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Simple Summary: Anaplastic thyroid carcinoma is a rare and very aggressive thyroid carcinoma.
Current conventional treatments for anaplastic thyroid carcinoma are not very effective, so there is
an urgent need for new types of treatment for this disease. Some molecules known as cardiotonic
steroids (e.g., ouabain), which were previously used for the treatment of patients with heart failure,
appear to have anti-tumoral effects and cancer therapy potential. The aim of the present work was to
analyze the effects of ouabain in human anaplastic thyroid carcinoma, using an anaplastic thyroid cell
line (called 8505C) as the model. With this work, we hope to contribute to the study of the potential
anti-tumoral roles of ouabain in the search for alternative anaplastic thyroid carcinoma treatments.

Abstract: Anaplastic thyroid carcinoma (ATC) is a rare, but aggressive, carcinoma derived from follic-
ular cells. While conventional treatments may improve patients’ survival, the lethality remains high.
Therefore, there is an urgent need for more effective ATC treatments. Cardiotonic steroids, such as
ouabain, have been shown to have therapeutic potential in cancer treatment. Thus, we aimed to evaluate
ouabain’s effects in human anaplastic thyroid cells. For this, 8505C cells were cultured in the presence
or absence of ouabain. Viability, cell death, cell cycle, colony formation and migratory ability were
evaluated in ouabain-treated and control 8505C cells. The expression of differentiation and epithelial-to-
mesenchymal transition (EMT) markers, as well as IL-6, TGFb1 and their respective receptors were also
quantified in these same cells. Our results showed that ouabain in vitro decreased the number of viable
8505C cells, possibly due to an inhibition of proliferation. A reduction in migration was also observed
in ouabain-treated 8505C cells. In contrast, decreased mRNA levels of PAX8 and TTF1 differentiation
markers and increased levels of the N-cadherin EMT marker, as well as IL-6 and TGFb1, were found in
ouabain-treated 8505C cells. In short, ouabain may have anti-proliferative and anti-migratory effect on
8505C cells, but maintains an aggressive and undifferentiated profile.
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1. Introduction

Anaplastic thyroid cancer (ATC) is an extremely aggressive cancer derived from
thyroid follicular cells. In ATC, thyroid follicular cells have an undifferentiated phenotype,
are not dependent on thyroid stimulating hormone (TSH) stimulation and do not have
the capacity to take up iodine [1]. Moreover, they usually do not express thyroglobulin
(TG) or thyroid transcription factor 1 (TTF1). In fact, in ATC samples, thyroglobulin
immunohistochemistry was negative in 96% of cases and for TTF1 immunohistochemistry
it was negative in 70% of cases, while paired box gene 8 (PAX8) immunohistochemistry
was positive in more than 54% of cases [2].

ATC is relatively rare, representing only 1–2% of all thyroid cancers; however, it ac-
counts for 14–39% of thyroid cancer deaths, with a median overall survival of approximately
4–6 months [1,3]. The conventional treatment for ATC includes surgery, radiotherapy and
chemotherapy. The choice for a patient’s treatment depends on multiple factors, such as the
extent of the disease, the patient’s airway status, the tumor´s resectability and the patient´s
goals of care. The surgical approach most used in ATC patients is total thyroidectomy
with lymph node dissection. Radiotherapy is often given after surgery; nevertheless, in
some cases, radiotherapy could be given before surgery to the patient. Chemotherapy
may also be indicated and involves the use of agents that target cell division, DNA repair
or the DNA structure. In non-surgical cases, radiotherapy and chemotherapy could be
indicated [4–6]. It is important to highlight that, even though these approaches have been
shown to improve a patient´s outcome, they normally fail in the long run.

More recently, the identification of molecular alterations of ATC opened the possibility
for the use of targeted therapies. In fact, the use of dabrafenib in combination with tram-
etinib, which are BRAF and MEK inhibitors, is already approved by the U.S. Food and
Drug Administration agency (FDA) for ATC patients with a BRAF V600E mutation [2,7].
Moreover, a clinical report from 2017 that indicated an improvement of a 65-year-old
Caucasian woman with ATC suggested the use of multi-target therapy with sunitinib, a
multi-target tyrosine kinase inhibitor; foscarnet, a broad-spectrum antiviral that reduces
the bioactivity of fibroblast growth factor 2; and low-molecular-weight heparin, an antico-
agulant that was shown to limit metastatic progression in patients with dysregulation of
fibroblast growth factors/the fibroblast growth factor receptor pathway [8]. Even though
new treatments for ATC have been under study, over the last few years little progress has
been made. The development of new effective drugs for cancer treatment involves a lot of
research, money and time. For those reasons, drug repurposing (or repositioning), which
is a new therapeutic application for a previously clinically approved drug, could be an
alternative strategy [9–11]. In this sense, cardiotonic steroids, such as ouabain, have shown
the potential to be repurposed.

