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Simple Summary: Prostate cancer patients with disease that has invaded the liver have the worst
outcomes. Within the liver, cancer cells are exposed to a unique microenvironment of liver specific
cells and proteins. In general, interaction between the microenvironment and cancer is known to
provide cues which alter cancer cell biology and behavior. This review aims to summarize current
knowledge about the microenvironment of the liver, what predisposes prostate cancer to move to the
liver, how the liver responds to prostate cancer being there, and how the liver responds to current
treatment strategies. We aim to provide insight into this under-investigated area of prostate cancer
research as if we can understand why liver metastasis is associated with such poor patient outcomes,
we will be better placed to address this.

Abstract: Prostate cancer-associated deaths arise from disease progression and metastasis. Metastasis
to the liver is associated with the worst clinical outcomes for prostate cancer patients, and these
metastatic tumors can be particularly resistant to the currently widely used chemotherapy and
hormonal therapies, such as anti-androgens which block androgen synthesis or directly target the
androgen receptor. The incidence of liver metastases is reportedly increasing, with a potential
correlation with use of anti-androgen therapies. A key player in prostate cancer progression and
therapeutic response is the microenvironment of the tumor(s). This is a dynamic and adaptive
collection of cells and proteins, which impart signals and stimuli that can alter biological processes
within prostate cancer cells. Investigation in the prostate primary site has demonstrated that cells of
the microenvironment are also responsive to hormones and hormonal therapies. In this review, we
collate information about what happens when cancer moves to the liver: the types of prostate cancer
cells that metastasize there, the response of resident mesenchymal cells of the liver, and how the
interactions between the cancer cells and the microenvironment may be altered by hormonal therapy.
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1. Introduction

Prostate cancer (PCa) is the fourth most commonly diagnosed cancer globally, with
particularly high prevalence in western countries [1]. When confined to the prostate the
disease is frequently relatively indolent; problems arise when the disease progresses and
moves to other organs, with most PCa-related deaths being due to disease metastasis [2,3].
Developing from the luminal epithelial cells lining the glandular tubules of the prostate,
PCa grows into the surrounding stroma, then can invade local surrounding organs (e.g.,
bladder, seminal vesicles) and lymph nodes, and in advanced cases, metastasizes to distal
sites such as bone and/or visceral organs [4,5]. The liver is considered one of the most
common sites for metastasis among solid tumors, with liver metastasis occurring in up to
50% of metastatic gastric/colon cancers, between 10–20% of metastatic melanoma cancers,
4–17% of metastatic lung cancer, 30–40% of metastatic pancreatic and 6–38% of metastatic
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breast cancers [6,7]. Historically, PCa-associated liver metastases are relatively uncommon—
but when they do occur are associated with shorter overall survival times and are less
responsive to treatments [8,9].

Since PCa cells proliferate in response to androgens, anti-androgen therapies are
commonly the drug of choice for inoperable PCa treatment. These act at the level of
the androgen receptor (AR), binding to it and preventing its activation, hence inhibiting
androgen-responsive gene transcription [10]. Whilst this approach works well initially
in the majority of cases, cancers often become resistant to such hormonal/anti-androgen
therapy [11]. This is termed castration-resistant PCa (CRPC), and is associated with elevated
levels of serum PSA, confirming progression is still driven by AR signaling as PSA is an AR
target gene [3]. Second generation anti-androgens, such as bicalutamide and enzalutamide,
are widely employed to more effectively target the AR signaling pathway and manage
metastatic cases, but the issue of resistance still remains [12].

Anti-androgen therapies, which are given systemically, have also been associated with
other effects in the liver [13], although few papers address this impact. One of the most
common adverse effects seen with anti-androgens in the liver is liver injury onset [14].
In response to injury, the liver initiates both inflammation and fibrosis. Damage to the
parenchyma causes release of paracrine factors, which recruit immune cells and activate
stellate cells, which in turn release a plethora of factors causing recruitment of more immune
cells and activated stellate cells, myofibroblasts, neo-angiogenesis, and deposition of a
dense extracellular matrix (ECM) [15]. In time this process resolves and liver regeneration
occurs, but prolonged damage responses can be detrimental to liver function, and the
prolonged fibrotic response can also create a microenvironment or pre-metastatic niche
which is favorable/supportive for metastatic seeding and growth [16–20]. Furthermore, in
those colorectal and breast cancers that metastasize to the liver, there are several changes
associated with ECM interactions that are not seen in tumors that metastasize to different
organs [21], indicating that the liver ECM environment may be selective for certain types of
metastatic cells.

