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Simple Summary: Comprehensive genomic profiling (CGP) is key to characterizing solid tumors
at the molecular level and enabling personalized therapy. To this end, Fondazione Policlinico
Universitario Agostino Gemelli IRCCS launched a CGP program enrolling cancer patients who
were screened for nine different solid tumors (breast, colon, GIST, lung, melanoma, ovary, pancreas,
prostate and thyroid). In this context, we evaluated the performance of the Illumina® TSO500
high-throughput assay.

Abstract: In January 2022, our institution launched a comprehensive cancer genome profiling pro-
gram on 10 cancer types using a non-IVD solution named the TruSight Oncology 500 Assay provided
by Illumina®. The assay analyzes both DNA and RNA, identifying Single-Nucleotide Variants (SNV)s
and Insertion–Deletion (InDel) in 523 genes, as well as known and unknown fusions and splicing
variants in 55 genes and Copy Number Alterations (CNVs), Mutational Tumor Burden (MTB) and Mi-
crosatellite Instability (MSI). According to the current European IVD Directive 98/79/EC, an internal
validation was performed before running the test. A dedicated open-source bioinformatics pipeline
was developed for data postprocessing, panel assessment and embedding in high-performance
computing framework using the container technology to ensure scalability and reproducibility.
Our protocols, applied to 71 DNA and 64 RNA samples, showed full agreement between the TruSight
Oncology 500 assay and standard approaches, with only minor limitations, allowing to routinely
perform our protocol in patient screening.

Keywords: next-generation sequencing; bioinformatics analysis; panel validation; coverage analysis;
oncology

1. Introduction

The implementation of cancer molecular characterization in clinical practice has im-
proved prognostic redefinitions, extending their eligibility to a continuously increasing
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number of targeted treatments. Broad molecular profiling technologies better than organ-
based approaches are believed to serve such dynamic purposes. Next-generation sequenc-
ing (NGS) approaches have progressively allowed the spread of such determinations,
facilitating the execution of comprehensive genomic profiling (CGP) assays on patients’
tumor samples [1,2]. Specifically, CGP identifies molecular alterations that sometimes can
be targeted by the available treatments [1,2].

The European Society for Medical Oncology (ESMO; https://www.esmo.org/guidelines/
guidelines-by-topic accessed on 13 December 2022) recommends the use of comprehensive
cancer CGP in the following conditions:

1. research purpose;
2. screening for clinical trials;
3. drug development;
4. tumor characterization of non-squamous non-small-cell lung cancer (NSCLC), prostate

cancers, ovarian cancers and cholangiocarcinoma only in cases of acceptable addi-
tional cost;

5. tumor characterization of colon cancer as an alternative option to PCR only in cases
of acceptable additional cost;

6. tumor characterization of all cancers for which agnostic drugs are available
(i.e., pembrolizumab for high tumor mutational burden, TMB).

The clinical utility of wide panels when available treatments are not approved for a
specific condition is not demonstrated, and the use of off-label drugs based on genomics
results should be limited to national/regional access programs [3].

In this context, the Fondazione Policlinico Universitario Agostino Gemelli IRCCS
(FPG), a referral Italian research hospital, launched a CGP program (ID: FPG500,
Ethical committee approval number 3837) enrolling cancer patients who were supposed
to receive molecular information for treatment or prognostic definition. Profiling was
carried out through a high-throughput assay named TruSight Oncology 500TM (TSO500,
Illumina®) that analyses both DNA and RNA, identifying single-nucleotide variants (SNVs),
insertions/deletions (indels) and copy number variations (CNVs) in 523 genes, as well
as known and unknown fusions and splicing variants in 55 genes, and provides genomic
biomarkers such as microsatellite instability (MSI) and Tumor Mutational Burden (TMB),
which is a measure of the number of somatic mutations present in the sequenced genome.