Ouabain is a cardenolide, classically known as an inhibitor of Na+/K+-ATPase. Owing
to its inotropic positive action and the resultant increase in cardiac muscle contraction, ouabain
was used for many years as a treatment for congestive heart failure [12–14]. Several ouabain
anti-cancer effects in human cell lines, such as non-small-cell lung cancer cell line A549,
cervical cancer cell line Hela, colorectal carcinoma cell line HCT116 [15], renal cancer cell line
OS-RC-2, small-cell lung cancer cell line NCI-H446 [16], breast cancer cell line MCF-7 [17] and
glioma cell line U373MG [18], were already described. Nevertheless, not much is known about
ouabain’s effects on human thyroid carcinomas. A recent work from our group has shown an
in vitro anti-tumoral role of ouabain in the human papillary thyroid carcinoma cell lines [19].
Furthermore, a quantitative high-throughput drug screening previously published by Zhang
et al. indicated an anti-proliferative activity of ouabain in different thyroid carcinoma cell
lines [20]. Furthermore, a work by Tesselaar et al. has shown that digitalis-like compounds
were able to restore sodium iodide symporter (NIS) expression and iodide uptake in the 8505C
and Cal-62 human anaplastic thyroid carcinoma cell lines [21].

Therefore, the aim of the present work was to study the effects of ouabain on the 8505C
human anaplastic thyroid carcinoma cell line’s viability, cell cycle, colony formation, cell
differentiation, aggression in vitro and growth in vivo. Moreover, since it is well known that
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ouabain can modulate the production and secretion of cytokines in numerous in vivo and
in vitro models, we also aimed to evaluate a possible modulation of interleukin 6 (IL-6) and
transforming growth factor beta 1 (TGFβ1), cytokines that are involved in carcinogenesis,
by ouabain.

2. Materials and Methods
2.1. Cell Culture

The 8505C human anaplastic thyroid cell line was used throughout this work. In some
experiments, NTHY-ori, a non-tumor lineage, was also used for comparison. The 8505C
and NTHY-ori cells were cultured in low glucose Dulbecco’s Modified Eagle’s Medium
(DMEM) (Sigma-Aldrich, Saint Louis, MO, USA) supplemented with 10% fetal calf serum
(FCS) (Gibco by Thermo Fisher Scientific, Waltham, Massachusetts) in an atmosphere of 5%
CO2 at 37 ◦C. Both cell lines were kindly provided by Dr. Corinne Dupuy (Institut Gustave
Roussy, Villejuif, France).

2.2. Cell Viability Assay

Cells were seeded in 96-well plates (Sarstedt, Numbrecht, North Rhine-Westphalia,
Germany) at a concentration of 5 × 103 cells/well in a final volume of 200 µL. Following
an incubation period of 24 h at 37 ◦C in an atmosphere of 5% CO2, culture supernatants
were removed and cells were cultivated in culture medium in the absence or presence of
different concentrations (10−5–10−11 M) of ouabain (Sigma-Aldrich). Cell viability was
evaluated with an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]
assay as previously described [19], after 24 h of treatment with ouabain.

2.3. Cell Count

As described in our previous work [19], 5 × 105 cells/well were seeded in 12-well
plates (Sarstedt) in a final volume of 1 mL and incubated for 24 h in an atmosphere of 5%
CO2 at 37 ◦C. Culture supernatants were then removed and fresh culture medium alone
(control) or culture medium plus 10−7 M of ouabain was added to the respective wells.
After 24 h of treatment, cells were trypsinized, centrifuged at 300× g for 5 min and pellets
were resuspended in phosphate-buffered saline (PBS). Finally, cells were diluted in a trypan
blue solution (Sigma-Aldrich) and counted with a Neubauer chamber.

2.4. Cell Death Analysis

As described in our previous work [19], 2 × 104 cells/well were seeded in 24-well
plates (Sarstedt) in a final volume of 1 mL. After the initial 24 h of incubation in an
atmosphere of 5% CO2 at 37 ◦C, culture supernatants were removed and fresh culture
medium alone (control) or culture medium plus 10−7 M of ouabain was added, after which
cells were furthered incubated for 24 h. Cell death analysis was then performed according
to the manufacturer’s instructions using a Muse Annexin V & Dead Cell Kit (Millipore,
Burlington, MA, USA).

2.5. Cell Cycle Analysis

As described in our previous work [19], 5 × 105 cells were seeded in 35 mm culture
dishes (Sarstedt) in a final volume of 2 mL. Following 24 h of incubation in an atmosphere
of 5% CO2 at 37 ◦C, culture supernatants were removed and replaced with fresh culture
medium (control) or culture medium plus 10−7 M of ouabain, and cells were cultivated for
an additional 24 h. Cell cycle analysis was then performed according to the manufacturer’s
instructions using a Muse Cell Cycle Kit (Millipore).

2.6. Reactive Oxygen Species (ROS)

A total of 5 × 104 cells/well (final volume of 1 mL) was seeded in 12-well plates (Sarst-
edt). Following the initial 24 h of incubation in an atmosphere of 5% CO2 at 37 ◦C, culture
supernatants were removed and cells were incubated for another 24 h in fresh culture
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medium without phenol red in the presence or absence of 10−7 M of ouabain. Intracellular
ROS levels were evaluated using chloromethyl 2′,7′-dichlorodihydrofluorescein diacetate
(CM-H2DCFDA) (Invitrogen by Thermo Fisher Scientific). Briefly, cells were trypsinized
and loaded with 2 µM of CM-H2DCFDA in Hank’s Balanced Salt Solution (Sigma-Aldrich)
in the dark for approximately 30 min at 37 ◦C. H2O2 (200 µM, Sigma-Aldrich) was used as a
positive control. The excess dye was removed with centrifugation and cells were suspended
in PBS. Fluorescence intensity was assessed in a BD FACSCalibur™ flow cytometer (BD
Biosciences, Franklin Lakes, NJ, USA).

