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Simple Summary: Cancer is a distinctly difficult disease to treat on account of the diverse cell popu-
lations/subpopulations that comprise a tumour. Such cells harbour varying genetic and epigenetic
states, which contributes to their oncogenic phenotype. Of note to this review is the epigenetic modi-
fication DNA methylation. Aberrant DNA methylation is a well-explored contributor to oncogenic
phenotype. Traditionally, thousands of cells within a tumour have been sequenced together, giving
rise to averaged methylation profiles. With the emergence of single-cell sequencing technologies, the
methylome of individual cells can now be acquired. This technology will have important research
and clinical implications, such as informing our current understanding of cancer biology, discovery
of novel biomarkers, and less invasive tests.

Abstract: Morphological, transcriptomic, and genomic defects are well-explored parameters of cancer
biology. In more recent years, the impact of epigenetic influences, such as DNA methylation, is
becoming more appreciated. Aberrant DNA methylation has been implicated in many types of
cancers, influencing cell type, state, transcriptional regulation, and genomic stability to name a
few. Traditionally, large populations of cells from the tissue of interest are coalesced for analysis,
producing averaged methylome data. Considering the inherent heterogeneity of cancer, analysing
populations of cells as a whole denies the ability to discover novel aberrant methylation patterns,
identify subpopulations, and trace cell lineages. Due to recent advancements in technology, it is now
possible to obtain methylome data from single cells. This has both research and clinical implications,
ranging from the identification of biomarkers to improved diagnostic tools. As with all emerging
technologies, distinct experimental, bioinformatic, and practical challenges present themselves. This
review begins with exploring the potential impact of single-cell sequencing on understanding cancer
biology and how it could eventually benefit a clinical setting. Following this, the techniques and
experimental approaches which made this technology possible are explored. Finally, the present
challenges currently associated with single-cell DNA methylation sequencing are described.

Keywords: DNA methylation; single cell; cancer

1. Introduction

Epigenetics has been described as “the study of changes in gene function that are mi-
totically and/or meiotically heritable and that do not entail a change in DNA sequence” [1].
In essence, the epigenome consists of numerous types of modifications to DNA, which
act to regulate the genome [2]. The impact of epigenetics on the cancer genome has been
referred to as “the most obvious source of dark matter” [3], exhibiting how elusive the field
once was in its contribution to the cancer genome. Epigenetic mechanisms have now been
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recognised as contributors to the acquisition of cancer hallmark capabilities [4]. Perhaps
the most well-explored epigenetic modification, DNA methylation (DNAme), can lead to
oncogenic phenotypes when abnormal changes take place [5]. Through transcriptional
regulation, altering genomic stability and induction of mutational events to name a few,
DNAme heavily influences oncogenic phenotype [6]. Studying such marks and their con-
tribution to oncogenesis is difficult, however, as tumours tend to be highly heterogeneous
entities. Cellular methylomes are influenced by cell types and states, of which there are
many in a single tumour. Fortunately, recent years have seen the introduction of single-cell
sequencing (SCS), a technology that permits the analysis of single-cell methylomes so that
comprehensive analyses of epigenetic heterogeneity are now possible.

This review will first discuss the importance of DNAme in relation to cancer, then
discuss how single-cell DNAme analysis might advance clinical outcomes and further our
understanding of cancer biology. The review will then concentrate on the technology and
experimental methods that made this sequencing possible. The discussion of bioinformatic
methods for analysing this data is followed by a breakdown of the present difficulties in
the realm of this currently developing technology.

1.1. DNA Methylation

Epigenetic modifications are described as chemical modifications to the DNA that
cause a heritable phenotype without changing the primary DNA sequence [7]. One of the
main epigenetic alterations is DNA methylation (DNAme), a stable yet reversible mark
entailing the addition of a methyl group, typically at the fifth position of a cytosine residue
(5-methylcytosine, 5mC) adjacent to a guanine residue (CpG site) [8]. A total of 28.7 million
CpG sites are present in the human genome; these CpGs are often found concentrated
together, forming CpG islands (CGIs), which are regions of the genome with a higher
frequency of CpGs than expected [9]. Usually, these CGIs are present in promoter regions
of genes, and the presence or lack of DNA methylation influences the transcriptional activity
of the associated gene. In most cases, the presence of DNA methylation (DNAme) at CGIs
represses transcription, whereas DNAme absence is observed in transcriptionally active
genes [10]. These regulatory properties of DNAme are crucial in numerous fundamental
biological processes throughout the lifespan, including cell-cycle control, cell fate decisions,
X-chromosome inactivation, genomic imprinting, embryonic development, chromosomal
stability, and transposable element silencing [11–14]. Considering the above, it is not
surprising that aberrant DNAme patterns are implicated in many diseases, including
Alzheimer’s [15], cardiovascular diseases [16], and, of interest to this review, all types
of cancer [17]. Furthermore, aberrations in enzymes associated with DNAme, such as
ten-eleven translocation proteins, have been identified as cancer hallmarks [18], as well as
intermediate states of 5mC, such as 5-hydroxymethylcytosine (5hmC) [19,20].

1.2. Single-Cell DNA Methylation

Traditionally, due to technical limitations, large numbers of cells have been combined
and analysed as one to obtain insight into DNAme patterns. For conciseness, this practice
will be referred to as “bulk sequencing” for the remainder of the review. When combining
thousands of cells for analysis, an averaged methylome profile of all the cells will be
produced. While this technique has been excellent in advancing our knowledge of the
role DNAme plays in disease, there are some areas of research that bulk sequencing is not
capable of reaching. For example, small subpopulations with distinct methylomes within
tumours are present with greater metastatic capabilities; however, their methylomes will
be masked by the many other cells present in the tumour [21].

Recent years have seen the emergence of single-cell technologies, allowing for the
analysis of single cells’ epigenomes (Figure 1). In essence, this means cells with differing
methylomes reflecting different cell types/states in a tumour can now be identified and
appreciated as differing components of the tumour, rather than grouped together as one.
This allows for analyses, such as characterisation of rare subpopulations and cell lineage
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tracing, which provide insight into the epigenetic regulation of heterogeneous populations
of cells.
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Figure 1. Single-cell approaches to identify heterogeneity in tumour population. Tumour-initiating
stem cells develop in tissue of origin. These undergo branched tumour evolution, acquiring random
mutations and epigenomic alterations. The tumour microenvironment influences heterogeneity via
physical and chemical signals. A combinatorial effect of these concepts induces a highly heteroge-
neous tumour, as well as circulating tumour cells (CTCs) disseminating from said tumour. Single-cell
methylome sequencing of tumours can provide insight into subpopulations/differing cell states by
clustering cells: (a) clustering via t-SNE, (b) clustering via UMAP, and (c) cell lineages/differentially
methylated regions via heatmaps. Created with https://biorender.com/ (accessed on 25 July 2022).

2. Single-Cell Methylome Profiling in Cancer

Collectively, the genome, epigenome, and transcriptome of cancer cells are grossly
dysregulated. The exploitation of pathways required in normal biological processes results
in the initiation, progression, dissemination, and metastasis of cancer. As a result of
inactive tumour suppressor genes or overactive oncogenes, processes such as apoptosis,
cell proliferation, and DNA repair mechanisms are interrupted [22], while others, such
as angiogenesis, replicative immortality, and the ability to evade growth suppression, are
influenced [23]. Epigenetic modifications have been implicated in cancer predisposition,
early tumorigenesis events, metastasis, and therapeutic resistance [24].