The vital role of ECM in disease progression is also seen in the primary site [22,23]
where in PCa the ECM is known to regulated by AR [24]. AR signaling in the stroma of the
microenvironment has been shown to affect cancer cells [25]. Previously, stromal AR was
shown to be vital for prostate growth and development, whilst epithelial AR was known to
be responsible for the androgen-dependent synthesis of epithelial secretory proteins [26,27].
More recently, AR signaling in the cancer stroma was shown to impact patient outcomes
by inhibiting cancer cell invasion, however, the mechanisms behind the roles stromal AR
plays in disease progression are not fully understood [24].

The changes to the tumor microenvironment and cells therein highlight its importance
in cell invasion and metastasis. The aim of this review is to collate the current knowledge
of what types of PCa metastasize there, what happens to the liver when PCa invades, and
what associations exist with current therapeutic options.

2. Metastasis to the Liver

The liver is a large organ which primarily filters blood coming from the digestive tract,
but also has critical roles in metabolism and secretion. At a microscopic level, the liver
is composed of liver lobules, which are roughly hexagonal in shape (Figure 1A). At the
outside of each segment of each lobule are hepatic triads comprised of an artery, a vein,
and a bile duct. These flow toward the center of the lobule, where there is a central vein.
Between the triad and central veins are sinusoids through which the mixed veinous and
arterial blood flows, each sinusoid is composed of specialized parenchymal cells called
hepatocytes and lined with endothelial cells. Between the parenchymal hepatocyte cells
and the endothelial cells is the space of Disse, in which mesenchymal and inflammatory
cells reside.
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Figure 1. (A) Liver Lobule Cellular Microenvironment. The liver is comprised of hepatic lobules,
which are the microscopic hexagonal subunits of the liver. These consist of a central collecting vein,
hepatocyte lined sinusoids leading to hepatic triads, a collection of three ducts; hepatic artery, portal
vein, and bile duct. Between the endothelial cells and either hepatocytes or cholangiocytes/bile
ducts, is the space of Disse, a region where mesenchymal cells reside, such as stellate cells, dendritic
cells/immune cells, and fibroblasts. (B) Metastatic colonization of the liver. Escaping from the
primary site, cancer cells invade the circulatory system, through which they navigate to the liver.
Once extravasated from hepatic blood vessels and in the liver, cancer cells can undergo cell death or
they can remain dormant. From dormancy, cancer cell proliferation can be activated, allow for the
formation of micro-metastases, which with continued proliferation become macroscopic metastatic
lesions. There is an associated change in the resident cells, with damage to the hepatocytes, increase
in ECM due to activation of stellate cells and recruitment of fibroblasts. There is also a potential influx
of immune cells.

In the primary site, cancer cells invade through the stroma and escape the primary site
via intravasation into the vasculature, where they circulate until they leave the vasculature
(extravasation) and colonize the liver. In the liver, cancer cells either undergo cell death, or
they can remain in a dormant state, or they proliferate and form micro-metastases until
growing enough to become a macroscopic metastatic lesion (Figure 1B).
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As previously summarized, many solid tumors metastasize to the liver [6]. In a study
of 74,826 PCa patients with metastatic disease, 84% of metastases were found in the bone,
whilst liver metastasis accounted for 10.2% [28]. In a retrospective analysis of the SEER
dataset, liver metastasis occurred in around 3% of metastatic PCa (20,034 men, [29]), whilst
in clinical trials for advanced disease, liver metastases account for between 12–30% [30,31].

3. Prostate Metastasis to the Liver

Liver metastasis is associated with some of the worst clinical outcomes compared
with other sites [32,33]. Out of all the patient with liver metastasis, those which originated
from the prostate have the second worse survival (behind testicular cancer) [34]. Kelly
et al. (2012) report that patients with liver metastases had a median survival of 14.4 months
compared with 22.2 months in patients with non-liver metastases [35]. A meta-analysis
of PCa samples in the SEER dataset (n = 10,777) confirmed that the presence of liver
metastasis in patients associated with the worst cancer specific and overall survival [36]. A
full summary of the effects of visceral metastases on patient outcomes in different patient
cohorts is shown in Table 1.

