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Simple Summary: The manual process of microscopic inspections is a laborious task, and the
results might be misleading as a result of human error occurring. This article presents a model of
an improved bald eagle search optimization with a synergic deep learning mechanism for breast
cancer diagnoses using histopathological images (IBESSDL-BCHI). The performance validation of
the IBESSDL-BCHI system was tested utilizing the benchmark dataset, and the results demonstrate
that the IBESSDL-BCHI model has shown better general efficiency for BC classification.

Abstract: Medical imaging has attracted growing interest in the field of healthcare regarding breast
cancer (BC). Globally, BC is a major cause of mortality amongst women. Now, the examination of
histopathology images is the medical gold standard for cancer diagnoses. However, the manual
process of microscopic inspections is a laborious task, and the results might be misleading as a result
of human error occurring. Thus, the computer-aided diagnoses (CAD) system can be utilized for
accurately detecting cancer within essential time constraints, as earlier diagnosis is the key to curing
cancer. The classification and diagnosis of BC utilizing the deep learning algorithm has gained
considerable attention. This article presents a model of an improved bald eagle search optimiza-
tion with a synergic deep learning mechanism for breast cancer diagnoses using histopathological
images (IBESSDL-BCHI). The proposed IBESSDL-BCHI model concentrates on the identification
and classification of BC using HIs. To do so, the presented IBESSDL-BCHI model follows an image
preprocessing method using a median filtering (MF) technique as a preprocessing step. In addition,
feature extraction using a synergic deep learning (SDL) model is carried out, and the hyperparame-
ters related to the SDL mechanism are tuned by the use of the IBES model. Lastly, long short-term
memory (LSTM) was utilized to precisely categorize the HIs into two major classes, such as benign
and malignant. The performance validation of the IBESSDL-BCHI system was tested utilizing the
benchmark dataset, and the results demonstrate that the IBESSDL-BCHI model has shown better
general efficiency for BC classification.

Keywords: computer-aided diagnosis; medical imaging; breast cancer; histopathological images;
deep learning; bald eagle search algorithm

1. Introduction

Worldwide, the number of cancer cases is increasing at a faster rate than it ever has
before. Multimodal medical imaging is utilized for diagnosing distinct kinds of cancers
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with the help of whole slide images (WSIs), MRIs, CT scans, and more [1]. The manual
detection of cancer, with the help of imaging, was a time-consuming procedure, and it
relied on the expertise of the consultant or doctor [2]. As a result, a high death rate is
linked with late cancer detection, and a computer-aided diagnosis (CAD) technique which
recognizes a tumor precisely within the time limitations has become necessary. Therefore,
initial identification was the key factor to curing cancer [3]. The golden standard for
determining the breast cancer (BC) prognosis was, until now, a pathological analysis. A
pathological analysis generally acquires cancer samples via excision, puncture, and so on [4].
Hematoxylin binds to deoxyribonucleic acid (DNA) to highlight the nucleus, whereas eosin
binds to proteins and emphasizes other frameworks. A precise prognosis of BC needs
skilled histopathologists and consumes more effort and time to finish the task. Additionally,
the diagnosis outcome of discrete histopathologists were the not same, and they mainly
relied on the prior knowledge of the histopathologists [5]. This lead to an average diagnosis
accuracy and a lower diagnosis consistency of 75%.

However, the study of the histopathological images (HIs) is a challenging and time-
consuming task which requires professional expertise. Additionally, the analysis outcome
can be affected through the experience level of the diagnosticians involved [6]. Thus,
the computer-aided study of HIs serves a crucial role in BC diagnosis. However, the
procedure of advancing the tools to perform the study has been hindered by the following
difficulties: Firstly, the HIs of BC were finely grained, higher-resolution images which
represent complex textures and rich geometric structures. The changes in a class and
the consistency among the classes could cause the categorization to be highly complex,
particularly for situations with many classes [7,8]. Secondly, we considered the constraints
of feature extraction (FE) techniques for the HIs of BC.

Conventional FE approaches such as the gray-level co-occurrence matrix (GLCM) and
scale invariant feature transform (SIFT) depend upon supervised information. In addition
to that, earlier knowledge about the data was required for selecting the valuable features
that cause the FE efficiency to be low and the computational load to be high [9]. Therefore,
this might result in the final model generating the worst classification of outcomes. Deep
learning (DL) methods are capable of extracting features automatically, restoring informa-
tion from data mechanically, and studying enhanced abstract data representations [10]. It
could resolve the issues of conventional FS, and it has been applied in computer vision
(CV) successfully and also in biomedical science and in other domains.