A recurrent challenge faced while studying most types of cancer is its heterogenic
nature. Heterogeneity refers to the state of being diverse. In the context of cancer, this
can reflect the diversity between individuals (inter-individual heterogeneity), between
primary tumours and their metastases (inter-tumoural), and between cells within the
same tumour (intra-tumoural). Tumours are comprised of numerous types of cells, includ-
ing the malignant and healthy cells from the tissue of origin, fibroblasts, immune cells,
nerves, and subpopulations of tumour cells [25]. Single-cell sequencing provides a tool for
understanding the complex dynamics and heterogeneity that encompasses each tumour.

https://biorender.com/
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2.1. Single-Cell DNA Methylation in Cancer Initiation and Progression

The diversification of cells begins with cancer stem cells from the tissue of origin.
These cells have self-renewal capabilities and multi-lineage differentiation, which encour-
age tumorigenesis and heterogeneity [26]. Cancer stem cells are known to drive initiation
and progression, as well as encourage disease relapse [27]. Famously, cancer stem cells
have been difficult to isolate due to their similarities to normal tissue-of-origin stem cells
and their scarcity. The emergence of SCS means it is now possible to isolate cancer stem
cells and study them to a higher resolution, without noise from other cells’ epigenomes
influencing the data. One study was able to identify a small number of tumour-initiating
cells in human glioma through the use of SCS [28], albeit with single-cell RNA sequencing;
however, the same principles could be achieved with single-cell methylome techniques.
This group was able to evidence that glioblastoma development occurs along with con-
served neurodevelopmental gene processes, as well as potential sources of resistance to
some immunotherapies in these cancer stem cells.

Tumour cells heavily influence their surrounding environment, inducing chemical,
molecular and physical changes. The hallmark features of the tumour microenvironment
include blood vessels, immune cells, stromal cells, and extracellular matrix [29]. Following
Darwinian processes, tumour cells are continuously interacting and being influenced by
the tumour microenvironment, driving branched tumour evolution of cells with selectively
advantageous traits to survive [30]. Branched tumour evolution describes when distinct
subclones within the tumour evolve in parallel, leading to a considerable amount of diver-
sity between subclones [31]. Phenotypically, this evolution often contributes to evading
the immune system, angiogenesis, and avoiding cellular growth-suppressing processes,
encouraging tumour progression [32]. In consequence, a highly heterogeneous tumour is
formed. Therefore, when combining a large population of tumour cells for analysis, the
true individual cellular methylomes are averaged by neighbouring cells. As such, it is
expected that cells within a tumour will exhibit great variation, encouraging the need for
higher resolution techniques, such as single cell. One group utilised single-cell DNA methy-
lome data to identify the lineage tree of subpopulations in human chronic lymphocytic
leukaemia [33]. The lineage tree was created based on the epigenetic aberrations of the
cells, showing different chronic lymphocytic leukaemia lineages that were discriminatively
influenced and expelled from lymph nodes by ibrutinib, one of the treatments for chronic
lymphocytic leukaemia.

The differentiation of cancer stem cells, followed by interactions with the tumour
microenvironment driving branched tumour evolution are key events that produce the
heterogeneity observed within and between tumours. The use of SCS technologies will
not only augment our current understanding of these events, but possibly introduce new
pathways for investigation as to how tumours initiate and progress.

2.2. Single-Cell DNA Methylation in Metastasis

Cancer dissemination and subsequent metastasis to new niches around the body is one
of the leading causes of death in cancer patients [34]. Circulating tumour cells (CTCs) are
highly tumorigenic cells that can lead to metastasis and, due to the low number of CTCs in
patient blood, the epigenetic landscape of CTCs remains less characterised [35]. Previously,
the low DNA content meant bulk sequencing was not an option for the analysis of CTCs.
Using SCS to analyse CTCs provides opportunity to investigate the epigenetic processes
that may drive metastatic dissemination of cancer cells and subsequent invasions at new
locations around the body. SCS was used to show that CTCs from breast cancer patients
showed a focal hypomethylation at a number of stem cell gene promoters, increasing the
expression of pluripotency networks [36].

As well as studying CTCs, being able to isolate and analyse subclonal populations
which have evolved from the primary to metastatic tumour sites may give insight into
the pathways which are exploited for this process. One study used SCS on two secondary
tumours (metastatic breast and metastatic castration-resistant prostate cancer), examining
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methylation patterns on epithelial–mesenchymal transition (EMT)-associated genes to
predict metastatic potential [37]. This identified differentially methylated patterns between
the two entities, showing that the miR200 feedback loops, involved in inducing epithelial
differentiation in the EMT process, were differentially regulated. Another group recon-
structed the lineage within a colorectal cancer patient between the primary tumour and
its associated metastases and found global DNAme was stable during metastasis, with no
DNAme alterations in EMT-related genes prior to or post metastasis [38]. This group also
showed a sub-lineage within the primary tumour was detected in the lymph node and
liver metastases of the patient, suggesting these metastases had a common origin.

2.3. Single-Cell DNA Methylation in Cancer Therapy

The role DNAme plays in relation to cancer initiation and progression has made
DNAme and its regulators a well-explored target for cancer therapy [39]. Furthermore,
studies have been able to predict responses to therapy through the use of DNAme biomark-
ers. For instance, glioblastoma patients with methylated MGMT promoters responded
better to alkylating drugs than individuals without methylation [19]. Different subpop-
ulations may have these methylation alterations at these important loci as a result of the
branched tumour evolution outlined earlier, and SCS has the ability to uncover such pop-
ulations. Furthermore, aberrant DNAme accumulation in cancer stem cells was shown
to affect self-renewal capabilities, differentiation, multi-drug resistance, and metastasis
processes in cancer stem cells [40]. As previously mentioned, cancer stem cells make up a
minor population of the tumour, with far greater capabilities of responding to radio- and
chemotherapies [26]. SCS could, therefore, enable the detection of cancer stem cells, as well
as the discovery of novel biomarkers for therapeutically resistant cells. SCS has been used
in a number of papers to look into issues that are clinically significant. For instance, it was
utilised to compare the tumour microenvironment before and after immunotherapy in basal
cell carcinoma [41]. This provided insight into the regulatory networks controlling cellular
response to therapy, in particular, some overlapping regulation of therapy-responsive T
cells. Moreover, different epigenomic subpopulations have been shown to vary in their
response to targeted therapy, with certain subpopulations showing greater resistance to
imatinib [42]. Understanding the molecular heterogeneity of the individual’s tumour
could also be used to inform oncologists on which currently available treatments could be
combined for the most effective treatment.

In a clinical context, it has also been proposed that SCS could provide noninvasive tests
by taking liquid biopsies containing CTCs at different time points throughout a patient’s
therapy [43]. Multiple studies have found that CTCs had over 50% of the same mutations
as the primary tumour in lung cancer [44] and colon cancer [45]. Therefore, they could be
extracted from blood and analysed to track the evolution of the primary tumour and adjust
treatment accordingly. Another study found there was a substantial amount of methylome
heterogeneity amongst distinct CTCs from the same patients [37]. This could lead to
personalised signatures in these CTCs for patient stratification and treatment selection.
Circulating tumour DNA (ctDNA) is tumour-derived DNA that has become free in the
blood [46]. While ctDNA has also been used to extract epigenetic signatures from liquid
biopsies for similar purposes to CTCs, CTCs represent still intact tumour cells, which
are likely to give more comprehensive information regarding the tumour it disseminated
from [47].

Single-cell techniques are most commonly used for RNA analyses to profile gene
expression rather than DNAme analyses. A typical cell contains approximately 10–30 pg of
RNA, which is then reverse transcribed into cDNA and amplified [48]. Conversely, the start-
ing material for single-cell DNAme analyses starting material is only the double-stranded
DNA (~6 pg maximum) [49]. The native DNA then requires manipulation, such as bisul-
phite conversion or enzymatic treatment prior to amplification; therefore, there is a high
risk of DNA loss [50]. As such, the disparity between the number of publications of the two
techniques can likely be attributed to the significantly lower starting material of DNAme
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and the library preparation techniques required and technical challenges associated with
single-cell DNAme experiments (Table 1). Nonetheless, the epigenetic influence on onco-
genic phenotypes and cancers’ inherent heterogeneity is a well-appreciated phenomenon,
which warrants further investigation in the single-cell context. Moreover, DNAme is a
stable epigenetic mark that is likely to represent a sustained signature in contrast to gene
expression changes, which are more variable and represent dynamic changes in the cell.
With the above points considered, single-cell DNAme sequencing is an enticing direction
for the field, despite the challenges currently being faced.