Given this framework, in compliance with the new EU IVD regulation IVDR 2017/746
(https://eur-lex.europa.eu/eli/reg/2017/746 accessed on 17 November 2022), an internal
evaluation of the performances established by the manufacturer was performed before testing
patients’ samples during clinical routine. Specifically, we reported here the identification of
SNVs, indels and CNVs, comparing TSO500 with validated assays, the variability of the quality
wet and sequencing metrics. All variables in both the wet bench process and bioinformatics
analysis were considered.

2. Materials and Methods
2.1. Samples and Orthogonal Assay

A total of 70 DNA and 63 RNA obtained from FFPE samples of 9 different cancer types
were used, as reported in Table S1. All key cancer-specific molecular alterations which assess-
ment is mandatory for either prognostic or therapeutic reasons were included. All samples
had been previously analyzed by independent analytically validated NGS, PCR, FISH and
the Sanger sequencing assay. Ethics approval for the study was obtained from the Ethics
Committee Research of Catholic University of the Sacred Heart of Rome (reference ID: 3837).

DNA and RNA were extracted from 2 × 5 µm FFPE scrolls using AllPrep® DNA/RNA
FFPE kit (Qiagen, Hilden, Germany) following the manufacturer’s protocols. DNA and RNA
concentrations were measured on a Qubit 2.0 Fluorometer (Thermo Scientific, Paisley, UK)
using the Qubit dsDNA High Sensitivity and RNA High Sensitivity assay kits, respectively.
Nucleic acid purity was assessed by NanoPhotometer P-Class (Implen), evaluating the ratio
of the absorbance at 260 nm and 280 nm and 260 nm and 230 nm. Samples with 260/280

https://www.esmo.org/guidelines/guidelines-by-topic
https://www.esmo.org/guidelines/guidelines-by-topic
https://eur-lex.europa.eu/eli/reg/2017/746
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absorbance values between 1.6 and 1.8 for DNA and between 1.8 and 2.0 for RNA and a
260/230 absorbance ratio >2.0 were included.

The percentage of fragments >200 nucleotides in size (DV200) was assessed for RNA
samples using TapeStation 4200 in association with the Agilent RNA ScreenTape kit (Agilent
Technologies, Santa Clara, CA, USA). The DNA quality was determined by the Infinium
HD FFPE quality control (QC) Assay Protocol (Illumina, Cambridge, UK). RNA samples
with a DV200 of ≥20% and DNA samples with a Delta Cq value of ≤5 were used for
downstream applications.

In addition, two commercially available reference samples were used to assess analyti-
cal sensitivity and assay processing as a run control for a total of 71 DNA and 64 RNA sam-
ples. On the DNA level, the Structural Multiplex Reference Standard HD753 (Horizon Dx)
was used, which includes 10 confirmed variants (7 SNVs and 3 indels) centered at 5% VAF;
moreover, it harbors RET and ROS1 fusion variants, MYC-N and MET focal amplifications.
As reference material for the RNA analysis, we used Seraseq® FFPE Tumor Fusion RNA v4
(SeraCare, cat# 0710-0497) harboring 16 well-known fusions and 2 exon-skipping events in
EGFR (vIII) and MET (ex14 skipping).

2.2. Library Set-Up

Libraries were prepared using the TruSight Oncology 500 High-Throughput library
preparation kit (Illumina, San Diego, CA, USA) according to the reference guide. Up to
96 ng DNA was sheared using Covaris E220 (Covaris Ltd., Woodingdean, Brighton, UK),
8 microTUBE—50 AFA Fiber Strip V2 (Covaris Ltd., Woodingdean, Brighton, UK) and Rack
E220e 8 microTUBE Strip V2 (Covaris Ltd., Woodingdean, Brighton, UK). The sizes of the
double-stranded DNA (dsDNA) fragments (90–250 bp) were confirmed using TapeStation
4200 (Agilent, Cheshire, UK) after shearing, with a target peak of approximately 180 bp.
For fusion detection, first- and second-strand cDNA synthesis was performed starting from
up to 100 ng RNA. After end repair and A-tailing, ligation of the adapters carrying the Unique
Molecular Identifiers (UMIs) was performed, and fragments were amplified to add the indexes.
Next, hybridization was performed overnight, followed by a streptavidin magnetic bead-based
capture to enrich for the selected targets. A second 2 h hybridization and capture round was
performed with the same probes; after which, the enriched fragments were amplified in a
second PCR step to produce the enriched library. Purified libraries were then bead-based
normalized, resulting in normalized enriched DNA- and RNA-based libraries.