This article presents a model of an improved bald eagle search optimization with a syn-
ergic deep learning mechanism for breast cancer diagnosis using histopathological images
(IBESSDL-BCHI). The proposed IBESSDL-BCHI model follows image preprocessing using
a median filtering (MF) technique as a preprocessing step. In addition, a feature extraction
using a synergic deep learning (SDL) model was carried out, and the hyperparameters
related to the SDL mechanism were tuned by the use of an IBES model. At last, the long
short-term memory (LSTM) system was utilized for precisely categorizing the HIs into two
major classes: benign and malignant. The performance validation of the IBESSDL-BCHI
method was tested using the benchmark dataset. The key contributions of the paper are
highlighted as follows:

• An intelligent IBESSDL-BCHI technique comprising of MF-based pre-processing, SDL
feature extraction, IBES-based parameter optimization, and an LSTM model for BC
detection and classification using HIs is presented. To the best of our knowledge, the
IBESSDL-BCHI model has never been presented in the literature.

• A novel IBES algorithm is designed by the integration of oppositional-based learning
with the traditional BES algorithm.

• Hyperparameter optimization of the SDL model using the IBES algorithm using cross-
validation helps to boost the classification outcome of the IBESSDL-BCHI model for
unseen data.
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2. Related Works

In the study that was conducted earlier [11], a new patch-related DL technique named
Pa-DBN-BC was suggested for the detection and classification of BC on histopathology
images using a Deep Belief Network (DBN). In this technique, the features can be derived
via conducting supervised fine-tuned and unsupervised pre-training stages. The network
automatically extracts the features from the image stains. In the literature [12], the re-
searchers compared two ML techniques for the automatic classification of BC histology
images as either malevolent or benevolent and their respective sub-classes. The initial
technique was designed based on the abstraction of a group of handcrafted features that
are encrypted with Bag of Words (BoW) and locality-constrained linear coding, and it
was well-trained through an SVM classifier. The next method was designed based on a
CNN model.

In the literature [13], the researchers suggested a method to use DL techniques with
convolutional layers for the extraction of valuable visual features and classify the BC. It
was revealed that such DL techniques can derive superior features in comparison with the
handcrafted FS methods. It further suggests a new advanced strategy to achieve the primary
objective. Further, the model can be effectively improved through the progressive merging
of the DL methods with weak classifiers as a stronger classifier. Xie et al. [14] presented a
new model for the analysis of HIs of BC through unsupervised and supervised deep CNN
networks. At first, it adapted Inception_ResNet_V2 and Inception_V3 infrastructures to
binary and multi-class problems of BC-HI classification with the help of Transfer Learning
(TL) approaches.

In the study that was conducted earlier [15], the authors recommended a system for
BC classification with an Inception Recurrent Residual (IRRCNN) method. The proposed
IRRCNN is a powerful DCNN method since it combines the robustness of Recurrent RCNN,
v4ResNet, and the Inception technique. The proposed IRRCNN method achieved better
outcomes towards the equivalent networks, Inception Networks, and the RCNNs in terms
of an object recognition task. Yang et al. [16] suggested to employ further regional-level
supervision for BC classification of the HIs using the CNN technique. In this method, the
RoIs were localized and utilized for guiding the interest of the classifier network concur-
rently. The presented supervised attention algorithm precisely stimulated the neurons in
the diagnostic-related areas, whereas it suppressed the stimulations in the inappropriate
and noisy regions.

Ali et al. [17] presented an effective DL model to exploit the small dataset and learn
generalizable and domain-invariant representation in various medical imaging applications
for diseases such as malaria, Diabetic Retinopathy, and tuberculosis. This model was named
the Incremental Modular Network Synthesis (IMNS), and the resultant CNNs were the
Incremental Modular Networks (IMNets). The authors in the study conducted earlier [18]
developed a cloud-enabled Android app to detect breast cancer using the ResNet101 model.
The proposed framework was cost-effective, and it demanded less human intervention
as it was cloud integrated. So, a lower performance load was placed on the edge devices.
Narayanan et al. [19] presented a novel Deep Convolutional Neural Network architecture
for the Invasive Ductal Carcinoma (IDC) classification process.