Table 1. Examples of single-cell methylome sequencing experiments in cancer.

Cancer Type Genome-Wide or
Gene-Specific Findings Year

Published References

HL60 (acute promyelocytic
leukemia cell line) and K562

(erythroleukemia-derived
cell line)

Genome-wide First implementation of single-cell WGBS 2015 [51]

Hepatocellular carcinoma Genome-wide Identification of subpopulations within
tumour 2016 [52]

Metastatic breast
cancer (mBC) and

metastatic
castration-resistant prostate

cancer (mCRPC)

CDH1 and miR200
promoters.

CTCs from same patient displayed
heterogeneous methylation patterns.

Different methylation patterns at these
promoters in mCRPC vs. mBC CTCs

suggesting differentially regulated
miR200 loops in these two tumour

entities.

2017 [37]

Colorectal cancer Genome-wide
Sub-lineages identified in patients found

metastases at multiple sites had a
common origin

2018 [38]

Chronic Lymphocytic
Leukaemia Genome-wide Subpopulations preferentially expelled

from lymph nodes after treatment 2019 [33]

Lung Adenocarcinoma Genome-wide
Global methylation heterogeneity

amongst tumours associated with the
progression of LAC

2021 [53]

Lung Cancer Genome-wide Unique CTC DNA methylation signature
distinguished it from the primary tumour 2021 [54]

6 Cancer Types: Prostate,
Colon, Small cell lung, Lung
Adenocarcinoma, Breast, and

Gastric

Genome-wide
Potential to identify tumours of origin for
CTC based on methylome profiles. Report

diverse evolutionary histories of CTCs
2021 [47]

KG1a Acute Myeloid
Leukaemia

Transposable elements:
SINE Alu

TEs as a surrogate for predicting
single-cell global DNA methylation.

Method has greater alignment and costs
3-fold less than scBS-seq

2022 [55]

3. Single-Cell DNA Methylation Sequencing Techniques

The recent ability to study populations at the single-cell level has come from technology
enabling the isolation of single cells from a population, as well as improved amplification
steps and growing bioinformatics tools.

3.1. Isolation of Single Cells

The first step in single-cell analyses is the isolation of the single cells from their popula-
tion. There are a number of methods that rely on either the physical properties (non-affinity
methods) of cells or cellular characteristics (affinity methods) [56]. Currently, the most
frequently used technique for single-cell DNAme analyses is fluorescence-activated cell
sorting (FACS). As the name implies, cells are labelled with fluorescent probes that con-
jugate to surface markers on target cells, which are subsequently run through cytometry.
Here, they are exposed to a laser and given a negative or positive charge based on fluo-
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rescence and separated into their respective tubes [56]. Typically, in single-cell DNAme
analysis, the cancer cells would undergo live—dead staining, as it will be a heterogeneous
population of cells, with no single cell type being targeted [57]. However, other probes
for cell-specific markers are available. FACS is able to isolate cells based on both surface
markers, as well as physical aspects, such as size and granularity. All this being said, FACS
does present with limitations. FACS requires a starting cell suspension containing roughly
10,000 cells, meaning samples with low cell counts will have to be isolated using a different
method or cultured until the appropriate number of cells are present. Further, initially
viable cells can be easily damaged during the cytometry process, rendering them no longer
viable. A similar method to FACS is magnetic-activated cell sorting (MACS), which follows
similar principles to FACS but uses magnets attached to the antibodies for the sorting of
cells. While MACS can be four to six times faster than FACS [58], it also tends to be harsher
on cells due to the magnetic nature of the process. This can increase cell lysis during the
isolation process, posing an issue if the initial starting number of cells was already low.
Both MACS and FACS have a high throughput of >1000 cells per run, making them efficient
techniques [56]. Furthermore, fluorescence-activated nuclei sorting was utilised in the
first described combinatorial indexing strategy applied to single-cell DNAme analyses,
sci-MET [59]. This method involves cells being sorted into a 96- or 384-well plate, each
well containing a unique indexed adapter. Following this, cells are pooled, redistributed,
and introduced to a second index such that the likelihood of a cell having the same unique
combination of indexes is low. While this method admittedly resulted in lower per-cell
coverage percentages, coverage was sufficient for cell-type discrimination and allowed for
higher throughput than other methods.

Another method for isolating single cells from a heterogeneous population is laser
capture microdissection (LCM). This method involves directing a laser at the sample under
an inverted microscope to manually isolate single cells. This method would be preferable to
FACS/MACS in the instance of low starting cell counts, such as solid tumour samples/fixed
in formalin and embedded in paraffin (FFPE) samples. LCM does not destroy neighbouring
cells/tissues [60], preserving neighbouring cells and leftover tissue, whereas FACS/MACS
requires dissociation of the tissue. In a study that profiled the DNA methylome of lung
cancer CTCs, LCM allowed for highly accurate isolation of the CTCs from the likes of
immune cells, without compromising cell integrity [54]. There are two major limitations to
LCM; this includes needing a highly skilled technician who is capable of identifying cells
through visual inspections, as well as possible damage to the DNA as a result of the UV
laser. Similar to LCM is a technique called micromanipulation, which also involves using
an inverted microscope to manually isolate single cells. Typically, this technique uses a tool
such as a micropipette to isolate the cells. This technique is preferred to LCM when isolating
live cultures, rather than fixed tissue. However, the throughput of micromanipulation is far
lower than that of LCM. Albeit both LCM and micromanipulation have lower throughputs
than the aforementioned FACS and MACS methods (<100 cells per run) [61].

Finally, the most recent advancement in single-cell isolation is the use of microfluidics.
Microfluidic chips contain hundreds of channels ranging from 10 to 100 µm to fit single
cells. A number of microfluidic principles can then be used, such as hydrodynamic cell
traps and oil droplets in water isolation [61]. Of the currently available techniques, the
latter is the most frequently used, as the oil encapsulation of the cell reduces the chance of
contamination, while also having the highest throughput (1000–10,000 cells per run) of the
currently available techniques. Microfluidic cell isolation techniques have not largely been
used in single-cell DNA methylation (scDNAme) analyses, with only a few to date [62,63],
and none have yet been described in the cancer context. Although starting volume of cells
required is small, with fast processing and high sensitivity making it a great candidate
for isolating cells in cancer contexts [61], a reliable protocol for DNAme analysis has not
been well established. In future, this method may become favourable for the analysis of
single-cell methylomes once the technology is available and reliable; however, for now, it is
not at a stage where this is possible.
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Essentially, FACS/MACS both have higher throughput than LCM and micromanipu-
lation; however, the latter techniques may be more fitting if one was investigating the likes
of fixed tumour tissue. Considerations to be made for the choice of single-cell isolation
methods and experimental techniques have been depicted in Figure 2.
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Of note, a future direction for single-cell epigenomics which may render the cell
isolation step unnecessary are spatial analyses. This has been performed in spatial tran-
scriptomics, where cell types are assigned by gene expression in their exact locations on
the histological section [64]. This in situ sequencing preserves the spatial context of cells
within the tumour microenvironment [65]. While SCS is capable of identifying different
cell types and states present in the tumour, it requires the dissociation of tissues and,
therefore, spatial context is lost. No methods for spatial methylome analyses have yet been
described; however, one spatial epigenomic technique was recently published, Epigenomic
MERFISH [66]. This technique successfully profiled histone modifications marking active
and silent promoters, as well as putative enhancers in single cells, while preserving their
spatial context.