In general, AR status of PCa cells has an inverse correlation with neuroendocrine
features (Figure 2B). Publicly available data suggest that AR-negative and neuroendocrine
disease are most often found in liver metastases (Figure 2A), indeed anecdotally, liver
metastases are usually presumed to all be AR-negative and neuroendocrine. However, a
mixture of AR-positive or -negative neuroendocrine phenotypes, or indeed AR-negative
non-neuroendocrine PCa, have been seen, with varying degrees of heterogeneity within
each tumor [37]. The data also suggest that in PCa, liver metastases can be either composed
of AR-negative/neuroendocrine disease or AR-positive/adenocarcinoma disease, and in
some cases potentially a mixture of the two types (Figure 2C). Patients with liver metastases
have can have high circulating PSA levels, indeed in meta-analysis of multiple studies,
relating to 8820 men in total with mCRPC, patients with liver metastasis (n = 752 men) had
the highest median levels of serum PSA of all the metastatic sites tested [8].

Compared to other metastatic sites for PCa, liver metastases reportedly have the
highest fraction of genomic alterations and there are also potential liver specific alterations
such as MYC amplification, PTEN deletion or PIK3CB amplification [33]. PCa may undergo
site specific transcriptional changes, whereby the tumors adapt to survive and thrive in
that specific micro-environment, and it may be that the changes in metabolism pathways
are especially important to PCa that have located to the liver [38,39]. All three of these
proteins have been linked with metabolism: PTEN with glycolysis and mitochondrial
activity [40], MYC regulates genes involved in biogenesis of ribosomes and mitochondria,
and glucose/glutamine metabolism [41], while PIK3CB is associated with metabolism of
cholesterol, triglycerides, and sugars [42,43].

In other cancers that invade the liver, measurable changes have been noted in liver
function serum markers alanine transaminase (ALT), aspartate transaminase (AST), total
bilirubin (TBIL), gamma glutamyltransferase (GGT), alkaline phosphatase (ALP), albumin
(ALB), and carcinoembryonic antigen (CEA) [44–46]. Serum markers of liver function are
also dysregulated when PCa invades the liver [47]. In an analysis of 1281 men with PCa,
increased serum levels of AST and/or LDH, or a decreasing serum hemoglobin, were
associated with an increased probability of PCa metastasis to the liver [47].

Liver metastases express the epithelial-characteristic adhesion protein E-cadherin at a
level that is equivalent to or higher than matched primary tumors [48–50]. This is different
to what is observed at other metastatic sites, where E-cadherin is more often expressed
at low levels, and may suggest that tumors that metastasize to the liver have a different
relationship to other cell types and the local microenvironment in terms of cell–cell and
cell-ECM interaction. The liver microenvironment is considered vastly different to other
metastatic sites, such as the bone [51] and it has been postulated that the microenvironment
of the liver plays a role in determining the “types” of PCa that will successfully colonize
the liver and how lethal they will be [51,52]. In other solid tumors that metastasize to
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the liver, proliferating cancer cells in the liver form subclinical micro-metastases in the
periportal regions of the liver lobule, and their growth and survival is supported by the
host parenchymal and stromal cells [53]. In liver spread of colon, pancreatic, and breast
cancers, the presence and activation of resident stellate cells is important in preparing a
microenvironment that propagates metastatic seeding [54] and growth [55–58]. The ability
of stellate cell activation to influence metastatic growth is reported to involve their ability
to influence fibrosis and ECM deposition/stiffness [58–60]. It will be interesting to confirm
how the liver microenvironment actually responds to PCa.
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Figure 2. Characteristics of prostate cancer cells in the liver. A summary of data from Stand Up
to Cancer (SU2C) database showing the cellular characteristics of prostate cancer cells that have
metastasized to the bone (n = 160), lymph node (n = 167), liver (n = 64), and lung (n = 7). (A) The per-
centage of metastatic tumors with pathologist defined neuroendocrine features. Green = metastases
with neuroendocrine features, red = no neuroendocrine features, and grey = no characterization
available. (B) Analysis of (i) neuroendocrine prostate cancer (NEPC) gene scores and (ii) androgen
receptor (AR) activity gene scores in different metastatic sites. (C) Comparison of NEPC (horizontal)
and AR (vertical) gene scores in (i) different metastatic sites, and (ii) the liver alone. Analyzed using
publicly available data [61].
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4. Anti-Androgens and Patients with Liver Metastases