3. The Proposed Model

In the current study, a new IBESSDL-BCHI method has been developed for the recog-
nition and classification of BC using the HIs. The presented IBESSDL-BCHI method follows
a series of processes, namely, MF-based noise removal, SDL feature extraction, IBES-based
hyperparameter optimization, and LSTM classification. The design of the IBES algorithm
helps in precisely categorizing the HIs into two major classes, namely, benign and malignant.
Figure 1 depicts the workflow of the proposed IBESSDL-BCHI approach.



Cancers 2022, 14, 6159 4 of 18

Cancers 2022, 14, x  4 of 19 
 

 

based hyperparameter optimization, and LSTM classification. The design of the IBES al-
gorithm helps in precisely categorizing the HIs into two major classes, namely, benign 
and malignant. Figure 1 depicts the workflow of the proposed IBESSDL-BCHI approach. 

 
Figure 1. Workflow of the proposed IBESSDL-BCHI methodology. 

3.1. Image Preprocessing 
Initially, the Median Filtering (MF) technique was utilized to preprocess the input 

HIs. MF is a nonlinear digital filter method that is frequently utilized in the removal of 
noise from images/signals. Such noise reduction is a classical pre-processing phase that is 
performed to enhance the outcomes in the later processes. The MF approach smoothens 
the HIs [20], and its steps are as follows:  

Step1: The 3 × 3 kernel needs zero padding 3/2 = 1 column of 0′s at the left as well as 
the right edges, but it needs 3/2 = 1 row of 0′s at the upper as well as the bottom edges. 

Step 2: To process the primary component, this approach covers 3 × 3 kernels with 
the center of them pointing  at the initially handled component. The data, arranged in the 
kernel, were recorded with respect to the value, and the attained median value is obtained. 

Step 3: We repeated the process for all of the elements until the final value was ob-
tained. 

The MF function calculates the median of every pixel in the kernel window, and the 
central pixel is interchanged with this median value. It can be extremely effectual in the 
extraction of salt-and-pepper noises. Notably, during the application of the Gaussian and 
box filters, the filter values to the central element remain a value that cannot occur in the 
original images. However, this is not the case in the MF approach since the central element 
is continuously exchanged with any of the pixel values of the images. This phenomenon 
decreases the noise in an efficient manner. The size of the kernel is a positive odd integer, 
and the median function is calculated as given in Equation (1). 

Figure 1. Workflow of the proposed IBESSDL-BCHI methodology.

3.1. Image Preprocessing

Initially, the Median Filtering (MF) technique was utilized to preprocess the input
HIs. MF is a nonlinear digital filter method that is frequently utilized in the removal of
noise from images/signals. Such noise reduction is a classical pre-processing phase that is
performed to enhance the outcomes in the later processes. The MF approach smoothens
the HIs [20], and its steps are as follows:

Step1: The 3 × 3 kernel needs zero padding 3/2 = 1 column of 0′s at the left as well as
the right edges, but it needs 3/2 = 1 row of 0′s at the upper as well as the bottom edges.

Step 2: To process the primary component, this approach covers 3 × 3 kernels with
the center of them pointing at the initially handled component. The data, arranged in the
kernel, were recorded with respect to the value, and the attained median value is obtained.

Step 3: We repeated the process for all of the elements until the final value was obtained.
The MF function calculates the median of every pixel in the kernel window, and the

central pixel is interchanged with this median value. It can be extremely effectual in the
extraction of salt-and-pepper noises. Notably, during the application of the Gaussian and
box filters, the filter values to the central element remain a value that cannot occur in the
original images. However, this is not the case in the MF approach since the central element
is continuously exchanged with any of the pixel values of the images. This phenomenon
decreases the noise in an efficient manner. The size of the kernel is a positive odd integer,
and the median function is calculated as given in Equation (1).

Med(X) =

 X
[ n

2
]

(
X[n−1]

2 +
X[n+1]

2

)
2

(1)

Here, X refers to the orderly list of values from the dataset and n signifies the amount of
values from the dataset.
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3.2. SDL-Based Feature Extraction

After the image preprocessing, the SDL model was utilized to derive the feature
vectors. During the feature extraction procedure, the pre-processed images were fed into
the SDL module to obtain a beneficial set of feature vectors [21].