3.2. Experimental Approaches

Once single cells have been isolated, several DNAme analyses can be employed de-
pendent on the research goals (Table 2). Initial experiments employed the use of bisulphite
conversion, the gold-standard technique in bulk analyses, allowing for single-base reso-
lution. This technique involves treating the DNA with sodium bisulphite, which, in turn,
converts unmethylated cytosines into uracils and, subsequent to PCR, an unmethylated cy-
tosine would present as a thymine. Alternately, methylated cytosines will not be converted
by sodium bisulphite treatment; therefore, they still present as cytosines post-PCR [67].
This technique involves denaturing the DNA in a high concentration of sodium bisulphite
salt, low pH, and high temperature [68]. These conditions often lead to high levels of
DNA degradation; hence, it is often referred to as a harsh process. The first technique
used for single-cell DNAme sequencing used a bisulphite conversion-based approach, this
being single-cell reduced representation bisulphite sequencing (scRRBS) in 2013 [69]. RRBS
involves the use of both bisulphite conversion and a restriction enzyme (MspI) for digestion
and DNA size selection to obtain DNAme information from subsets of the genome where
most DNAme occurs. This method was adapted for single-cell sequencing by combining
all five steps of RRBS (cell lysis, MspI digestion, end-repair/dA-tailing adapter ligation,
and bisulphite conversion) into a single tube reaction [70]. This meant there was very little
chance for DNA loss other than from bisulphite conversion. Improvements to the scRRBS
technique have resulted in a number of RRBS-based single-cell methods. Quantitative RRBS
(Q-RRBS) utilises unique molecular identifiers (UMIs) to eliminate duplication-induced
artefacts, which tends to be more severe with smaller inputs, such as single cell [71].
Microfluidic diffusion-based RRBS (MID-RRBS), to name another, involves the use of a
microfluidic device for diffusion-based reagent exchange, allowing for conversion with the
least amount of DNA loss [62]. RRBS-based methods offer a lower sequencing cost than
whole genome approaches, since it concentrates on only particular portions of the genome.
Cost is particularly important in the single-cell context, as each cell’s genome requires
sequencing, making it relatively expensive. The scRRBS method is limited in that it only
measures 10–15% of CpG sites in the genome, as well as having bias sequence selection, as
the restriction enzymes only cut at specific sites. Reflecting this, CpGs without the enzyme
restriction site and non-CpG are missed when using this technique. Additionally, this
method takes approximately 3 weeks to complete and requires high molecular biology
skills [70].

Table 2. Single-cell methylome sequencing techniques. Adapted from Kashima et al. (2020) [72].

Method Key Features Year of First
Study References

Single-cell reduced representation
bisulphite sequencing (scRRBS)

Bias in regions with high CpG density, limited
coverage in regions with low CpG density 2013 [69]
Cost-effective
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Table 2. Cont.

Method Key Features Year of First
Study References

Single-cell bisulphite sequencing
(scBS-seq)

Single base resolution
High cost 2014 [73]
DNA degradation.

Quantitative RRBS (Q-RRBS) Incorporated UMIs for PCR-duplicate removal 2015 [71]

Single-cell AbaSI sequencing
(scAba-seq)

Low false-positive rate
2016 [74]Distinguishes between 5hmC and 5mC

No chemical degradation
Single nucleus methylcytosine

sequencing (snmC-seq2)
Reaction occurs within the nucleus
Single-strand library preparation 2018 [75]

Single-cell combinatorial indexing for
methylation analysis (sci-MET)

Lower coverage but higher throughput relative to
other methods 2018 [59]

Microfluidic diffusion based RRBS
(MID-RRBS)

Diffusion-based reagent exchange allows for minimal
loss of DNA.
Microfluidic device allows for multiple cells to be
done in parallel.

2018 [62]

Single-cell methylation-sensitive
restriction enzyme sequencing

(scMSRE)

Analysis limited to methylation at restriction sites
No chemical degradation
scCGI

2021 [76]

Single-cell transposable element
sequencing (scTEM-seq)

Uses transposable elements as surrogates to predict
single-cell global methylation 2022 [55]

The second technique, introduced in 2014, was also bisulphite conversion-based,
single-cell genome-wide bisulphite sequencing (scBS-seq) [73]. This technique covers a
greater proportion of CpGs in the genome compared to scRRBS. However, a different set of
CpGs is covered in each cell, making comparison of epigenetic states difficult. Although
post-bisulphite adaptor tagging (PBAT), which performs the bisulphite conversion before
library amplification rather than after, has been implemented in these methods to retain as
much DNA as possible, ineffective template recovery in subsequent library preparation is
still common. While traditional bisulphite sequencing provides coverage of >90% of the
28.7 million CpGs in the genome, the scBS-seq method using PBAT yields only several
million, ranging from 5 to 50% [57]. This renders the data sparse and relatively uneven
across the genome. As a result of the need to sequence the entire genome, scBS-seq is also
more expensive than other approaches. As an extension of these bisulphite-based methods,
several adapted methods have emerged, the previously mentioned sci-MET being one, in
which bisulphite-based methods were utilised in unison with combinatorial indexing to
allow for higher throughput [59]. Single-nucleotide methylcytosine sequencing (snmC-
seq) is another, in which the reaction is carried out within the nucleus rather than within
the cell lysate, and involves the multiplexing of reactions leading to large-scale cell-type
classification [77]. Moreover, a single-cell transposable element sequencing technique has
been recently introduced, scTEM-seq, which utilises transposable elements (SINE-Alu) as
surrogates for predicting global methylation of single cells [55]. This method drastically
reduces the sequencing demand for single-cell DNA methylation analysis and allows
thousands of scTEM-seq libraries to be pooled for sequencing.

Single-cell techniques have also emerged that do not require bisulphite conversion
of the DNA but, rather, rely on restriction enzymes for the identification of methylated
CpGs. Single-cell methylation-sensitive restriction enzyme sequencing (scMSRE) [76] and
single-cell AbaSI sequencing (scAba-seq) [74] are examples of these. These methods cost
less than conversion-based methods and are more efficient. scAba-seq also has the ability
to distinguish 5hmC from 5mC residues, a favourable trait, as 5hmC has been shown in
several studies to be implicated in oncogenic phenotypes [42–44]. However, these tech-
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niques have far lower coverage than scRRBS and scBS-seq, as they are confined to only
cleaving at methylation present at restriction sites and would, therefore, be more appropri-
ate in targeted/site-specific studies. Another non-bisulphite conversion-based technique
often used in bulk DNAme analyses is methylated DNA immunoprecipitation sequencing
(MeDIP-seq) [78]. Monoclonal antibodies are raised against the 5mC modification, fol-
lowed by enrichment of methylated fragments during immunoprecipitation, which can
subsequently be sequenced. The lowest minimum required input thus far for MeDIP-seq
is 0.5 ng (~50–100 cells), through the use of a microfluidic-based MeDIP protocol [79].
A “carrier strategy” has also been implemented, in which a carrier, such as chemically
modified peptides, increases the immunoprecipitation efficacy, allowing for ~50 cells to be
sequenced [80]. To date, these are the lowest input MeDIP-seq protocols have achieved;
as such, this technique has not yet been utilised in a single-cell context. Although, as
methods emerge to continue improving immunoprecipitation efficacy, a single-cell protocol
may develop.

The above methods are common for single-cell DNAme analyses; however, it is
becoming increasingly popular to use multi-omic single-cell methods. These methods are
capable of integrating multiple different omics, including proteomes, genomes, epigenomes,
and transcriptomes, from the same cell to give comprehensive insights into how the omics
are all inter-related [81]. This allows for parallel profiling of multiple layers in single cells
to identify causal relationships between epigenome regulation and gene expression. This
is a favourable technique, as lack of methylation does not always infer gene expression
and vice versa. These techniques involve the separation of genomic DNA (gDNA) from
mRNA, often using Smart-seq2 to obtain transcriptome information, followed by single-cell
bisulphite methods (scM&T-seq [82]), scRRBS [83], and smartRRBS [84]) for methylome
information. Although this technique is beneficial for inferring a correlation between gene
promoters and expression, DNAme contributes to oncogenic phenotypes in more ways
than just activation or repression of genes [85]. This includes regulating noncoding RNAs,
as well as providing biomarkers for clinical purposes. For example, the hypermethylation
of the Vimentin promoter in colorectal cancer cells compared to adjacent healthy colon cells
did not result in a change in expression; however, the presence of this methylation was
heavily associated with the stage of the tumour and the likelihood of it metastasising [86].
Multi-omic methods extend further than just the methylome and transcriptome. Single-
cell nucleosome occupancy and methylation sequencing (scNOME-seq) [87], for example,
allows for the analysis of both the methylome and chromatin accessibility of a single cell. In
fact, single-cell nucleosome, methylation, and transcription sequencing (scNMT-seq) [88]
has been developed for the parallel profiling of chromatin accessibility, DNA methylation,
and transcriptome of a single cell. Such multi-omic methods allow for the exploration of
inter-relations between the epigenetic layers of a cell.

