancer: Heterogeneity markers or statistical tricks? Eur. Radiol. 2022, 32, 8443–8452. [CrossRef]

51. Khalvati, F.; Zhang, Y.; Baig, S.; Lobo-Mueller, E.M.; Karanicolas, P.; Gallinger, S.; Haider, M.A. Prognostic value of CT radiomic
features in resectable pancreatic ductal adenocarcinoma. Sci. Rep. 2019, 9, 5449. [CrossRef]

52. Xie, T.; Wang, X.; Li, M.; Tong, T.; Yu, X.; Zhou, Z. Pancreatic ductal adenocarcinoma: A radiomics nomogram outperforms clinical
model and TNM staging for survival estimation after curative resection. Eur. Radiol. 2020, 30, 2513–2524. [CrossRef] [PubMed]

53. Attiyeh, M.A.; Chakraborty, J.; McIntyre, C.A.; Kappagantula, R.; Chou, Y.; Askan, G.; Seier, K.; Gonen, M.; Basturk, O.;
Balachandran, V.P. CT radiomics associations with genotype and stromal content in pancreatic ductal adenocarcinoma. Abdom.
Radiol. 2019, 44, 3148–3157. [CrossRef] [PubMed]

54. Pao, W.; Wang, T.Y.; Riely, G.J.; Miller, V.A.; Pan, Q.; Ladanyi, M.; Zakowski, M.F.; Heelan, R.T.; Kris, M.G.; Varmus, H.E. KRAS
mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005, 2, e17. [CrossRef] [PubMed]

55. Iwatate, Y.; Hoshino, I.; Yokota, H.; Ishige, F.; Itami, M.; Mori, Y.; Chiba, S.; Arimitsu, H.; Yanagibashi, H.; Nagase, H.; et al.
Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer. Br. J.
Cancer 2020, 123, 1253–1261. [CrossRef] [PubMed]

56. Papp, L.; Spielvogel, C.; Grubmüller, B.; Grahovac, M.; Krajnc, D.; Ecsedi, B.; Sareshgi, R.; Mohamad, D.; Hamboeck, M.; Rausch, I.
Supervised machine learning enables non-invasive lesion characterization in primary prostate cancer with [68Ga] Ga-PSMA-11
PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 1795–1805. [CrossRef] [PubMed]

http://doi.org/10.3390/jcm9124019
http://www.ncbi.nlm.nih.gov/pubmed/33322698
http://doi.org/10.1245/s10434-008-0220-8
http://doi.org/10.1007/s12253-012-9555-3
http://doi.org/10.1097/SLA.0b013e3182827a65
http://doi.org/10.1259/bjr.20220072
http://www.ncbi.nlm.nih.gov/pubmed/35687700
http://doi.org/10.3390/cancers14112739
http://www.ncbi.nlm.nih.gov/pubmed/35681720
http://www.ncbi.nlm.nih.gov/pubmed/33575086
http://doi.org/10.1038/s41598-020-72475-9
http://www.ncbi.nlm.nih.gov/pubmed/33082371
http://doi.org/10.1097/MD.0000000000013963
http://doi.org/10.2214/AJR.18.20901
http://doi.org/10.1148/rycan.2021210010
http://www.ncbi.nlm.nih.gov/pubmed/34241550
http://doi.org/10.2214/AJR.20.23490
http://doi.org/10.1007/s00330-022-08922-0
http://doi.org/10.1038/s41598-019-41728-7
http://doi.org/10.1007/s00330-019-06600-2
http://www.ncbi.nlm.nih.gov/pubmed/32006171
http://doi.org/10.1007/s00261-019-02112-1
http://www.ncbi.nlm.nih.gov/pubmed/31243486
http://doi.org/10.1371/journal.pmed.0020017
http://www.ncbi.nlm.nih.gov/pubmed/15696205
http://doi.org/10.1038/s41416-020-0997-1
http://www.ncbi.nlm.nih.gov/pubmed/32690867
http://doi.org/10.1007/s00259-020-05140-y
http://www.ncbi.nlm.nih.gov/pubmed/33341915

	Introduction 
	Materials and Methods 
	Image Acquisition 
	Image Segmentation, Radiomic Feature Extraction and Genomic Data 
	Statistical Analysis and Modelling 
	Feature Selection 
	Model Building 


	Results 
	Baseline Characteristics of the Study Cohort 
	Whole Genome Sequencing 
	Method 1 
	Method 2 

	Discussion 
	Conclusions 
	References