The SDL model extracts the feature subsets from the pre-processed images. It rep-
resents the SDLk through three main elements such as k DCNN component, the input
layer and the C2

k synergic network (SN). Every DCNN component of the network provides
an independent learning representation in the input dataset. The SN consists of the FC
architecture to ensure that the input layers belong to the same class, and it offers reme-
dial comments. Afterward, the SDL system is classified into three sub-models. Figure 2
illustrates the architecture of the SDL network.
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3.2.1. Components of DCNN

Due to the implicit nature of ResNet, ResNet-50 was exploited for initializing every
DCNN component (a = 1, 2, . . . , n). Therefore, it can be indicated that the DCNN network
comprises of VGGNet, AlexNet, and GoogLeNet which correspond to the SDL method.
This module was trained using the data sequence X =

{
x(1), x(2), . . . , x(M)

}
and a series

of the last class label, Y =
{

y(1), y(2), . . . , y(M)
}

. The aim is to progress with a group of
variables θ which make sure that the CE loss is offered as follows:

log(θ) = − 1
M

 M

∑
a=1

K

∑
b=1

1
{

y(1) = b
}

log
eZ(a)

b

∑K
l=1 z(a)

l

 (2)

In Equation (2), n represents the class number and Z(a) = F
(

x(a), θ
)

denotes the forward
computation. The group of variables obtained for DCNN-a indicates that θa and the
variable do not assign any massive DCNN units.

3.2.2. SDL Model

The DCNN component, using the synergic labels of the pair of embedded and the
input layers, is exploited for FC learning. Assuming that (ZA, ZB) are a data pair given as
the input for two DCNN features (DCNNa, DCNNb) as follows,

fA = F
(

ZA, θ(a)
)

(3)

fB = F
(

ZB, θ(a)
)

(4)
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Next, the deep feature from the whole dataset is embedded as fA◦B, and the outcomes
using the synergic label are given below.

ys(ZA, ZB) =

{
1 i f yA = yB
0 i f YA 6= yB

(5)

To resolve the shortcoming, the percentage data pair from the class need to be higher.
So, a simple-to-zero value is used to gauge the synergic signals using an alternate sigmoid
layer, and the binary CE loss is as follows.

lS
(

θS
)
= ySlogŷs + (1− yS)log(1− ŷs) (6)

In Equation (6), θS denotes the SN attribute and ŷs indicates the SN forward computa-
tion. This validates that the input dataset pair belong to the same class, and it offers the
option to remedy the synergic error.

3.2.3. Training and Testing Processes

Once the training is completed, the features of both the DCNN component and the SN
become improved. {

θ(a)(z + 1) = θ(a)(z)− η(z).4(a)

θS(a)(z + 1) = θS(a)(z)− η(z).4S(a,b) (7)

In Equation (7), η(z) and S(a, b) indicate the learning rate and SN between DCNNa
and DCNNb, respectively, as given below.

4(a) =
∂l(a)

(
θ(a)
)

∂θ(a)
+ λ

n

∑
b=1,b 6=a

∂lS(a)
(

θS(a,b)
)

∂θS(a,b)
(8)

4S(a) =
∂lS(a)

(
θS(a,b)

)
∂θS(a,b)

(9)

Here, λ denotes the trade-off between the sub-model of the classifiers and the synergic
errors. The relationship between the trained process of the SDL2 models increases. In the
trained SDLk, the testing dataset x is classified using the DCNN unit, while it provides
the prediction vector P(a) =

(
p(a)

1 , p(a)
2 , . . . , p(a)

k

)
which is activated from the resulting FC

layer. The class labels of the testing dataset are evaluated as follows.

y(Z) = argmax
v

{
k

∑
u=1

p(u)1 , . . . ,
k

∑
u=1

p(u)v , . . . ,
k

∑
u=1

p(u)K (10)

3.3. Hyperparameter Tuning Using IBES Algorithm

In this study, the hyperparameters related to the SDL mechanism are fine-tuned with
the help of the IBES model. BES is a meta-heuristic optimization approach that imitates the
behavior of bald eagle hunting [22]. This procedure has three phases, namely, selecting the
space, searching in the space, and swooping. Initially, the bald eagles choose the best place
in terms of the food amount. Next, the eagle searches for prey within the nominated place.
In the optimally attained location in the previous stage, the eagle swoops to determine the
optimal hunting site, which is the last phase.

a. Selection space: In this phase, a novel position is produced based on the subse-
quent formula.