Multi-omic approaches also certainly come with their own limitations. The same
limitations from the mono-omics apply (explored earlier); however, the genomic DNA now
needs to be separated from the RNA, as well as perform the other omics methods, such as
scRNA sequencing. This can make the process far more time consuming than it already is
and requires an even greater level of technical expertise.

3.3. Third-Generation Sequencing Techniques for Single-Cell DNA Methylation

The era of third-generation sequencing is now fast approaching. Whereas second-
generation sequencing consists of amplification and subsequent sequencing of DNA, third-
generation sequences native DNA strands [89]. Two well-known techniques include
Nanopore and PacBio HiFi sequencing, with methylation inference-based ionic current
variations or fluorescence events, respectively [90,91].

PacBio observes, in real time, a DNA polymerase synthesising a DNA strand, incorpo-
rating fluorescently labelled nucleotides [92]. The colour of the pulses indicates the identity
of the base, while the kinetics (how long it takes the polymerase to incorporate the base and
how long it takes to go between adjacent bases) is affected by modifications of the DNA,
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such as methylation and the context of the base [90]. Flusberg et al. showed the time it takes
the polymerase to add the corresponding base is increased when the native base is methy-
lated [93]. Methylation of cytosines has a slightly more subtle kinetic signature compared
to the likes of adenine methylation (observed in plants) and, as such, a method termed Ag-
gregate on Intervals method was suggested by Suzuki et al., which combines neighbouring
CpGs kinetic information to infer methylation status of areas such as repetitive regions,
promoters, and CpG islands [94]. However, more recently, PacBio has introduced circular
consensus HiFi sequencing, in which the same DNA strand is sequenced multiple times in
series [95]. This means, while the kinetic change for one methylated cytosine may be subtle,
multiple passes over the methylated cytosine will result in an aggregation of the signals
giving a clearer kinetic signature [92]. Essentially, reading the sequence multiple times over
improves sequence accuracy and observing kinetic signatures multiple times allows for
more accurate methylation calls. Additionally, Tse et al. created a neural network model in
which, for every consecutive CG in a read, a feature vector is produced with the kinetics
(pulse widths and inter-pulse durations) in a 16kbp window around that CpG site [96].
This vector is fed into a neural network and produces an output with the probability of
methylation. This study was able to show that the overall methylation levels deduced from
HiFi sequencing were greatly correlated with those by bisulphjite sequencing (r = 0.99;
p < 0.0001) [96].

Oxford nanopore technology (ONT) is the other commonly used third-generation
sequencing platform. Nanopore entails the passing of native DNA through a pore and
measuring the ionic fluctuations. Different ionic fluctuations correspond to different bases,
and any alterations present on the DNA, such as DNAme, will also alter the signature [97].
A number of bioinformatic tools have been developed to infer methylation, the most
frequented being DeepSignal [98], signalAlign [99], Nanopolish [100], and DeepMod [101].
ONT have already been utilised in the cancer context, with one group identifying marked
demethylation and tumour-specific insertions of the transposable element LINE-1 between
paired tumour and non-tumour liver tissue, exhibiting the ability of ONT to provide insight
to transposable element mobilisation and the cancer epigenome [102]. The initially high
error rate of ONT rose questions around the accuracy of the libraries, as many loci would
be missing the necessary signals for methylation analysis. However, in the most recent
release, the sequencing accuracy is >99.99% (Q50) at 20× coverage, a comparable score to
next-generation sequencing (NGS), which is the current standard [103].

The ability to sequence native single DNA strands without the need for chemical
conversion or restriction enzymes (indirect methods of measurement) would reduce nu-
merous challenges currently being faced in scDNAme analyses. PCR amplification bias,
particularly in GC-rich contexts, which are often the areas of interest, would no longer be a
point of issue.

In theory, PacBio and ONT technologies appear to be enticing new technologies
to implement. However, specific PacBio/Nanopore hardware is needed to perform such
sequencing, which, as with all new technologies in their infancy, is relatively expensive [104].
This means the accessibility of these technologies is restricted. In addition to this, single
cells have ~6 pg of DNA as input, which is a fraction of the 400 ng minimum DNA input for
PacBio and ONT [105,106]. The DNA cannot be amplified prior to long-read sequencing,
as this would remove the methylation marks. As such, single-cell DNAme analyses are not
yet possible. Despite these limitations, it is anticipated that the technologies will improve in
accuracy and input needs as they advance, making them more inexpensive and eventually
applicable in the setting of single cells.

4. Single-Cell DNA Methylation Bioinformatic Analyses

The process of single-cell DNAme bioinformatic analysis involves preprocessing the
raw data, performing imputation and normalisation, followed by downstream analyses
to identify the likes of differentially methylated regions (DMRs), clusters, and epigenetic
lineage trees [107]. While there are often overlaps in the bioinformatic analysis process
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between single-cell and bulk data, unique challenges arise when analysing single-cell data.
The computational overheads of single-cell methylome data are far greater than that of bulk
methylome sequencing, with far noisier and more variable data [108]. While traditional
bulk DNAme sequencing has a relatively standardised bioinformatic pipeline, single-cell
DNAme does not. This affects reproducibility if labs are using custom scripts to preprocess
their data. Below will explore each step typically taken in the bioinformatic analysis of
scDNAme data, as well as currently available tools which have been designed specifically
for scDNAme data (Table 3).

Table 3. Currently available bioinformatic analysis pipelines for single-cell DNA
methylation sequencing.

Analysis Category Name of Pipeline and
Year Published Environment Features

Preprocessing MethylPy (2015)
[109] Python

Processes raw reads through to methylation state.
Combines data from adjacent cytosine for dealing

with low coverage data

Imputation MELISA (2019)
[110] R

Uses information from neighbouring CpGs and
from neighbouring cells with similar CpG patterns
to predict missing CpG methylation states. Also

uses Bayesian clustering to identify subsets of cells
based on epigenetic state

Imputation Epiclomal (2020) [111] R and Python Simultaneously clusters sparse single-cell DNAme
data and imputes missing values

Preprocessing MethylStar (2020) [112] Python

Contains a “quick run” option that streamlines all
preprocessing steps, including trimming,

alignment, removal of duplicates, and methylation
calling

Overall Analysis SINBAD (2021) [113] R
Contains 5 modules consisting of pre-processing,
mapping, methylation, dimensionality, and gene

signature profiling

Downstream Analyses EpiScanpy (2021) [114] R A scRNA-seq workflow adapted for sc-ATAC and
sc-DNAme analyses

Preprocessing scMET (2021) [115] R
Hierarchical Bayesian model designed to

overcome data sparsity. Also performs differential
methylation and variability analyses

Downstream Analyses scMelody (2022) [116] R and Python
Consensus-based clustering model that takes into

account distance relationships between cells to
improve the identification of subpopulations

Downstream Analyses scMethBank (2022) [117] Online

Provides curated metadata of 8000+ samples of
different cell types and states. Provides online

tools for simple and practical downstream
analyses such as lollipop plots, DMR annotation

and enrichment analysis

4.1. Preprocessing

The purpose of preprocessing is to transform raw reads into non-bias data capable of
producing biologically relevant findings [118]. The preprocessing of single-cell DNAme
data has many parallels with bulk DNAme data; however, it presents distinct challenges
inherent to the nature of single-cell sequencing. Preprocessing begins with demultiplexing
the raw reads to distinguish the individual cells, as single-cell experiments usually pool
barcoded single cells together for high-throughput sequencing [50].
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4.1.1. Trimming

Following this, indexed reads undergo adapter and quality trimming using software
such as Trimmomatic [119] or Trim Galore! [120]. Depending on the technique that was
used, different trimming will be performed. For scBS-seq, a PBAT protocol is implemented
as it allows for a very small amount of starting DNA. However, a heavy 5′ bias has been
identified, with biased reads exactly proportionate to the length of the oligo used [121].
As such, in scDNAme libraries, it has been suggested that, as well as typical adapter and
quality trimming, the first N (oligo length) bases at the 5′ end of a read should also be
trimmed [121]. In paired-end libraries, however, such trimming at the 5′ end leads to what
is known as dovetailing, where the ends of the paired-end libraries will extend past the
other. Previously, such reads were considered discordant. However, in light of the new
scDNAme-seq challenges, Bismark implemented a new function: dovetail, allowing for
dovetail reads to be considered viable [122].