Intermediate check points were performed on pre-capture and final enriched libraries
via fluorometric quantification by a Qubit dsDNA High Sensitivity kit (Thermo Scientific,
Paisley, UK) and analyzing the profile of each sample via capillary electrophoresis with
TapeStation 4200 (Agilent, Cheshire, UK). A quantification of at least 30 ng/µL matched the
size distribution fragments, and ≤250 bp is recommended for pre-capture libraries. A final
enriched libraries dosage before normalization of at least 3 ng/µL is advised, with a target
peak of approximately 250 bp.

Finally, the DNA- and RNA-based libraries were combined in the final library pool,
containing 80% DNA and 20% RNA, denatured and diluted for instant sequencing.

Sequencing libraries of runs 1 and 2 were prepared manually, while the ones of run
3 were by an automated procedure implemented on the Hamilton Microlab STAR liquid
handling system. Sequencing libraries of runs 4 and 5 were performed via both manual
and automated modes.

Scripted protocols for the automated workflow were developed for all steps of TSO500
library prep, from the reverse transcription of RNA to bead-based library normalization.
The number of samples per preparation was 16, and the overall samples are divided in
5 run of sequencing onto a 200-cycle format SP, S1 or S2 flowcell (based on the sample
size to be processed) and sequenced via the Illumina NovaSeq 6000 platform, according to
Illumina’s protocol. Runs 1 to 3 employed SP flowcells, while S1 was used for runs 4 and 5.
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2.3. Sequencing

The TSO500 panel is designed to analyze multiple biomarkers through both DNA
and RNA sequencing derived from the same patient. It encompasses 9232 regions: 7567
exons (82%), 1172 introns (12.7%), 123 Pseudogenes (1.3%) and 370 other regions (4%).
In addition, it includes SNV, InDel, CNV, MSI and TMB from DNA and fusions and splice
variants from RNA.

In this study, the DNA and RNA variant calling was performed using the Illu-
mina TruSight® Oncology 500 Local App v2.2 (https://support.illumina.com/downloads/
trusight-oncology-500-v2-2-local-app-documentation.html accessed on 13 December 2022).
The analysis reproducibility was ensured using Docker container technology [4]. After the
Fastq generation, the analysis process followed the DNA and RNA phases described in
Table S10. The entire workflow included several quality controls analyses concerning the
DNA and RNA metrics reported in Table S11.

Quality metrics were set to investigate (i) the quality of the reads, (ii) the coverage
on the sequenced target regions and (iii) the uncommon reads detected during the bioin-
formatics analysis. The quality reads analysis indicates all the quality controls related to
the sequenced reads (e.g., passing filter, aligned or enriched reads). The coverage is also
evaluated in several ways, such as exons mapped or depth of target. Uncommon reads
detection is the analysis of chimeric reads or alternative mapping. Moreover, the Unique
Molecular Identifiers (UMI) are evaluated in order to address the PCR duplicates for the
both DNA and RNA analyses.

2.4. Bioinformatics Analysis

The DNA and RNA samples were processed using Illumina TruSigh® RUO Local
App v2.2. The entire analysis flow was managed by the Lianne system [5]. Lianne ensures
the correct job scheduling with the Portable Batch System (PBS) on the cluster nodes,
activates the Conda [6] environments with the required dependencies and manages the
output data folders. The Illumina Local App was used with the Singularity container
platform [7] following the steps in Table S4.

The validation was performed by considering the ability to detect the expected molec-
ular alterations (i.e., diagnostic accuracy) considering the variability (i.e., repeatability) of
the DNA extraction, library preparation and sequencing quality metrics obtained across
5 sequencing runs of DNA. Human reference genome hg19 was used.