Pnew(i) = Pbest + α.r.(Pmean − P(i)) (11)

In Equation (11), Pnew(i) denotes the i-th recently produced location, Pbest refers to the
optimally attained location, Pmean indicates the mean location, α represents a control gain
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[1.5, 2], and r indicates an arbitrary integer that lies in the range of [0, 1]. The fitness of
every novel location is estimated; if the novel location (Pnew) offers a better fitness than the
offered one Pbest, then the novel location is allocated by Pbest.

b. Searching in space: After the allocation of the optimal search space (Pbest) is
completed, the process upgrades the location of the eagles within the searching space. The
update module is given herein.

Pnew(i) = P(i) + y(i).(P(i)− P(i + 1)) + x(i).(P(i)− Pmean) (12)

In Equation (12), Pnew(i) denotes the i− th recently produced position, Pmean indicates
the mean location, and x and y denote the directional coordinates for the i− th location as
given below.

x(i) =
xr(i)

max(|xr|) ; xr(i) = r(i).sin(θ(i))y(i) =
yr(i)

max(|yr|) ; yr(i) = r(i).cos(θ(i)) (13)

θ(i) = a.π.rand; r(i) = θ(i).R.rand

In Equation (13), a indicates a control variable that is utilized to determine the corner
between the searching point and the central point, and it takes the values in the range of
[5, 10]. R denotes a variable within [0.5, 2], and it is utilized to determine the number of
searching cycles. The fitness of the novel position is estimated, and the Pbest values are
upgraded based on the attained outcomes.

c. Swooping: In this phase, the eagle moves towards the prey from the optimally
attained location. The hunting model is given in the following expression.

Pnew(i) = rand.Pbest + x1(i).(P(i)− c1.Pmean) + y1(i).(P(i)− c2.Pbest) (14)

In Equation (14), c1 and c2 denote two arbitrary integers that lie in the range of [1,2];
x1 and y1 indicate the directional coordinates that are determined as follows.

x1(i) =
xr(i)

max(|xr|) ; xr(i) = r(i).sinh(θ(i))y1(i) =
yr(i)

max(|yr|) ; yr(i) = r(i).cosh(θ(i))

(15)

θ(i) = a.π.rand; r(i) = θ(i)

Here, Npop denotes the number of locations (population size), and MaxIter indicates the
max number of iterations.

The IBES model is derived by the inclusion of the Oppositional-Based Learning (OBL)
concept to optimize the efficiency of BES. The OBL model was highlighted by Tizoosh et al.
to estimate the individual fitness, and it relates to their equivalent opposite number after
bringing the optimum one into the next iteration in the OBL approach, and it is determined
as follows.

Opposite number: We assume that x is a real number and x ∈ [lb, ub], the next the
opposite number x, is provided by the subsequent value as shown in Equation (16).

x = ub + lb− x (16)

Here, lb and ub correspondingly denote the lower and upper boundaries, respectively.
Opposite vector: When x = (x1, x2, . . . xD), x1, x2, . . . xD denote the real numbers and

x ∈ [lb, ub], and then xi is computed as given below.

xi = lbi + ubi − xi. (17)

At last, the current solution is located by xi, if f (x) < f (x)
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The IBES method resolves the Fitness Function (FF) to obtain a superior classification
performance. In this study, a reduced classifier error rate is treated as FF as given below.

f itness(xi) = Classi f ierErrorRate(xi)=
number o f misclassi f ied samples

Total number o f samples
∗ 100 (18)

3.4. LSTM-Based Classification

During the image classification process, the LSTM model is used to precisely categorize
the HIs under two major classes, namely, benign and malignant. Being a variant of the
RNN model, the LSTM model basically differs from the classical ANN [23]. Both the
LSTM and RNN are sequence-based methods with internal self-looped repeating networks.
These determines the temporal relationship amid the sequential datasets and preserve the
previous information.

In the current study, the repeated module has a simple framework (Tanh layer). ft
denotes the output of the forget gate a, for which the values lie in the range of [0, 1].