For scRRBS, Trim Galore! has an RRBS function as used in normal RRBS analysis.
This function removes 2 bp from the 3′ end of each read to remove the “filled in” cytosine
position near the MspI digestion site [120]. As of the time this is being written, there are
no extra precautions that have been identified as needing rectifying through bioinformatic
analysis as a result of scRRBS.

Once trimming is complete, FastQC can be used to determine whether any adapter
contamination or low-quality sequences are still present. If libraries are still of poor quality,
they may need to be excluded in further analysis. The second source of possible contam-
ination which may interfere with alignment rates is species contamination. Therefore,
post-trimming, a FastQ Screen should be performed to ensure no cross-contamination.
A FastQ Screen takes the libraries and aligns them against multiple genomes to ensure
little to no alignment against other species’ genomes, which may otherwise indicate con-
tamination [123]. Recommended species’ genomes for this approach may include mouse,
rat, E. coli, PhiX, and Lambda, plus any other species that may have the potential for
cross-contamination from the lab in which the libraries were prepared [123]. Once such
screening processes have been completed, if low alignment rates are still observed, then
adapter/species contamination can be confidently ruled out as possible contributors to the
low alignment.

4.1.2. Genome Alignment

Once cells pass the quality check from FastQC and FastQ Screen, libraries are then
aligned to a reference genome to indicate genomic locations of CpG sites, typically using
Bismark [122]. In both single-cell and bulk data, the bisulphite sequence reads tend to
be AT-rich as a result of the C to T conversions. Inevitably, reads appear more similar
in sequence and can be mapped to similar genomic locations, despite having come from
different areas. There are multiple aligners available that aim to resolve this problem.
However, the genomic coverage of single-cell data is far more sparse genomic coverage
than that of bulk data, making the alignment step even more difficult [107]. The optimal
method of alignment for single-cell libraries is still up for discussion and varies largely
between studies. Depending on the library preparation used (i.e., PBAT, RRBS, and MSRE),
a number of issues can arise. In the case of single-cell bisulphite conversion-based methods,
a PBAT paired-end preparation protocol is used. Despite this, the libraries should be treated
as single-end nondirectional libraries during genome alignment [57]. This is because the
multiple rounds of preamplification lead to hybrid fragments, which cannot be aligned
as valid paired-end alignments, as well as original top, complementary to original top,
original bottom, and complementary to original bottom strands, which, therefore, require
nondirectional alignment [57].

It has also been suggested that reads which do not map with typical end-to-end
alignment could be mapped using local alignment [124]. Despite local alignment being
a less stringent method, in the instance of less reliable reference genomes or, this case,
sparse data, the local alignment method can be used. Local alignment allows for soft
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clipping of reads, which entails the clipping of reads at either end of the sequence that
do not align to the reference genome [124]. Therefore, only a fraction of the read must
align, whereas the ends can be soft clipped. As one would expect, this now means once
uniquely aligned reads may be able to align to multiple areas of the genome, such as
repetitive elements, as displayed by Felix Krueger in an investigation into the effects of
soft clipping [124]. Considering bisulphite conversion typically involves the use of a three-
letter alphabet, which already reduces complexity and consequently leads to less unique
alignments [125], the use of soft clipping in local alignment further reduces the likelihood
of obtaining uniquely mapped reads. Krueger found the alignment rates increased when
using local alignment instead of end-to-end; however, almost all the coverage differences
could be attributed to mapping at repetitive regions, such as satellites, simple repeats, and
low-complexity regions [124]. This suggested that reads were trimmed until they fitted
one of these repetitive regions, despite the fact they most likely did not originate from
that genomic region. As a result, local alignment has been recommended as a last resort
to improve mapping efficiency. The choice between using a local alignment method or
end-to-end essentially becomes a trade-off between having higher mapping efficiencies yet
less confidence that these are the true genomic locations.

Chimeric reads also impact on the low genome alignment in single-cell conversion-
based methods. It has been shown that a substantial amount of chimeric reads arise due to
recombination of genomic proximal sequences with microhomology regions [126]. In light
of this, Wu and colleagues suggested aligning the paired-end sequences in the usual PBAT
mode (—pbat), then writing out the reads from each pair that do not align [126]. With the
unmapped reads for read 1, alignment should be carried out in single-end mode under
the “—pbat” function again, while read 2 should be run in single-end directional mode.
The three final alignment files for these steps should then be methylation-extracted before
being combined. This can salvage data, as chimeric/hybrid reads can result from the PBAT
protocol and, therefore, mapping the unmapped reads from each pair as singles rather
than pairs ensures Bismark does not disregard reads because they do not line up with their
mate. While this method can be good if alignment is still very low, typically, libraries will
be aligned as previously described in single-end nondirectional mode.

For samples which have low mapping rates and reads are removed as quality control,
however, these parameters need to be adjusted to single-cell data, as they inherently have
lower levels due to genomic coverage sparsity [107]. The cut-off for mapping rates and
reads may vary depending on the median values of these parameters in the sample. For
example, Liu et al. removed cells with <500,000 reads and <50% genomic mapping rates.
The cytosine CpG and non-CpG contexts were also filtered, as is conducted in bulk, with
the parameters mCC < 0.03, mCG > 0.5 and mCH < 0.2 [127]. The number of CpG sites
covered also acts as a quality metric, deducing the libraries’ diversity. Traditional WGBS
typically covers > 87% of CpG sites in the genome [128], whereas this number varies
across single-cell DNAme techniques. For example, snmC-seq2 has an average coverage of
30.8 ± 7.5% [75], compared to sci-MET average of 1.1 ± 0.9% [59].

The preprocessing of scDNAme data is a crucial step that has bottleneck effects on the
downstream analyses if performed incorrectly. Currently, there are very few standardised
pipelines available for the preprocessing step of single-cell methylome data. This means
much of the data going into downstream analysis pipelines have varying methods of
preprocessing, largely influencing the metadata outcomes and, consequently, biological
interpretations. One pipeline, SINBAD [113], has been created, which includes a pre-
processing module. SINBAD is a flexible computational tool that can be used for the
complete analysis of single-cell methylome data, from raw reads through to cell clusters
and biomarker statistics. Conversely, Methyl Star [112] is a pipeline created solely for
preprocessing single-cell methylome data. This pipeline incorporates frequently used
next-generation sequencing tools, such as FastQC, Trimomatic, Bismark, and Methimpute,
into one user-friendly interface, with variations for both expert and nonexpert users. Both
pipelines process raw reads to produce capable files for downstream analyses. MethylStar
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is the more favourable preprocessing pipeline compared to SINBAD in terms of ease, as
it contains a “Quick Run” option to allow all the steps to be run in one go, followed by
an e-mail update when this step is finished. However, to impose more specific param-
eters (e.g., specific Phred scores), SINBAD may be the better option. Another pipeline,
MethylPy [109], is similar to MethylStar in its contents; however, MethylStar was able to
perform the preprocessing step for 100 single cells in 2225 min, compared to MethylPy,
which took 5518 min [112].