As stated earlier, PCa growth is dependent on androgens, which are male sex hormones
that work through the androgen receptor (AR) [62]. The AR is a nuclear transcription
factor activated by testosterone or dihydrotestosterone (DHT) and is a key driver in PCa
development and progression [63]. Androgen deprivation therapy (ADT) is common
treatment for recurrent or metastatic PCa [64]. These therapies work by either reducing
circulating testosterone levels or inhibiting androgen binding to AR; both approaches
reduce AR activity [65]. The latest generation of anti-androgens includes enzalutamide,
and more recently darolutamide and apalutamide [10,66], and these are generally effective
in lowering PSA levels, reducing tumor burden, and increasing patient survival [11,67].
These have varying success rates, dependent on when in the disease progression they are
administered and the status, e.g., whether the primary site is intact [10,68].

One of the principal factors that determine the responsiveness and overall success of
anti-androgen therapies is the site of metastasis. The poor clinical outcomes associated
with visceral metastases, in particular liver metastases [30] (Table 1), could be in part due
to the reported unresponsiveness of liver metastases to multiple types of anti-androgen
therapy [8,9,69–71]. There have been studies reporting success of anti-androgen therapies
in liver metastasis cases [72], however, many suggest this effect is short-lived [9]. A possible
explanation for this may be that liver metastasis is considered to be a late event in disease
progression, linked to neuroendocrine tumor characteristics including lack of AR expression
(see above), and therefore represents an aggressive subset which does not respond well
to therapy [69]. However, as discussed, there are cases of AR-expressing adenocarcinoma
metastasizing to the liver, which could be responsive. Furthermore, liver metastases can
occur in patients who do not exhibit bone metastases, with limited differences in survival
between patients with liver only metastasis compared to patients with liver plus other
metastatic sites [8,28].

Reports also suggest that cases of liver metastases are increasing and this could
possibly be linked to the use of anti-androgen therapies [5,31,73]. This could be due to
anti-androgens exerting selecting pressure that favors cancer cells that home to the liver,
or selecting for neuro-endocrine type tumors [74]. This may also suggest anti-androgen
therapies are having a more significant impact on the liver itself than previously thought—
as discussed below, there is evidence for links with fibrosis.
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Table 1. Summary of clinical trials to assess efficacy of anti-androgen therapies and response of
patients with visceral metastasis.

Paper # of Patients Tumor Type Treatment Outcome

Conteduca et al.,
2015 [75] 265 CRPC Abiraterone VM linked to reduced OS

Goodman et al.,
2014 [76] 1195 CRPC Abiraterone acetate or

placebo
VM associated with reduced PFS and OS

in both groups

Poon et al.,
2016 [77] 110 mCRPC Abiraterone acetate

Chemotherapy naïve-VM reduced OS
and PFS

Chemotherapy received-VM no sig. dif.

Moschini et al.,
2016 [78] 1011 LN + ve PCa VM had poor OS

VM had greater HR

Gandaglia et al.,
2015 [79] 3857 mPCa VM alone or with BM had worse OS

and PFS than BM or LN

Conteduca et al.,
2016 [80] 193 mCRPC Enzalutamide VM increased HR but not significant

Armstrong
et al., 2007 [81] 1006 mCRPC

Docetaxel,
mitoxantrone,

prednisone
VM and multiple sites had higher HR

Pond et al.,
2014 [32] 1006 mCRPC

Docetaxel,
mitoxantrone,

prednisone
Liver or lung had worse OS than BM

Terada et al.,
2016 [82] 329 mPCa Enzalutamide VM increased CRPC development more

than BM, lower PFS than BM or LN

Shiota et al.,
2014 [83] 97 CRPC Docetaxel and

Prednisone VM has worse OS and PFS

Loriot et al.,
2013 [84] 307 mCRPC Enzalutamide

(previous docetaxel)
OS increased in lung and liver, bigger

effect in lung

Loriot et al.,
2017 [85] 1199 CRPC Enzalutamide OS increased in lung and liver, bigger

effect in lung

Penson et al.,
2016 [86] 396 CRPC Enzalutamide vs.