For the above explanation, the mathematical expression is given below.

f f = σ
(

W f · [ht−1, xt] + b f

)
(19)

The next layer of the LSTM blocks are named as an ‘input gate’ layer as shown below.

it = σ(Wi · [ht−1, xt] + bi) (20)

C̃ = φ
(
WC ·

[
ht−1, xζ

]
+ bC

)
(21)

Afterwards, the older cell state Ct−1 should be upgraded to the cell state, Ct. The
output of the forget gate ft is the decision to forget, and ir defines that a novel cell state has
been added, i.e., C̃t. The update procedure of Ct is described below.

Ct = ft∗Ct−1 + it ∗ C̃t (22)

At last, the interacting layer is named the ‘output gate’ layer. The procedure of
producing an output of the LSTM block is demonstrated herein.

0t = σ(W0 ∗ [ht−1, xt] + b0)
∗φ(Ct) (23)

In Equation (23), 0 shows the activation function, namely, Sigmoid, and φ refers to
the Tanh function. Given that θ = {W, b} characterizes the variable vector of the network,
W = [W f Wi, Wc, Wo

∣∣∣ and b =
[
b f , bi, bC, bo

]
indicate the weight and bias, respectively.

The forward formulation in Equations (20)–(23) is indicated by = NN(X; θ):

L(θ)LSTM =
J
N

N

∑
i=1
|NN(xi;θ)− yi|2 (24)

In Equation (24), N indicates the overall number of labeled datasets. In the training
course of LSTM, θ is tuned continuously by diminishing the loss function via an optimized
technique, namely, SGD.

4. Results and Discussion

The proposed IBESSDL-BCHI method was experimentally validated using a bench-
mark Breast Cancer Histopathological Database (BreakHis) dataset [4] comprising 1820 HIs.
The dataset holds a total of 588 images under the benign class and 1,232 images under the
malignant class, and the details are given in Table 1. A few sample images are showcased
in Figure 3.
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Table 1. Dataset details.

Total Number of Images = 1820

Class Names Labels No. of Images

Benign

Adenosis A 106

Fibroadenoma F 237

Phyllodes Tumor PT 115

Tubular Adenona TA 130

Total 588

Malignant

Carcinoma DC 788

Lobular Carcinoma LC 137

Mucinous Carcinoma MC 169

Papillary Carcinoma PC 138

Total 1232
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Figure 4 illustrates a set of confusion matrices generated by the proposed IBESSDL-
BCHI method on the test dataset. In run 1, the IBESSDL-BCHI model classified 92 images
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under class ‘A’, 233 images under class ‘F’, 110 images under class ‘PT’, 126 images under
‘TA’, 771 images under ‘DC’, 109 images under class ‘LC’, 165 images under ‘MC’, and
117 images under ‘PC’.
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Table 2 and Figure 5 show the analytical outcomes of the IBESSDL-BCHI model
during distinct test runs in terms of its accuracy (accuy), precision (precn), recall (recal),
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specificity (specy), F-score (Fscore), and G-mean (Gmean). The experimental values infer
that the proposed IBESSDL-BCHI method attained the maximum number of classification
results under every run. For example, in run 1, the IBESSDL-BCHI technique attained
the average accuy, precn, recal , specy, Fscore, and Gmean values which were 98.67%, 92.79%,
92.19%, 99.18%, 92.27%, and 95.55%, respectively. Additionally, in run 2, the proposed
IBESSDL-BCHI approach reached the average accuy, precn, recal , specy, Fscore and Gmean
values which were 99.48%, 97.22%, 97.29%, 99.68%, 97.20% and 98.46% correspondingly. In
addition to these, in run 4, the IBESSDL-BCHI model accomplished the average accuy, precn,
recal , specy, Fscore, and Gmean values which were 98.76%, 92.99%, 94.14%, 99.26%, 93.49%,
and 96.66% correspondingly. Along with that, in run 5, the IBESSDL-BCHI methodology
achieved the average accuy, precn, recal , specy, Fscore, and Gmean values which were 99.12%,
94.30%, 96.27%, 99.52%, 95.21% and 97.88% correspondingly.
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Table 2. Analytical results of the IBESSDL-BCHI approach with distinct measures and runs.