2.7. Tumor Cell Colony-Forming Units (CFUs)

A total of 5 × 104 cells/well was seeded in 12-well plates (Sarstedt) and incubated
for 24 h in an atmosphere of 5% CO2 at 37 ◦C. Culture supernatants were removed and
cells were incubated for an additional 24 h with fresh culture medium alone or culture
medium plus 10−7 M of ouabain. Untreated or ouabain-treated cells were then trypsinized
and centrifuged at 300× g for 5 min, the pellets were resuspended in culture medium, and
the cells were counted with a Neubauer chamber. Next, 102 NTHY-ori cells or 103 8505C
cells were seeded in 6- and 12-well plates (Sarstedt), respectively. Plates were incubated
for a further 7 days for the analysis of the colonies (clusters containing 50 cells or more)
that arose after cell treatment. Each experiment was performed independently at least four
times in triplicate.

2.8. Transwell Cell Migration Assay

A total of 105 cells/well was seeded in 6-well plates (Sarstedt) and incubated for 24 h
in an atmosphere of 5% CO2 at 37 ◦C. Supernatants were then removed and cells were
incubated for an additional 24 h with fresh culture medium alone or culture medium plus
10−7 M of ouabain. Untreated or ouabain-treated cells were trypsinized and centrifuged at
300× g for 5 min, the pellets were resuspended in culture medium, and cells were counted
with a Neubauer chamber. A total of 5 × 104 8505C cells in 500 µL of DMEM containing 1%
FCS were added to the upper chambers of transwell inserts (8 µm pore membrane filters)
and 750 µL of DMEM containing 5% FCS was added to the lower chambers. Plates were
then incubated for 24 h for cell migration. Control and ouabain-treated 8505C cell migration
were analyzed as previously described by Teixeira et al. [19]. A transwell migration assay
was performed independently four times in duplicate.

2.9. Real-Time PCR

As described in our previous work [19], 105 cells/well were seeded in 6-well plates
(Sarstedt) in a final volume of 2 mL and incubated for 24 h in an atmosphere of 5% CO2 at
37 ◦C. Next, culture supernatants were removed and cells were cultured in the presence
or absence of 10−7 M of ouabain for 24 h. Total RNA was isolated using TRI Reagent®

solution (Sigma-Aldrich). To ensure the removal of genomic DNA from RNA preparations,
we used DNASE I and RNase-free (Thermo Fisher Scientific, Waltham, Massachusetts,
EUA), and cDNA was synthesized using a High-Capacity cDNA Reverse Transcription
Kit (Applied Biosystems, Waltham, MA, USA), according to the manufacturer’s protocol.
mRNA levels of the target genes were evaluated with real-time polymerase chain reaction
(qPCR) on a 7500 real-time PCR system (Applied Biosystems) using GoTaq® qPCR Master
Mix (Promega, Madison, WI, USA). Each sample was amplified in triplicate and relative
expression levels of target genes were calculated using the 2−∆∆ct method [22]. β-Actin
was used as the internal control. Primer pairs (5′-3′) for interleukin-6 (IL-6), interleukin-6
receptor (IL-6R), transforming growth factor beta 1 (TGFb1), transforming growth factor
beta receptor type I (TGFbRI), transforming growth factor beta receptor type II (TGFbRII),
vimentin, twist-related protein 1 (TWIST1), matrix metallopeptidase 9 (MMP9), N-cadherin,
paired box gene 8 (PAX8), thyroid transcription factor 1 (TTF1) and β-actin are described in
Supplementary Table S1.
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2.10. Western Blot

A total of 5 × 105 cells/well was seeded in 6-well plates (Sarstedt) in a final volume
of 2 mL and incubated for 24 h in an atmosphere of 5% CO2 at 37 ◦C. Culture supernatants
were removed and cells were cultured in the presence or absence of 10−7 M of ouabain
for 24 h. After this, cultures were homogenized in a RIPA lysis buffer. Lysates were cen-
trifuged at 10,000× g for 10 min at 4 ◦C, and the protein concentration was determined using
a BCA assay. Western blot procedures were performed as described previously [23]. Sam-
ples with 30 µg protein per lane were resolved in 8–10% SDS-PAGE gels and blotted onto
nitrocellulose membranes using a semi-dry blotting system (Bio-Rad Laboratories, Hercules,
CA, USA). Membranes were blocked with 5% (w/v) BSA or 5% non-fat dry milk (w/v) in
TBS-T (20 mM Tris-HCl, 160 nM NaCl, 0.1% Tween-20) for 2 h at room temperature. Pri-
mary antibodies, rabbit polyclonal anti-phospho-mTOR (1:1000), rabbit polyclonal anti-mTOR
(1:1000), rabbit polyclonal anti-phospho-AMPKα (Thr 172) (1:1500), rabbit polyclonal anti-
AMPKα1 (1:1000), rabbit polyclonal anti-phospho-AMPKβ (1:1000) and rabbit polyclonal
anti-AMPKβ1/2 (1:1000) (Cell Signaling Technology, Danvers, MA, USA) were diluted in
blocking solution and incubated with the membranes overnight at 4 ◦C. After washing 3 times
(10 min) with TBS-T, membranes were incubated with HRP-conjugated secondary antibody
goat anti-rabbit (1:20,000) diluted in TBS-T for 1 h at room temperature and imaged in a
ChemiDocL-Pix System (Loccus Biotecnologia®, Cotia, São Paulo, Brazil) using Luminata
reagent. After stripping with 0.1 M glycine-HCl buffer (pH 2.2) for 10 min at room tempera-
ture, membranes were blocked as described above and re-probed with a rabbit monoclonal
anti-GAPDH (1:1000), after which they were incubated with the same HRP-conjugated sec-
ondary antibody mentioned above. Images were analyzed using ImageJ software (NIH,
Bethesda, MD, USA). GAPDH was used as a loading control protein.