Bicalutamide Enzalutamide had better PFS

Davies et al.,
2019 [87] 1125 mPCa Testosterone and

Enzalutamide
Better OS and PFS with testosterone/enza

vs. control

Eisenberger
et al., 1998 [88] 1378 mPCa Flutamide No sig. dif. in OS

CRPC = castration resistant prostate cancer, mCRPC = metastatic castrate resistant prostate cancer, LN + PCa =
lymph node positive prostate cancer, mPCa = metastatic prostate cancer, LHRH = luteinizing hormone-releasing
hormone, VM = visceral metastasis, PFS = progression free survival, OS = overall survival, BM = bone metastasis,
HR = 5-year hazard ratio, Enza = Enzalutamide.

5. The Influence of Microenvironment on PCa Progression and Its Relationship
with AR

The influence of the microenvironment is seen throughout all stages of cancer devel-
opment and progression and therefore, therapies to target cancers must consider the effect
of (and on) the tumor microenvironment.

Prostate development is reliant on the interactions between epithelial cells and the
surrounding stroma in the microenvironment. The prostatic stroma is composed of sev-
eral non-malignant cell types such as fibroblasts, smooth muscle cells, endothelial cells
and immune cells [89]. In cancer, the components of the stroma also undergo a type of
transformational change and the signaling between cancer cells and the microenviron-
ment is altered [90]. In the primary site, the prostate microenvironment changes from the
benign context of smooth muscle cells and fibroblasts, to the cancer-associated microen-
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vironment largely composed of fibroblasts with an activated phenotype, termed cancer
associated fibroblasts (CAFs) [91]. CAFs are spindle-shaped cells that are derived from
the fibroblasts present in the normal microenvironment [23,25,92], but differ from them by
producing elevated levels of collagen and ECM proteins and upregulating the secretion of
pro-tumorigenic factors [93] to facilitate tumor growth, invasion and metastasis [94]. In
addition, this CAF microenvironment secretes growth factors which promote angiogenesis,
alter ECM architecture, and accelerates fibroblast proliferation [95]. Without these changes
to the microenvironment, cancer cells cannot invade and metastasize.

Androgen receptors are not just expressed in cancerous epithelial cells, but in multiple
cell types of the prostate stroma [89,96]. Stromal AR is well documented to be essential for
normal prostate growth and development [97]. In PCa, reduced AR levels in the stroma
is frequently associated with poor clinical outcomes [24,98–103]. Moreover, low stromal
AR expression is linked to tumor resistance to ADT [103] and relapse in PCa patients [100].
This is the opposite of AR’s effect in epithelial cells, where high levels of AR were found to
be associated with a more aggressive disease phenotype [24]. A meta-analysis of protein
markers in PCa confirmed that low or no AR expression in the PCa stroma associated
with worse patient outcomes, and stromal AR is in fact one of the only markers that
consistently associates with progression [104,105]. Niu et al. (2008) also suggest stromal AR
is essential for cancer initiation and growth in mouse xenograft models using WPMY cells,
with reduced AR in the stroma found to be effective at reducing tumor growth initially;
they then also suggest low stromal AR suppressed metastasis [106], although these cell line
data are not supported with clinical findings. This may suggest the effect of AR expression
is dependent on the stage and progression of the disease, and AR may play a different role
as the disease changes. Given the significance of AR in stroma of the primary site, the effect
of anti-androgens on the metastatic microenvironment warrants further consideration.

The role of AR in the metastatic microenvironments is generally under-investigated,
this is particularly true for the liver. A number of articles have suggested that the liver is
responsive to androgens and expresses AR both in the nucleus and cytoplasm (only deter-
mined in whole tissue extracts and hepatocytes) [107–111]. Single cell RNA-sequencing data
sets show detectable AR RNA heterogeneously expressed throughout the liver, but mainly
in hepatocytes, vasculature and mesenchymal cells (fibroblasts/stellate cells) although
there are also a few immune cell types which express AR (Figure 3).