2.5. Coverage Analysis

The coverage analyses were based on a specific input coverage data format computed
by Mosdepth [8], including the following fields: chromosome, region (exon) start, region
(exon) end, region ID, 5X depth, 10X depth, 50X depth, 100X depth, 250X depth and 500X
depth. For each region, for a given depth attribute, the number of bases covered at that
depth is reported (count data). The coverage count data are then converted into frequency
data (i.e., the percent coverage, p) divided by region length. The coverage analysis then
starts from a covdata file, including the input fields and median values of p across samples
(i.e., subjects), referred to as median percent coverage (MPC).

As a good quality principle, a run should maximize the number of depths with MPC
≥75%. Similarly, at a given depth D for each sample x, the first quartile of the exon
percent coverage distribution should be ≥75% (i.e., at least 75% of the exons of x should be
covered by at least 75% at depth D). Each run type uses different depths: 50–500X for DNA
(SNVs and CNVs) and 5–50X for RNA.

The procedure of the coverage analysis is implemented in the open-source genomic
data indexing and management suite VarHound [9]. In addition to the distribution of MPC
per run and exon coverage across samples, VarHound returns an output table for each
run type, including a per-sample diagnostic table reporting quartile values for the exon
percent coverage. The median of the exon percent coverage (Q2) was used to compare
coverage data to wet and sequencing metrics. A list of BED format files included blacklisted

https://support.illumina.com/downloads/trusight-oncology-500-v2-2-local-app-documentation.html
https://support.illumina.com/downloads/trusight-oncology-500-v2-2-local-app-documentation.html
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regions (i.e., exons with unreliable coverage). Keeping track of blacklisted regions is of
critical importance, since they might harbor false-negative variants (i.e., possible undetected
malignant traits). Additionally, a base-level analysis detects narrow coverage drops within
highly covered regions (exons). As a result, a coverage drops BED file, a gene-level drops
file and related Genome Browser track file are generated. These small drops might hide
false-negative variant calls in apparently covered regions. The VarHound diagnostics
workflow is shown in Figure 1.
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2.6. Data Analysis

Preliminary, descriptive statistics were computed both on metrics (“wet” and sequenc-
ing) and coverage depth variables. Qualitative data were expressed as absolute frequencies,
whilst quantitative variables either as the mean and standard deviation (SD) or as the
median and range. The statistical units of the analysis on the wet and sequencing metrics
were the samples (stratified by DNA and RNA values), whereas the coverage analysis
considered the exons. The distributions of the numerical variables were graphically shown
by boxplots.

Subsequently, the Kruskal–Wallis test and multiple comparisons analysis by the Mann–
Whitney tests (or Brown–Mood median tests) were applied to compare wet and sequencing
metric variables across the five validation runs and the coverage depth levels (50X, 100X,
250X and 500X for DNA samples and 5X, 10X and 50X for RNA ones). The false discovery
rate (FDR) adjustment was applied to the p-values of the pairwise comparisons in order to
account for type I errors. In addition, a Wilcoxon signed-rank test was applied to evaluate
if pre-capture and enriched library values significantly differed by stratifying by sample
type (DNA and RNA).

Next, a Kendall’s Tau rank correlation analysis between “wet” metrics and coverage
(aggregated by sample), stratified by variant type (SNV, CNV and RNA) and by run
(1 to 5), was also carried out. Results with p-values < 0.05 were statistically significant.
All analyses were performed by using R software version 4.0.2 [10], custom R scripts [11]
and its packages coin [12,13] and fmsb [14].

3. Results

Seventy-one subjects were investigated for SNVs and InDel using the TSO500 high-
throughput assay and analyzed with the bioinformatic pipeline Illumina TruSigh Oncology
Local App v2.2 [6]. A minimal amount recommended as input material was obtained for
all samples, except for one RNA sample that had a lower input. Additionally, three RNA
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libraries were excluded from the final sequencing, because they did not reach the minimal
concentration advised.