4.2. Normalisation

Before biological variation can be inferred, any source of technical variation needs to
be removed. Normalisation aims to remove any sources of systemic variation. The normal-
isation step is essential for downstream analyses, such as principal component analysis
and identification of differentially methylated regions [107]. Single-cell transcriptomics
have spike-in standards to control for technical noise, yet strong normalisation strategies
have not yet been established for single-cell epigenome sequencing. A group attempted to
alleviate this by combining approximately 100 single cells to identify peaks via algorithms
already in place for bulk sequencing, then looked at each cell to see if these peaks were
present [129]. This aggregation method, however, cannot account for missing peaks in
single cells with areas of low DNAme levels. Several methods have also been formed by
comparing regions that have similar methylation levels in cis-regulatory elements through
ENCODE [130].

4.3. Data Sparsity

Imputation is used to make statistical inferences to predict the methylation status of
CpGs which are not present as a result of dropout events [131]. A dropout event describes
the fact that there will be excessive zeroes (meaning no methylation) due to the low sequenc-
ing depth. Dropouts also occur when an allele is lost during PCR amplification, meaning we
cannot assume biallelic amplification has occurred [107]. This is an important consideration,
as it has been shown that many imprinted genes contain methylated cytosines adjacent
to G-quadruplexes, which is thought to sterically hinder Taq polymerase, resulting in a
dropout event [132]. Such an allelic dropout event can result in one allele being amplified,
while the other is lost; in the case of imprinted genes and other mono-allelically methylated
genes, false methylation or lack thereof will be observed.

Imputation allows us to recuperate any lost information, which may lead to the iden-
tification of DMRs, subpopulations, and other biologically relevant findings. While it
is a necessary step, it should also be approached with caution, as inferring CpG states
incorrectly could lead to false biological findings. Traditional bulk methylome sequenc-
ing imputation tools would not have to infer as many CpG sites, as there would be far
greater genomic coverage. As such, new tools are being developed, which consider the
great areas of sparsity in the single-cell methylome data. One group created the MELISA
pipeline to address these concerns [110]. The MELISA pipeline largely focuses on two
concepts for their imputation strategy: the fact that local methylation profiles influence
the epigenetic state of a region more than a single CpG and that many neighbouring cells
are also analysed during single-cell analyses. As such, they use a Bayesian hierarchal
model which combines the status of neighbouring CpGs in the region and neighbouring
cells with similar methylation patterns to infer any missing data. Similarly, DeepCpG
uses deep neural networks to predict methylation states of single cells via leveraging of
DNA sequence patterns and methylation sites with the state of neighbouring CpGs, both
within and between cells [133]. In a comparison performed between MELISA and other
imputation tools, it was found that MELISA and DeepCpG had comparable imputation
performance to one another, and both outperformed other available methods [133]. The
computational overheads of DeepCpG were extensively more demanding than MELISA,
however, with a run time of 3–4 days on a GPU cluster system versus 6 h on a small server
machine, respectively. However, this reflects that DeepCpG is used to predict genome-wide
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single CpG methylation states, whereas MELISA focuses on a set of genomic contexts,
such as promoters. As such, the choice of which one to use for imputation comes down
to whether genome-wide imputation is necessary for the research question or if targeted
genomic contexts will be sufficient. Another imputation method similar to MELISA and
DeepCpG is Epiclomal [111]. Epiclomal follows the same Bayesian clustering model as
MELISA and, while they have very similar imputation methods, MELISA and DeepCpG
are able to model spatial variability of neighbouring CpGs, whereas Epiclomal does not.
The previously mentioned pipeline SINBAD also has built-in imputation methods; how-
ever, they used a simple population methylation mean to replace missing CpG status,
which is a far less reliable imputation strategy than that of MELISA and DeepCpG. The
genomic context, i.e., whether the CpG is in a CGI, will influence the likelihood of that
CpG being methylated; as such, taking the average of a genomic bin, as in SINBAD, is
a less reliable method than that of DeepCpG or MELISA. Imputation is a necessary step
when preparing data for downstream analyses, especially in a single-cell context where
there are many missing values. However, once the values have been filled in, they will be
treated as true observations in all downstream analyses but, in reality, they are predicted
values. Considering the large amount of missing data, there will be a lot of predicted
values; therefore, this should be considered when making biological interpretations from
downstream analyses. For the above reasons, using biologically informed algorithms, such
as MELISA and Epiclomal, to predict methylation status is most advisable to other methods,
such as finding the mean population methylation.

When considering the implications of imputation as discussed above, combining
genomic windows in a sliding window approach could be used which does not require the
inference of methylation status. The average methylation of a dictated genomic window
can be taken, which can alleviate the data sparsity observed. Of course, a window too
large could potentially diminish any signals which may distinguish cells from one another,
whereas windows too small will scarcely reduce the data sparsity [107].

4.4. Downstream Analyses

The commonly emphasised advantages of SCS throughout all the literature are the
ability to deconvolute populations of cells for the likes of cell tracing and grouping cells
into subpopulations. As such, clustering techniques are one of the most widely used tools
in the downstream analyses of all single-cell data. Such clustering requires dimensionality
reduction techniques to be employed to visualise the similarities and differences between
the single cells [107]. On account of the 28 million CpGs found in the genome, DNAme
data has extremely high dimensional data compared to gene expression data, with ap-
proximately 20,000 genes in the human genome [107]. Popular dimensionality reduction
techniques include the principal component analysis (PCA), t-distributed stochastic neigh-
bour embedding (t-SNE) and uniform manifold approximation and projection (UMAP)
graphs. In order to reduce the data sparsity and high dimensionality, one can use the sliding
window approach and cluster cells at the whole genome level, as seen in Farlik et al. [51].
Conversely, one could focus on specific genomic regions, such as cis-regulatory elements
or repetitive elements of interest, to cluster cells based on their similarities/differences in
these regards, another technique shown by Farlik et al. [51].

Another great visualisation method for clustering single cells together is a heatmap
and dendrogram. This will compare differentially methylated regions between cells across
the genome/specific genomic regions. These differences and similarities can be used to
trace the clonal evolution of the tumour and identify differentially methylated regions
between different subpopulations [107]. The t-SNE and heatmap analyses, although often
used in bulk DNAme sequencing, show far higher resolution and insight into the inter-
relation between cells in a tumour. The above analyses also could be used to visualise
differences between CTCs from the same patient’s tumour, as well as between patients [54].
There are many applications for this, from clustering CTCs from the same patient over
time to see the epigenetic developments over treatment, to clustering CTCs from different



Cancers 2022, 14, 6171 18 of 26

patients to see if there are correlations between epigenetic signatures in CTCs and stage of
disease. Furthermore, pairwise dissimilarity analyses can be performed, which highlight
the heterogeneity of the sequenced tumour. Pairwise dissimilarity matrices differ from
other clustering methods, as it appreciates the influence of dissimilarities between cells, as
well as the similarities [134]. Appreciating both positive and negative correlations between
cells helps infer the epigenetic entropy of different cells within the tumour, showing how
individual cells’ epigenetic states differ.

Finally, once subpopulations have been identified with differentially methylated re-
gions, gene ontology (GO) enrichment analysis can then be performed to identify whether
differential methylation is potentially associated with functional characteristics [107]. For
example, subpopulations may show differentially methylated regions in EMT genes, sug-
gesting they have greater metastatic capabilities, or differential methylation in stem-cell-like
genes indicating a possible cancer stem cell population. Gene set enrichment analysis meth-
ods specifically for DNA methylation data have been developed, including GOmeth and
Goregion, the latter of which is the only method to specifically test enrichment of gene sets
for differentially methylated regions [135]. These approaches are advantageous, since gene
expression and methylation status at a gene are not necessarily directly correlated.