There is some data suggesting an association between hepatic AR and reduced immune
infiltration [112] and enabling glycolysis and metabolism [113]. Additionally, androgens
may have a role in regulating the secretion of cytokines and growth factors, such as
TGF-ß and VEGF, by hepatocytes [113,114]. Importantly, TGF-ß is integral to fibrotic
responses, and is also known to be increased in PCa liver metastases [51,115], and to
promote invasion and metastasis, all potential reasons why cancer cells metastasize to
and grow in the liver [116]. CAFs, detectable in prostate liver metastases [117], potentially
work in combination with host mesenchymal cells (stellate cells), which are recruited intra-
metastatically and incorporated to form a stroma which releases growth factors and ECM
proteins to support cancer cell growth [53]. It is not yet known whether AR signaling in
these two cell types will resemble what we have previously reported for AR in prostatic
fibroblasts [24,25]. Despite this emerging research, the role of androgen signaling in the
liver metastatic microenvironment and its involvement in influencing local cancer cell
biology is not well defined.
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6. How the Liver Responds to Anti-Androgen Therapies

It is underappreciated that all cell types throughout the body express some form of
nuclear/sex hormone receptor [120]. Cell comprising the liver express all steroid receptors,
including AR, and the liver appears to be an androgen responsive organ [121,122], which
may be further suggested by the gender imbalance in all types of liver disease and fibrotic
states [108,121,123–125]. In a study of 117 men, higher levels of testosterone were associ-
ated with lower serum ALT and AST [126]. There have been suggestions that androgen
metabolism and liver cirrhosis are linked [127]. Indeed androgen (and estrogen) levels have
been associated with development of liver disease [128]. Furthermore, prohibitin (PHB), an
AR co-repressor protein [129–131], is associated with liver injury and cancer [132], and im-
portantly in a liver specific PHB knock out mouse model, there was upregulation of genes
involved in fibrosis [133]. Sex also appears to influence the incidence of liver metastasis,
with men twice as likely to present with liver metastases than women [134]. Interestingly
in a mouse model of diethylnitrosamine (a hepatotoxicant and hepatocarcinogen)-induced
formation of hepatocellular carcinoma (HCC), this treatment was also associated with fibro-
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sis and accumulation of AR positive mesenchymal cells and immune cells [112]. This may
support the previously mentioned hypothesized link between AR and fibrotic responses in
the liver.

Liver injury associated with anti-androgen therapies has been reported in the literature
since as early as the 1940s [135]. Analysis of the SEER database indicated that in men receiv-
ing some form of ADT, there was a significant association with subsequent diagnosis of liver
disease, including non-alcoholic fatty liver disease, cirrhosis and necrosis [136]. Liver injury
was associated with anti-androgen therapies involving first-generation antiandrogens such
as Flutamide, albeit rarely [14]. The same report also identified a case of liver toxicity
associated with Nilutamide administration. Yun et al. (2016) also reported liver injury
associated with (second generation antiandrogen) bicalutamide treatment [137], with his-
tology demonstrating acute intrahepatic cholestasis suggestive that the injury was caused
by anti-androgen administration. In large trials assessing the use of abiraterone, which is
a steroid synthesis inhibitor that has also been shown to have antiandrogen effects [138],
there have been trends of liver enzyme increases indicative of damage/reduced function.
In a PCa cohort of 1917 patients, the administration of abiraterone saw the percentage of
patients with increased ALT and AST levels rise from below 1% to 6% (53 patients) [139].
In the COU-AA trial of prednisone alone or in combination with abiraterone, there was a
small increase in abnormal liver function tests, with the number of patients with increased
AST and ALT doubling from, respectively, 5% and 4.8% of patients with prednisone alone
to 13.3% and 12% in patients with prednisone and abiraterone, albeit this involved a small
number of patients and the effect was not quite significant [140,141]. This trend was ob-
served in other trials involving abiraterone combinations, where small increases in the
number of patients with high levels of LDH, AST and ALT were observed [12,142]. The
increase in liver enzymes can resolve with time [143], but the effect of this increase and
potential damage to the liver is unknown. So, whilst not all patients will have liver damage
events in response to anti-androgens, it may be worthwhile monitoring those patients that
do for subsequent metastases.