3.1. Variant Results

The expected DNA molecular alterations were derived from the Gemelli data ware-
house and were detected using different methodologies. Further details about the expected
and detected alterations are available in Table S1. All expected small DNA alterations (SNV,
InDel) were found by the Illumina TSO500 process, excluding the nonsense variant in the
TSO500_D068 sample. In addition, the Variant Allele Frequency (VAF) was evaluated for
the samples performed previously with the NGS methodology, and only the nonsense
variant in the TSO500_D042 BRCA2 sample showed a discrepancy between TSO500 and
the expected result. Patients with suspected germinal variants following VAF evaluation were
redirected to genetic counseling. Fourteen out of twenty CNV alterations were not detected;
the missed detections involved both germline and tissue CNV BRCA1/2 alterations. All vari-
ants included in the Horizon Positive control were detected. In addition, data regarding RNA,
MTB and MSI were not reported, since no comparative assay was available for this study.

3.2. Bioinformatics Analysis

The analyzed samples were 71 on DNA and 64 on RNA, including the two control
templates. Five RNA samples were discarded from the analysis: four samples failed the quality
checks of the enriched libraries, and they were not sequenced because they were not compliant
with the wet metrics (4), while one sample returned missing values after sequencing.

Tables 1 and 2 show wet quality metrics descriptive statistics for both DNA and
RNA. Concerning DNA, significant differences across runs were observed for all metrics
but DNA abundance. Notably, the median value of the enriched libraries significantly
differed between the DNA and RNA samples (18.5 vs. 6.51, p < 0.001), whereas the median
pre-capture libraries values were different in a suggestive way (48.7 vs. 51, p = 0.064).
In addition, in both the DNA and RNA samples, the pre-capture and enriched library
metrics showed a significant decrease in median values. Concerning the DNA sequencing
metrics, the mean of the median target coverage was 648.1 ± 324.13 units, and the median
insert size was compliant in relation to its threshold (≥70, 71/71) and by comparing mean
and median values equal to 110.3 (±16.45) and 113.

Table 1. DNA wet quality metrics. Quality metrics values, for each run, are reported as mean ± stan-
dard deviation and median [range] of the 71 DNA samples. A Kruskal–Wallis test is used to evaluate
the null hypothesis of the equality of the medians among the runs. Median values are reported in
bold. p-values (p) below 0.05 are considered significant.

Overall Run 1 Run 2 Run 3 Run 4 Run 5 p

DNA (ng/ul) (QT)
(CV if >3.5)

34.58 ± 52.50
17.1

[3.11; 298]

74.14 ± 86.11
24.45

[9.40; 242]

16.448 ± 10.52
14.25

[5.4; 36.7]

25.66 ± 27.13
17.75

[4.4; 88.7]

44.792 ± 74.04
14.85

[3.11; 298]

26.07 ± 33.28
17.1

[3.4; 184]
0.598

A 260/280 (u) (QL)
(CV if >2)

2.02 ± 0.219
1.97

[1.50; 3.06]

2.058 ± 0.093
2.045

[1.93; 2.21]

2.186 ± 0.145
2.195

[1.97; 2.36]

2.107 ± 0.393
1.965

[1.9; 3.06]

1.921 ± 0.141
1.9

[1.5; 2.12]

1.997 ± 0.209
1.95

[1.58; 2.6]
0.004

A 260/230 (u) (QL)
(CV if >2)

0.884 ± 0.684
0.67

[0.1; 2.28]

0.59 ± 0.448
0.38

[0.23; 1.49]

0.303 ± 0.162
0.25

[0.18; 0.67]

1.439 ± 0.909
2

[0.1; 2.28]

1.183 ± 0.784
1.125

[0.26; 2.2]

0.814 ± 0.539
0.75

[0.14; 2.12]
0.005

Delta Cq (u) (QL)
(CV if <5)

0.192 ± 1.541
0.3

[−4.7; 3.6]

0.838 ± 0.851
0.45

[0.1; 2.5]

0.437 ± 0.722
0.15

[−0.4; 1.7]

−0.185 ± 1.369
−0.5

[−1.6; 2]

−1.181 ± 1.818
−0.7

[−4.7; 1.4]

0.769 ± 1.282
0.8

[−2.61; 3.6]
0.001

Quality Control
post Fragmentation

(bp) (QT) *

235.1 ± 35.73
232

[173; 315]

197.9 ± 17.59
207.5

[173; 216]

197.1 ± 13.23
195.5

[181; 212]

220.8 ± 25.49
219

[187; 265]

226.8 ± 28.62
228.5

[174; 272]

262.4 ± 26.21
261

[203; 315]
<0.001



Cancers 2022, 14, 6152 7 of 14

Table 1. Cont.