The downstream analysis is similar between single-cell and bulk, in that similar plots
are still produced; however, bulk is assessed via regions, while single-cell is assessed
per cell.

scMethBank offers a simple online tool for researchers to upload their data and obtain
visualisations, such as violin and lollipop plots [117]. However, these are for very basic
analyses. Predominantly, this website acts as a database for whole-genome methylation
profiles in human and mouse single cells, rather than a website for data visualisation. It may
be useful to obtain a quick insight into the data before performing further analyses, rather
than to produce academic analyses. SINBAD provides a more comprehensive analysis
module, which includes dimensionality reduction methods, such as PCA and UMAP, to
identify cell clusters. Additionally, it offers a module to identify differential methylation at
genes and functional DNA elements amongst the identified cell clusters [113]. Therefore,
while scMethBank may be beneficial for a quick preview of what to expect from the data,
SINBAD is of far greater scope, providing cell-type classification and identification of
differentially methylated regions which may be novel.

5. Current Challenges in the Field

The ability to sequence individual cells to uncover cellular heterogeneity at a mono-
or multi-modal level is a big jump in the field, yet not without its challenges. There tends
to be coverage nonuniformity, sparse data, false positives, amplification biases, and allelic
dropout events [136].

5.1. Bioinformatic Challenges

As aforementioned, high-throughput single-cell DNAme studies have CpG coverage
of around 5% [77], while low-throughput studies have around 20% genome-wide CpG
coverage [82]. This makes it relatively difficult to distinguish cells from one another with
large gaps or to infer the epigenetic control mechanisms of that cell with very sparse
coverage. A few analysis tools, such as the previously described methylation inference for
single-cell analysis (MELISA), have been created to alleviate these issues [110].

As mentioned earlier, the popularity of scRNA-seq has resulted in numerous bioinfor-
matic tools to aid in making inferences from single-cell data. Clustering methods for cell
population characterisation [137,138] as well as network inference tools [139] have been
developed for scRNA-seq techniques. Comparatively, the lack of studies conducted thus
far in scDNAme analyses is reflected in the lack of bioinformatic tools.
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5.2. Experimental Challenges

On account of the minute amounts of DNA as starting material, the technical noise
is substantial. The scarce coverage of processed single-cell epigenomic data requires
appropriate normalisation of data, and these high levels of noise need to be accounted
for [107]. Another challenge with the minute DNA is the bisulphite conversion process,
as previously discussed. It is a harsh process on a small amount of DNA, leading to
degradation and, consequently, information loss [50]. Although single-cell methods have
been adapted to minimise this (PBAT previously explored), loss of DNA still occurs in
the subsequent library preparation. While there are enzymatic alternatives to bisulphite
conversion, such as MSRE, such techniques are only capable of cleaving at specific sites—
whereas bisulphite conversion allows for the recognition of the single CpG methylation
status. Ideally, as long-read sequencing technologies, such as PacBio and ONT, lower
their required input and develop improved methylation calling, the above experimental
challenges would become null.

The potential for contamination throughout the process of single-cell DNAme is
also very high and may skew results. Any DNA which contaminates samples early in
the experiments will be amplified with the cellular DNA and may provide false results.
Moreover, the multiple rounds of amplification required means the addition of reagents
may lead to further contamination. Negative controls at multiple times point, such as
before bisulphite treatment, after and throughout amplification, may help to alleviate these
issues [57].

Additionally, occasionally during the cell sorting process, more than one cell can be
isolated in a tube, termed a “doublet”. In single-cell research, this is evidently undesirable
because it could result in cells that appear to be in transitory or intermediate states [107].
In scRNA-seq, there have been computational tools created to address this issue, such as
DoubletFinder [140]. DoubletFinder predicts whether a doublet is present via averaging
the transcriptional profile of randomly chosen cell pairs; however, such methods have
not been developed for scDNAme contexts. For single-cell DNA methylation studies,
sequencing read depth and amount of retrieved CpG sites were analysed as an indicative
feature to assess potential amount of doublet cells [73,107]. However, more robust methods
that enable accurate identification of doublet cells in single-cell methylome need to be
developed for better quantification of single-cell methylomes.

5.3. Challenges in Clinical Implementation

Another context which provides new challenges is clinical implementation. Theoreti-
cally, the use of SCS in a clinical context, particularly in targeted therapy for cancer patients,
seems promising. To be able to identify subpopulations that may be treatment-resistant,
track tumour progression, and predict prognoses would transform our ability to perform
targeted therapy. However, more cost- and time-efficient methods need to be developed
that can be easily utilised in clinics. This includes cell preparation and streamlined data
analysis pipelines, where only DNAme levels at the loci relevant to the clinical phenotype
are shown. Additionally, considering the low genomic coverage and, therein, a high num-
ber of predicted methylation states, using this technology to make biological inferences at
its current state is not reliable enough to be making clinical decisions for patients. However,
all emerging technologies initially have a high cost but, eventually, become very afford-
able. The cost of single-cell transcriptomic assays has already fallen considerably [141],
and single-cell epigenomics will likely follow. Furthermore, SCS can be used to identify
biomarkers of previously unattainable populations (therapy-resistant cells/cancer stem
cells), which can then be utilised in present clinical diagnostic molecular tests. Therefore,
despite the current high cost and a lack of standardised procedures for direct use in the
clinic, SCS can still indirectly contribute to improved patient outcomes.
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6. Conclusions

The role of epigenetics in cancer is well explored, but the emergence of single-cell tech-
nology allows us to review and potentially correct current biological models. This review
highlighted the ways in which SCS is an advantageous technique to use to understand
such a heterogeneous disease as cancer. The inherent heterogeneity harboured within and
between tumours often leads to therapy resistance or disease relapse. Not only this, but it
makes cancer a distinctly difficult disease to research. The divergence of cells needs to be
appreciated to further our understanding of the disease, making single-cell sequencing a
favourable technique. This appreciation has been shown in the recent surge of single-cell
RNA analyses; however, there are still few single-cell methylome analyses in cancer due to
the difficulties of the current protocols. However, as these protocols improve, we expect to
also see a surge, given the epigenomes’ great influence on the cancer genome. Single-cell
technologies offer the detection of heterogeneous populations, the ability to analyse small
subpopulations of cells, and the ability to delineate cell maps. Although there is much
room for improvement, single-cell DNAme sequencing has exciting prospects and is sure
to become common practice in coming years.
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Abbreviation

5hmC 5-hydroxymethylcytosine
5mC 5-methylcytosine
CGI CpG island
CpG The site of a cytosine residue adjacent to a guanine residue
CTC Circulating tumour cell
ctDNA Circulating tumour DNA
DMR Differentially methylated region
DNAme DNA methylation
EMT Epithelial-mesenchymal transition
FACS Fluorescence activated cell sorting
FFPE Formalin-fixed paraffin-embedded
gDNA Genomic DNA
GO Gene ontology
LCM Laser capture microdissection
MACS Magnetic-activated cell sorting
MeDIP-seq Methylated DNA immunoprecipitation sequencing
MID-RRBS Microfluidic diffusion-based reduced representation bisulphite sequencing
NGS Next generation sequencing
ONT Oxford Nanopore Technologies
PBAT Post-bisulphite adapter tagging
PCA Principal component analysis
PCR Polymerase chain reaction
Q-RRBS Quantitative reduced representation bisulphite sequencing
scAba-seq Single-cell AbaSI sequencing
scDNAme Single-cell DNA methylation
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sci-MET Single-cell combinatorial indexing for methylation analysis
scM&T Single-cell DNA methylation and transcriptome sequencing
scMSRE-seq Single-cell methylation sensitive restriction enzyme sequencing
scRNA-seq Single-cell RNA sequencing
scRRBS Single-cell reduced representation bisulphite sequencing
SCS Single-cell sequencing
scTEM-seq Single-cell transposable element methylation sequencing
scBS Single-cell bisulphite sequencing
snmC-seq Single-nucleus methylcytosine sequencing
t-SNE t-distributed stochastic neighbour embedding
TME Tumour microenvironment
UMAP Uniform manifold approximation and projection
UMI Unique molecular identifier
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