2.11. In Vivo Treatment with Ouabain

Balb/c nude mice were obtained from Universidade Federal Fluminense (Brazil) and
housed in a germ-free temperature-controlled room with water and food provided ad libitum.
Nude mice were sub-cutaneously injected with approximately 107 8505C cells. On the 21st
day post-injection, mice were divided into two groups: the control group, in which mice were
daily inoculated intraperitoneally (i.p.) with 200 µL/mouse of vehicle (PBS); and the OUA
group, in which mice were daily inoculated i.p. with 200 µL/mouse of ouabain 10−7 M. Mice
were weighed and tumor volumes were measured once every three days. Tumor volumes
were calculated using the formula volume = (width2 × length)/2. After 15 days of ouabain
treatment, mice were euthanized and tumors were removed for weighing.

2.12. Statistical Analyses

Statistical analyses of data were performed using GraphPad Prism 5 (GraphPad
Software, Inc.). A D’Agostino-Pearson omnibus test and/or Shapiro–Wilk test was used as
normality tests in order to evaluate data distribution. Statistical tests used in this study are
mentioned in figure legends and values of p < 0.05 were considered statistically significant.

3. Results
3.1. Ouabain Decreased the Number of Viable Cells in 8505C Cell Cultures

The viability of 8505C in the presence or absence of ouabain (10−11–10−5 M) was
evaluated after 24 h of culture. A significant decrease in 8505C viability was observed in
MTT assays after incubation with 10−5 and 10−7 M of ouabain for 24 h (Figure 1a). Similarly,
in trypan blue exclusion tests, a decrease of approximately 50% in the number of viable
8505C cells was also found in cultures treated with 10−7 M of ouabain when compared to
control cultures (Figure 1b).



Cancers 2022, 14, 6168 6 of 16

Cancers 2022, 14, x FOR PEER REVIEW 6 of 17 
 

 

are mentioned in figure legends and values of p < 0.05 were considered statistically signif-
icant. 

3. Results 
3.1. Ouabain Decreased the Number of Viable Cells in 8505C Cell Cultures 

The viability of 8505C in the presence or absence of ouabain (10−11–10−5 M) was eval-
uated after 24 h of culture. A significant decrease in 8505C viability was observed in MTT 
assays after incubation with 10−5 and 10−7 M of ouabain for 24 h (Figure 1a). Similarly, in 
trypan blue exclusion tests, a decrease of approximately 50% in the number of viable 
8505C cells was also found in cultures treated with 10−7 M of ouabain when compared to 
control cultures (Figure 1b).  

 
Figure 1. Ouabain decreased 8505C viability in vitro. 8505C cells were cultured in the absence or 
presence of ouabain at concentrations that ranged from 10−5–10−11M for 24 h. Next, cell viability was 
evaluated with MTT assay or using cell counting in a Neubauer chamber using trypan blue. (a) MTT 
absorbance values of ouabain-treated cultures were normalized to their respective control and data 
are presented as the mean relative percentage of viable 8505C cells ± SEM after 24 h of culture. (b) 
Scatter plots represent the absolute number of viable 8505C cells with reference lines showing the 
medians. At least three independent experiments were performed for each condition. * p < 0.05 using 
repeated measures ANOVA with Dunnett´s post-test and paired t-test, respectively. 

3.2. Ouabain Did Not Increase 8505C Apoptosis, Necrosis or Reactive Oxygen Species (ROS) 
Levels 

Next, cell death analyses were performed in 8505C cultures in an attempt to explain 
the decreased viability previously observed in cultures treated with 10−7 M of ouabain. No 
significant differences were found between 8505C ouabain-treated and control cultures 
after 24 h regarding the percentage of live, apoptotic and necrotic cells when using a Muse 
Annexin V & Dead Cell Kit (Figure 2a). 

Then, we analyzed reactive oxygen species (ROS) levels, because ROS production is 
an important mechanism of cytotoxicity to cancer cells. No significant difference in mean 
fluorescence intensity of dichlorofluorescein (DCF) was observed when comparing oua-
bain-treated and control cells after 24 h of culture, suggesting that ROS levels were not 
affected by ouabain treatment (Figure 2b,c).  