Labels Accuy, Precn Recal Specy Fscore Gmean

Run 1

A 98.02 80.70 86.79 98.72 83.64 92.56

F 98.96 93.95 98.31 99.05 96.08 98.68

PT 98.57 83.97 95.65 98.77 89.43 97.20

TA 99.56 96.92 96.92 99.76 96.92 98.33

DC 97.97 97.47 97.84 98.06 97.66 97.95

LC 98.19 95.61 79.56 99.70 86.85 89.06

MC 99.34 95.38 97.63 99.52 96.49 98.57

PC 98.74 98.32 84.78 99.88 91.05 92.02

Average 98.67 92.79 92.19 99.18 92.27 95.55

Run 2

A 99.56 99.00 93.40 99.94 96.12 96.61
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Table 2. Cont.

Labels Accuy, Precn Recal Specy Fscore Gmean

Run 2

F 98.63 98.62 90.72 99.81 94.51 95.16

PT 99.78 96.64 100.00 99.77 98.29 99.88

TA 100.00 100.00 100.00 100.00 100.00 100.00

DC 99.56 99.12 99.87 99.32 99.49 99.60

LC 99.18 91.22 98.54 99.23 94.74 98.88

MC 99.84 98.82 99.41 99.88 99.12 99.64

PC 99.29 94.33 96.38 99.52 95.34 97.94

Average 99.48 97.22 97.29 99.68 97.20 98.46

Run 3

A 99.67 98.08 96.23 99.88 97.14 98.04

F 99.62 99.15 97.89 99.87 98.51 98.88

PT 99.62 95.00 99.13 99.65 97.02 99.39

TA 99.73 97.71 98.46 99.82 98.08 99.14

DC 99.07 98.61 99.24 98.93 98.92 99.09

LC 99.89 99.27 99.27 99.94 99.27 99.60

MC 99.89 100.00 98.82 100.00 99.40 99.41

PC 99.56 98.51 95.65 99.88 97.06 97.74

Average 99.63 98.29 98.09 99.75 98.18 98.91

Run 4

A 98.57 85.09 91.51 99.01 88.18 95.18

F 98.46 95.63 92.41 99.37 93.99 95.82

PT 99.01 89.43 95.65 99.24 92.44 97.43

TA 99.40 93.43 98.46 99.47 95.88 98.96

DC 97.80 98.07 96.83 98.55 97.45 97.68

LC 98.08 84.46 91.24 98.63 87.72 94.87

MC 99.62 99.39 96.45 99.94 97.90 98.18

PC 99.18 98.43 90.58 99.88 94.34 95.12

Average 98.76 92.99 94.14 99.26 93.49 96.66

Run 5

A 99.18 93.33 92.45 99.59 92.89 95.96

F 99.51 98.31 97.89 99.75 98.10 98.81

PT 98.52 83.33 95.65 98.71 89.07 97.17

TA 99.23 92.03 97.69 99.35 94.78 98.52

DC 98.35 99.74 96.45 99.81 98.06 98.11

LC 99.34 93.10 98.54 99.41 95.74 98.97

MC 99.45 98.18 95.86 99.82 97.01 97.82

PC 99.40 96.35 95.65 99.70 96.00 97.66

Average 99.12 94.30 96.27 99.52 95.21 97.88

Both the Training Accuracy (TA) and Validation Accuracy (VA) values obtained using
the proposed IBESSDL-BCHI method using the test dataset are depicted in Figure 6. The
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outcomes demonstrate that the proposed IBESSDL-BCHI methodology achieved the highest
TA and VA values, while the VA values were superior to the TA values.
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Both the Training Loss (TL) and Validation Loss (VL) values attained by the proposed
IBESSDL-BCHI methodology using the test data are depicted in Figure 7. The outcomes
illustrate that the proposed IBESSDL-BCHI technique demonstrated minimal TL and VL
values, while the VL values seemed to be smaller than the TL values.
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A brief precision-recall inspection was conducted with the IBESSDL-BCHI method
using the test data, and the results are depicted in Figure 8. It is to be noted that the
proposed IBESSDL-BCHI approach obtained the maximal precision-recall performance
under all of the classes.
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A comprehensive ROC inspection was conducted on the proposed IBESSDL-BCHI
system using the test dataset, and the results are portrayed in Figure 9. The outcomes
show that the proposed IBESSDL-BCHI method depicted capability in categorizing the test
dataset into dissimilar classes.
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Table 3 provides the overall comparison analysis outcomes achieved by the proposed
IBESSDL-BCHI method and other existing models [14,24]. Figure 10 portrays the com-
parative examination outcomes of the IBESSDL-BCHI technique and other techniques in
terms of accuy. The figure implies that the proposed IBESSDL-BCHI system achieved
enhanced accuy values. With respect to accuy, the IBESSDL-BCHI approach obtained a
maximum accuy of 0.9963, whereas the rest of the methods such as the GLCM-KNN, GLCM-
NB, GLCM-Discrete transform, GLCM-SVM, GLCM-DL, DL-INV3, and DL-INV2 models
attained low accuy values which were 0.7617, 0.7845, 0.8500, 0.8500, 0.9244, 0.9471, and
0.8812, respectively.