7. Potential for the Formation of a Pre-Metastatic Niche

A major concern of tissue response to injury is the possible formation of a pre-
metastatic niche. A pre-metastatic niche is a microenvironment which is suitable/optimal
for colonization by circulating tumor cells [144]—the “soil” in the ‘seed and soil’ hypothe-
sis [145,146]. In the liver, changes to the stromal cells and ECM in response to liver injury
produce an environment conducive for cancer cell seeding [146] and patients with liver fi-
brosis have an increased risk of developing liver cancer [147]. Liver injury and fibrosis have
also been associated with subsequent metastases, with the fibrotic environment providing
a niche for cancer growth [18,19,148,149]. Liver injury creating a pre-metastatic niche has
been reported in pancreatic and colorectal cancer [18–20,150,151].

The fibrosis/wound healing activated in response to injury in the liver is similar to the
changes observed in the microenvironment of cancer metastases discussed earlier (Figure 1).
Hepatic stellate cells are essential for the liver’s response to injury, becoming activated
and transforming into myofibroblast-like cells which produce ECM, culminating in wound
healing responses to protect the liver, but simultaneously reducing tissue structure and
function [152]. There is also an accrual of fibroblasts, which also aid ECM production and
accumulation [153]. The TGF-ß and ECM produced by activated stellate cells has been
reported to increase cancer invasion and proliferation in pancreatic and colon models, while
activation of stellate cells is reported to activate growth of dormant breast cancer micro-
metastases [154]. In colorectal cancer, patients with a fibrotic liver had a four-fold increased
risk of liver metastasis compared to those with a normal liver [19]. In terms of mechanisms
involved, we may gain insight from other metastatic sites. For example, in lung metastasis,
cases have been shown to be more severe where increased fibronectin and stiffening of the
ECM are present, which can nurture growth by overriding tumor suppressor activity [155].
Fibronectin produced by activated stellate cells has been reported to cause recruitment
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of bone marrow-derived immune cells, creating an environment that allowed metastatic
growth of pancreatic cancer cells in animal models [156]. Activated stellate cells have also
been reported to secrete CCL20 and increase fibronectin deposition, promoting colorectal
cancer cell line metastasis to the liver in mouse models [54]. Colorectal metastasis has
also been reported to be enhanced by tenascin C produced by activated stellate cells [157].
Activation of stellate cells has been reported to alter the ECM they produce, increasing
collagen and periostin, to promote metastatic growth of pancreatic cells [158]. Alterations
in ECM components activate intracellular signaling pathways, such as the Akt pathway,
in cancer cells to promote invasion, seeding, growth, and survival [159]. Importantly, it
should be noted that the ECM is able to affect the sensitivity/responsiveness of cancer cells
to therapy [160]. In a meta-analysis of five PCa studies (434 samples), genes involved in
focal adhesion signaling were significantly altered in liver metastases [38], indicating that
cell-ECM adhesion/interactions have an important role in cancer metastases. Additionally,
the activation of stellate cells also causes the secretion of a milieu of growth factors and
cytokines (PDGFs, HGF, TGF-β, SDF-1, VEGF, PGF, FGFs, CXCLs) which can also promote
cancer proliferation and development of micro-metastases [161].

Given the responsiveness of the liver to androgens, there is potential that anti-androgen
therapies may contribute to reported liver injury associated with administration. A wor-
rying potential result of this side-effect may be the creation of a microenvironment more
hospitable to metastatic seeding and growth in certain patients.

8. Conclusions

Metastasis to the liver has one of the worst cancer outcomes yet there is relatively
little known about liver metastases, the role of the liver microenvironment, and why
prognosis is so poor. It is important to investigate these aspects of the disease given the
reported increase in cases. Current treatment options, including anti-androgen therapies,
have limited success rates in liver metastasis cases. When comparing the effectiveness of
anti-androgen therapies, patient with liver metastases were significantly less responsive
than patients with only bone metastases [8,31]. In some patients, anti-androgen therapy
(perhaps particularly flutamide and bicalutamide) can induce liver injury [14,137]. In
response, the liver recruits cells to form scar tissue—a similar response to what is observed
in the formation of a pre-metastatic niche. A concern is this side effect may result in the
area becoming more attractive to cancer cell invasion [146]. This may need to become a
research priority to ensure treatment does not result in disease progression to a lethal stage.
The changes seen to the liver microenvironment are poorly characterized; further research
is required to determine why prostate cancer often spreads here and why such poor clinical
outcomes are associated with liver metastasis.
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