OUA 10
-11 M

OUA 10
-9 M

OUA 10
-8 M

OUA 10
-7 M

OUA 10
-5 M

0

25

50

75

100

125

*%
 C

el
l v

ia
bi

lit
y

(c
on

tr
ol

=1
00

%
)

*

Control OUA 10-7M
0

25

50

75

100

125

*

Vi
ab

le
 8

50
5C

 c
ou

nt
(x

10
4 ce

lls
/m

L)

a b

8505C

Figure 1. Ouabain decreased 8505C viability in vitro. 8505C cells were cultured in the absence or
presence of ouabain at concentrations that ranged from 10−5–10−11 M for 24 h. Next, cell viability
was evaluated with MTT assay or using cell counting in a Neubauer chamber using trypan blue.
(a) MTT absorbance values of ouabain-treated cultures were normalized to their respective control
and data are presented as the mean relative percentage of viable 8505C cells ± SEM after 24 h of
culture. (b) Scatter plots represent the absolute number of viable 8505C cells with reference lines
showing the medians. At least three independent experiments were performed for each condition.
* p < 0.05 using repeated measures ANOVA with Dunnett´s post-test and paired t-test, respectively.

3.2. Ouabain Did Not Increase 8505C Apoptosis, Necrosis or Reactive Oxygen Species (ROS) Levels

Next, cell death analyses were performed in 8505C cultures in an attempt to explain
the decreased viability previously observed in cultures treated with 10−7 M of ouabain.
No significant differences were found between 8505C ouabain-treated and control cultures
after 24 h regarding the percentage of live, apoptotic and necrotic cells when using a Muse
Annexin V & Dead Cell Kit (Figure 2a).
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Figure 2. Ouabain did not increase 8505 death or ROS levels. 8505C and NTHY-ori cells were cultured
for 24 h with 10−7 M of ouabain or left untreated. (a) 8505C death was analyzed using Muse Annexin
V & Dead Cell Kit (n = 3). Data are expressed as the mean percentage of live, early apoptotic, late
apoptotic/dead and total apoptotic cells ± SEM in ouabain-treated and control cultures. (b,c) 8505C
and NTHY-ori intracellular ROS levels (CM-H2DCFDA fluorescence) were evaluated with flow
cytometry (n = 6). Data are expressed as the mean fluorescence intensity of DCF in 8505C (b) and
NTHY-ori (c) cells. * p < 0.05 using repeated measures ANOVA with Dunnett´s post-test.
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Then, we analyzed reactive oxygen species (ROS) levels, because ROS production
is an important mechanism of cytotoxicity to cancer cells. No significant difference in
mean fluorescence intensity of dichlorofluorescein (DCF) was observed when comparing
ouabain-treated and control cells after 24 h of culture, suggesting that ROS levels were not
affected by ouabain treatment (Figure 2b,c).

3.3. Ouabain Induced G2/M Cell Cycle Arrest and Decreased Colony-Forming Units in 8505C and
NTHY-Ori Cell Cultures

In another attempt to explain the decreased viability in 8505C cell cultures treated with
10−7 M of ouabain, cell cycle analyses were performed using a Muse Cell Cycle Kit. In these
analyses, a significant decrease in the percentage of 8505C cells in the G0/G1 phase along with
an increase in the G2/M phase (Figure 3a) was observed after 24 h of incubation with ouabain.
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Figure 3. Effect of ouabain on 8505C cell cycle distribution and 8505C and NTHY-ori CFU formation.
8505C and NTHY-ori cells were cultured in the absence or presence of ouabain 10−7 M. (a) Cell cycle
distribution was analyzed using Muse Cell Cycle Kit. Data are expressed as the mean percentage
of 8505C cells ± SEM in G0/G1, S and G2/M phases after 24 h of culture (n = 4). (b–e) Tumor cell
colony-forming units were also analyzed after 7 days of culture. Graphs are presented as the number
of CFUs and the mean number of cells per colony in 8505C ((b,c), respectively) and NTHY-ori ((d,e),
respectively) ouabain-treated and control cultures (n ≥ 4). * p < 0.05 using paired t-test.
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Moreover, to study the impact of ouabain in cell proliferation, we assessed cells’ clono-
genic ability and evaluated the number of ouabain-treated and control cells’ colony-forming
units (CFUs), as well as the mean number of cells of CFUs. As shown in Figure 3b–e,
ouabain decreased the number of CFUs and the mean number of cells of these CFUs in 8505C
(Figure 3b,c, respectively) and NTHY-ori (Figure 3d,e, respectively) cultures after 24 h.

3.4. Ouabain Decreased 8505C Migration

Since ouabain appeared to inhibit the proliferation of 8505C, we then decided to
evaluate cell migration using transwell assays. Our results demonstrated that ouabain
reduced the migration of 8505C (Figure 4).
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Figure 4. Ouabain decreased 8505C migration ability. 8505C cells were cultured in the absence or
presence of 10−7 M of ouabain for 24 h and then allowed to migrate through transwell inserts for 24 h,
as described in Materials and Methods section. Bar graph displays transwell migration measurement
as mean OD± SEM of four independent experiments performed in duplicate. A representative image
of transwell inserts with 8505C control and ouabain-treated migrating cells stained with crystal violet
is also shown. * p < 0.05 using paired t-test.

3.5. Ouabain Decreased PAX8 and TTF1 mRNA Expression in 8505C Cells

To investigate ouabain’s effects on cell differentiation, paired box gene 8 (PAX8) and
thyroid transcription factor 1 (TTF1) mRNA expression was evaluated. Thyroid stimulating
hormone receptor (TSHR) mRNA expression was also evaluated, but was not detected in
our experiments due to a low expression of this gene. As shown in Figure 5, the treatment
with 10−7 M of ouabain for 24 h induced a significant reduction in both the PAX8 (Figure 5a)
and TTF1 mRNA levels (Figure 5b).