Table 3. Comparative analysis outcomes of the IBESSDL-BCHI approach and other existing ap-
proaches using different measures [14,24].

Methods Accuy, Precn Recal Fscore

GLCM-KNN Model 0.7617 0.6240 0.8360 0.8222

GLCM-NB Model 0.7845 0.8216 0.8345 0.8697

GLCM-Discrete transform 0.8500 0.8356 0.8166 0.8469

GLCM-SVM Model 0.8500 0.8732 0.8761 0.8162

GLCM-DL Model 0.9244 0.8689 0.8024 0.8792

Deep Learning-INV3 0.9471 0.8757 0.8707 0.8186

Deep Learning-IRV2 0.8812 0.8170 0.8144 0.8642

IBESSDL-BCHI 0.9963 0.9829 0.9809 0.9818
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Figure 11 demonstrates the comparative investigation outcomes attained by the pro-
posed IBESSDL-BCHI approach and other techniques in terms of Precn, recal , and Fscore.
The figure reveals that the proposed IBESSDL-BCHI methodology produced maximum
Precn, recal , and Fscore values. With respect to precn, the IBESSDL-BCHI method obtained a
superior precn value of 0.9829, whereas the other models such as the GLCM-KNN, GLCM-
NB, GLCM-Discrete transform, GLCM-SVM, GLCM-DL, DL-INV3, and DL-INV2 systems
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obtained low precn values which were 0.6240, 0.8216, 0.8356, 0.8732, 0.8689 0.8757, and
0.8170, respectively. Additionally, in terms of recal , the proposed IBESSDL-BCHI sys-
tem obtained a maximum recal value of 0.9809, whereas the GLCM-KNN, GLCM-NB,
GLCM-Discrete transform, GLCM-SVM, GLCM-DL, DL-INV3, and DL-INV2 techniques
attained low recal values which were 0.8360, 0.8345, 0.8166, 0.8761, 0.8024 0.8707, and
0.8144, respectively.
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Eventually, with regard to Fscore, the proposed IBESSDL-BCHI methodology, it gained
a superior Fscore value of 0.9818, whereas the GLCM-KNN, GLCM-NB, GLCM-Discrete
transform, GLCM-SVM, GLCM-DL, DL-INV3, and DL-INV2 models attained low Fscore
values which were 0.8222, 0.8697, 0.8469, 0.8162, 0.8792 0.8186, and 0.8642, respectively.
From the detailed discussion about the results, it is evident that the proposed IBESSDL-
BCHI technique yielded an effective breast cancer classification performance.

5. Conclusions

In this study, a new IBESSDL-BCHI method has been developed for both the recog-
nition and classification of BC using HIs. The presented IBESSDL-BCHI model follows a
series of processes, namely, MF-based noise removal, SDL feature extraction, IBES-based
hyperparameter optimization, and LSTM classification. The design of the IBES algorithm
aids in the precise categorization of the HIs into two major classes namely, benign and
malignant. The performance of the proposed IBESSDL-BCHI mechanism was validated
using a benchmark dataset, and the IBESSDL-BCHI model achieved a better general effi-
ciency score for BC classification. Therefore, the presented model can be utilized for BC
diagnosis over other models. In the future, the performance of the presented IBESSDL-
BCHI algorithm can be enhanced by using an ensemble of DL models. In addition, the
proposed model can also be tested on large scale real-time datasets to assure its robustness
and scalability. Moreover, the computational complexity of the proposed model can be
investigated in future.
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