Cancers 2022, 14, 6168 9 of 16

Cancers 2022, 14, x FOR PEER REVIEW 9 of 17 
 

 

3.4. Ouabain Decreased 8505C Migration 
Since ouabain appeared to inhibit the proliferation of 8505C, we then decided to eval-

uate cell migration using transwell assays. Our results demonstrated that ouabain re-
duced the migration of 8505C (Figure 4).  

 
Figure 4. Ouabain decreased 8505C migration ability. 8505C cells were cultured in the absence or 
presence of 10−7 M of ouabain for 24 h and then allowed to migrate through transwell inserts for 24 
h, as described in Materials and Methods section. Bar graph displays transwell migration measure-
ment as mean OD ± SEM of four independent experiments performed in duplicate. A representative 
image of transwell inserts with 8505C control and ouabain-treated migrating cells stained with crys-
tal violet is also shown. * p < 0.05 using paired t-test. 

3.5. Ouabain Decreased PAX8 and TTF1 mRNA Expression in 8505C Cells 
To investigate ouabain’s effects on cell differentiation, paired box gene 8 (PAX8) and 

thyroid transcription factor 1 (TTF1) mRNA expression was evaluated. Thyroid stimulat-
ing hormone receptor (TSHR) mRNA expression was also evaluated, but was not detected 
in our experiments due to a low expression of this gene. As shown in Figure 5, the treat-
ment with 10−7 M of ouabain for 24 h induced a significant reduction in both the PAX8 
(Figure 5a) and TTF1 mRNA levels (Figure 5b).  

 
Figure 5. Effect of ouabain on mRNA expression of PAX8 and TTF1 in 8505C cells. Following 24 h 
of 8505C culture in the absence or presence of ouabain 10−7 M, PAX8 and TTF1 mRNA levels were 
evaluated by RT-PCR. (a,b) Data are presented as the mean ± SEM of mRNA levels of PAX8 (a) and 

Control OUA 10-7M
0.0

0.2

0.4

0.6

0.8

O
D 

va
lu

e

*

8505C

Control OUA 10-7M
0.0

0.5

1.0

1.5

Re
la

tiv
e 

PA
X8

 m
RN

A 
le

ve
ls

(n
or

m
al

iz
ed

 to
β

-a
ct

in
)

*

Control OUA 10-7M
0.0

0.5

1.0

1.5

*

Re
la

tiv
e 

TT
F1

 m
RN

A 
le

ve
ls

(n
or

m
al

iz
ed

 to
β

-a
ct

in
)

a b

8505C

Figure 5. Effect of ouabain on mRNA expression of PAX8 and TTF1 in 8505C cells. Following 24 h
of 8505C culture in the absence or presence of ouabain 10−7 M, PAX8 and TTF1 mRNA levels were
evaluated by RT-PCR. (a,b) Data are presented as the mean ± SEM of mRNA levels of PAX8 (a) and
TTF1 (b) of at least three independent experiments, each performed in triplicate. * p < 0.05 using
unpaired t-test.

3.6. Ouabain Modulated the Expression of Epithelial to Mesenchymal Transition Markers in 8505C Cells

Previously, results from our group showed that 10−7 M of ouabain modulates the
expression of vimentin, TWIST and MMP9 in papillary carcinoma TPC-1 and BCPAP
human thyroid cell lines [16]; however, in 8505C cells, only an increase in N-cadherin
mRNA expression was observed in ouabain-treated cells after 24 h (Figure 6a–d).
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Figure 6. Effect of ouabain on aggressiveness markers expression in 8505C cells. Following 24 h of
8505C culture in the absence or presence of ouabain 10−7 M, aggressiveness markers expression was
evaluated by RT-PCR. (a–d) Data are presented as the mean ± SEM of mRNA levels of Vimentin (a),
N-cadherin (b), TWIST (c) and MMP9 (d) of at least three independent experiments, each performed
in triplicate. * p < 0.05 using unpaired t-test.

3.7. Ouabain Increased IL-6 and TGFβ1 mRNA Expression in 8505C Cells

IL-6 and TGFβ appeared to impact thyroid cancer tumorigenesis. Previous results
from our group demonstrated that ouabain (10−7 M) increased IL-6 and IL-6R mRNA
levels in TPC-1, BCPAP (papillary carcinoma human thyroid cell lines) and NTHY-ori
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(non-tumoral human thyroid cell line) after 24 h of culture [19]. An increase in IL-6 mRNA
levels was also found in ouabain-treated 8505C cells, but IL-6R mRNA levels were not
affected (Figure 7a,b, respectively). Similarly, TGFβ1 mRNA levels, but not TGFβ receptors
type I and II, were augmented in ouabain-treated 8505C cells (Figure 7c–e, respectively).
No significant difference was observed in TGFβ1 mRNA levels in ouabain-treated and
control NTHY-ori cells (Figure 7f).
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Figure 7. Effect of ouabain on mRNA expression of IL-6, IL-6R, TGFβ1 and TGFRs in 8505C and
NTHY-ori cells. Following 24 h of 8505C culture in the absence or presence of ouabain 10−7 M,
IL-6, TGFβ1 and their respective receptors expression were evaluated using RT-PCR. (a–e) Data are
presented as the mean± SEM of mRNA levels of IL-6 (a), IL-6R (b), TGFβ1 (c), TGFRI (d) and TGFRII
(e) in control and ouabain-treated 8505C cells. (f) Data are presented as the mean ± SEM of mRNA
levels of TGFβ1 in control and ouabain-treated NTHY-ori cells. For this, at least four independent
experiments were performed in triplicate. * p < 0.05 using unpaired t-test.

3.8. Ouabain Did Not Significantly Affect mTOR and AMPK Signaling Pathways

In order to evaluate the mechanism of action of ouabain in 8505C cells, we evaluated
the mammalian target of rapamycin (mTOR) and adenosine mono-phosphate-activated
protein kinase (AMPK) signaling pathways. No significant differences were observed in
p-mTOR/mTOR, p-AMPKα/AMPKα or p-AMPKβ/AMPKβ ratios when ouabain-treated
8505C cells were compared to control cells; nevertheless, a tendency of increase was found
in the p-mTOR/mTOR ratio (Figure 8).
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Figure 8. Impact of ouabain on mTOR and AMPK expression in 8505C cells. 8505C cells were
cultured in the absence or presence of 10−7 M of ouabain and, after 24 h, protein levels of mTOR,
p-mTOR, AMPKα1, p-AMPKα, AMPKβ and p-AMPKβ were evaluated. (a–c) Graphs show relative
p-mTOR/mTOR (a), p-AMPKα/AMPKα1 (b) and p-AMPKβ/ AMPKβ (c) protein levels in control
and ouabain-treated 8505C cells. (d–f) Representative blots of at least three independent experiments.

3.9. Ouabain In Vivo Treatment

Finally, we evaluated the effect of ouabain in the in vivo growth of 8505C cells in
Balb/c nude mice. Our results showed no significant differences in mice weight (Figure 9a),
tumor volume (Figure 9b) or tumor weight (Figure 9c) when ouabain-treated mice were
compared to the controls.
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Figure 9. In vivo effect of ouabain. Balb/c nude mice were sub-cutaneously injected with≈ 107 8505C cells.
From the 21st day post-injection, mice were inoculated intra-peritoneally daily with vehicle or ouabain
(10−7 M) for 15 days. (a,b) Graphs show mean weights (a) and tumor volumes (b) ± SEM measured
once every three days. (c) Scatter plot represent the tumor weights after 15 days of treatment with
reference lines showing the medians.
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4. Discussion

In this study, we observed a decreased number of viable cells in ouabain-treated 8505C
cell cultures after 24 h. This decrease could not be explained by an increase in cell death,
as shown by the absence of changes in the percentages of live, apoptotic or necrotic cells
and ROS levels in ouabain-treated 8505C cells. In fact, it appears that ouabain decreased
cell growth, as indicated by the induction of cell cycle arrest at the G2/M phase and the
decrease in colony formation in ouabain-treated 8505C cells. Similar results were found in
ouabain-treated NTHY-ori cells, as demonstrated in our previous [19] and present work.
These data were also corroborated with a previous work by Zhang et al., which showed
that ouabain inhibited 8505C growth and induced cell cycle arrest [20].

In our previous work [19], we demonstrated that ouabain decreased cell migration
and the expression of epithelial to mesenchymal transition (EMT) markers associated with
tumor cell aggressiveness, such as vimentin, SNAIL-1 and MMP-9, in the human thyroid
papillary cancer TPC-1 and BCPAP cell lines. In the present work, we also observed a
decrease in the migration of ouabain-treated 8505C. However, ouabain did not affect the
expression of the same EMT markers and even promoted an increase in N-cadherin mRNA
expression in 8505C cells. Additionally, decreased mRNA levels of the thyroid differen-
tiation cell markers PAX8 and TTF1 were found in ouabain-treated 8505C cells. These
data suggest that ouabain treatment could lead to a more aggressive and undifferentiated
phenotype of this human thyroid anaplastic cancer cell line, but with decreased migratory
capacity. It is well-known that TTF-1 and PAX-8 are responsible for thyroid organogenesis
and thyrocyte differentiation; nevertheless, some studies have already demonstrated a
role of these molecules in cell proliferation and migration. Christophe-Hobertus et al.
previously observed that the inhibition of TTF-1 activity due to the expression of a func-
tional antagonist of TTF-1 decreased 8505C cell proliferation and the expression of mRNAs
encoding positive effectors (such as CDK1 and cyclinB1), and increased the expression of
mRNAs encoding negative regulators of cell division (such as CDKN2B and DUSP6) [24].
On the other hand, Dupain et al. described that TTF-1 can affect not only proliferation, but
also migration and tumorigenicity in thyroid cancer cells. In the ARO anaplastic thyroid
carcinoma cell line, the upregulation of TTF-1 increased the cell doubling time, cell migra-
tion and in vivo cell growth (in a nude mice model) [25]. Our results showed a decrease in
TTF1 mRNA levels and an increase in N-cadherin mRNA levels in ouabain-treated 8505C
cells. Moreover, decreased migration was observed in these cells. The upregulation of
N-cadherin, concomitant with the downregulation of E-cadherin, is one of the hallmarks of
epithelial-to-mesenchymal transition and is usually associated with increased proliferation,
migration and invasion [26,27]. However, it is worth mentioning that there is a consensus
that EMT status cannot be based on one molecular marker [28]. Taking everything into
account, it is possible that ouabain’s effect in the proliferation and migration of 8505C cells
could be a consequence of the decreased expression of TTF1, regardless of the increased
expression of N-cadherin.

In order to better understand ouabain’s effects in 8505C cells, we evaluated the expres-
sion of IL-6 and TGFβ1 cytokines and their receptors in control and ouabain-treated cells.
It has previously been shown that IL-6, in the human anaplastic thyroid cancer HTh74 and
HTh74R (doxorubicin-resistant) cell lines, did not significantly affect cell viability (in MTT
assay), but augmented colony formation. In addition, IL-6 diminished E-cadherin and in-
creased vimentin and snail expression [29]. On the other hand, TGFβ1 was shown to inhibit
the growth of the human anaplastic thyroid cancer HTh74, HTh 83, C643 and KAT-4 cell
lines [30]. However, in 8505C cells, TGFβ1 inhibition with small RNA interference reduced
cell proliferation, migration and invasion, but increased cell apoptosis. Decreased in vivo
growth was also observed with TGFβ1 inhibition [31]. TGFβ1 also appears to impact
thyroid differentiation; TGFβ1 has been shown to decrease PAX8 gene transcription, but
not TTF1, in the FRTL-5 rat thyroid cell [32]. Similarly, TGFβ1 decreased PAX8 mRNA and
protein levels in the PCCL3 rat thyroid cell [33]. Moreover, TGFβ1 was shown to increase
the expression of EMT markers N-cadherin and vimentin in the non-small-cell lung cancer
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cell line [34]. In our work, we observed that ouabain increased IL-6 and TGFβ1 mRNA
expression in 8505C cells, but did not affect their respective receptors. In NTHY-ori cells,
ouabain increased both IL-6 and IL-6R mRNA expression [19], but did not impact TGFβ1.
In TPC-1 and BCPAP, ouabain also increased both IL-6 and IL-6R mRNA expression [19].
Taking this into account, it is possible that some of the effects promoted by ouabain in
8505C cells and the differences in response observed between these thyroid cell lines could
be related to these cytokines.

In an attempt to unravel the cell-signaling mechanisms of ouabain in 8505C cells,
mTOR and AMPK pathways were studied. It is well known that AMPK has a key role in
intracellular energy homeostasis and it is believed that AMPK can inhibit tumor cell growth
through the suppression of the mTOR pathway [35]. It has previously been shown that
TGFβ1 and IL-6 increased mTOR phosphorylation in human mesangial cells [36]. TGFβ1
can also trigger phosphorylation of mTOR in the human trophoblast HTR-8/SVneo cell
line [37]. TGFβ1 induced AMPK phosphorylation in the human lung cancer A549 and
H1460 cell lines [38]. In 8505C cells, heat shock protein 90, in combination with histone
acetyltransferase inhibitor triptolide, reduced cell viability and increased cell death, possibly
through the inactivation of mTOR pathway [39]. Similarly, the combination of baicalein
and docetaxel, and glioma-associated oncogene antagonist 61, also appeared to induce
anti-cancer effects in 8505C cells through the suppression of the mTOR pathway [40,41].
Contrastingly, metformin diminished the viability of 8505C and induced a slight increase
in apoptosis; however, in this case, total mTOR expression was increased [42]. Ouabain
has been shown to modulate many cell signaling pathways, including mTOR and AMPK.
In this regard, ouabain (0.05, 2.5, 25 µM) was able to suppress U-87MG human malignant
glioma cell line growth and motility after 24 h treatment through an inhibition of the
Akt/mTOR signaling pathway. However, it is important to highlight that mTOR and
p-mTOR expression levels were not affected by 0.5 µM of ouabain [43]. Moreover, 25 nM
of ouabain decreased the expression of phosphorylated 4EBP1, an mTOR substrate, in the
H460 human NSCLC cell line after 24 h of treatment. On the other hand, an increase in
p-AMPK in ouabain-treated H460 cells was observed in this study [44]. Ouabain has also
been shown to activate the AMPK signaling pathway in the MCF7 human breast cancer
cell line under the same conditions (treatment with 25 nM of ouabain for 24 h) [45]. In the
present study, only a tendency for a p-mTOR/mTOR ratio increase was observed in 8505C
cells treated with ouabain (10−7 M or 100 nM). This difference could be explained by the
use of different concentrations of ouabain (25 vs. 100 nM) or by differences in response to
ouabain for distinct cell lines.

5. Conclusions

In conclusion, our results show that in vitro treatment with ouabain, at a concentration
of 10−7 M, decreases the viability, colony formation and migration of the human anaplas-
tic thyroid 8505C cell line. On the other hand, an in vitro treatment with ouabain also
decreased the levels of PAX8 and TTF1, and increased the N-cadherin, IL-6 and TGFβ1
mRNA levels, while in vivo treatment did not significantly impact 8505C growth in Balb/c
nude mice. Nevertheless, the exact mechanisms involved in these ouabain effects in 8505C
cells remain to be elucidated.
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