Overall Run 1 Run 2 Run 3 Run 4 Run 5 p

Pre-capture
libraries metric

(ng/ul) (QL)
(CV if >20)

47.43 ± 7.298
48.7

[26.4; 60]

46.64 ± 3.613
47

[41.6; 52]

49.85 ± 1.790
49.65

[47.7; 53]

30.7 ± 3.001
30.45

[26.4; 35.6]

49.71 ± 3.373
49.25

[44.4; 57]

50.16 ± 5.089
50

[39.9; 60]
<0.001

Enriched libraries
metric (ng/ul) (QL)

(CV if >3)

16.7 ± 7.959
18.5

[1.53; 31.9]

12.161 ± 4.368
13.95

[5.58; 16.4]

17.49 ± 8.652
20.6

[3.4; 25.8]

19.06 ± 1.694
18.6

[17; 21.7]

10.125 ± 5.233
8.96

[3.34; 21.6]

20.45 ± 8.173
23

[1.53; 31.9]
<0.001

Keys: CV: compliant value; QT: variable of quantification; QL: variable of qualification; u: units; QC: Quality
Control; NA: Not Available (i.e., QC not performed); NE: Not Expected; u: units; KW: Kruskal–Wallis test;
* Compliant with Illumina guidelines if included between 150 and 300.

Table 2. RNA wet quality metrics. Quality metrics values, for each run, are reported as mean ± stan-
dard deviation and median [range] of the 59 RNA samples. A Kruskal–Wallis test is used to evaluate
the null hypothesis of the equality of the medians among the runs. Median values are reported in
bold. p-values (p) below 0.05 are considered significant.

Overall Run 1 Run 2 Run 3 Run 4 Run 5 p

RNA (ng/ul) (QT)
(CV if >10.5)

78.3 ± 63.40
66

[12.3; 312]

70.33 ± 41.27
70.95

[23.7; 120]

131.4 ± 105.13
89.7

[30.1; 312]

46.1 ± 52.67
30.65

[12.3; 170]

104.74 ± 58.11
86

[36; 235.8]

61.23 ± 50.90
45.5

[13.1; 200.1]
0.005

RNA A260/280
(QL) (CV if >2)

1.942 ± 0.101
1.96

[1.6; 2.2]

2 ± 0.109
2

[1.9; 2.2]

1.917 ± 0.098
1.95

[1.8; 2]

1.976 ± 0.089
2

[1.76; 2.05]

1.871 ± 0.066
1.9

[1.7; 1.97]

1.968 ± 0.102
1.98

[1.6; 2.2]
<0.001

RNA A260/230
(QL) (CV if >2)

1.123 ± 0.635
1.36

[0.03; 1.95]

1.105 ± 0.563
1.21

[0.09; 1.6]

1.113 ± 0.609
1.1

[0.17; 1.75]

0.89 ± 0.817
0.87

[0.03; 1.95]

1.66 ± 0.314
1.7

[0.6; 1.9]

0.871 ± 0.575
0.79

[0.16; 1.94]
0.001

DV200 (%) (QL)
(CV if >20)

59.2 ± 16.71
63.7

[2.6; 86.9]

59.33 ± 15.49
64.7

[36.3; 73.2]

60.32 ± 17.52
56.6

[41.7; 83.5]

61.29 ± 18.73
68.1

[33.2; 82.5]

65.25 ± 10.79
67.2

[42.6; 77.8]

54.4 ± 18.92
55.95

[2.6; 86.9]
0.455

Pre-capture
libraries metric

(ng/ul) (QL)
(CV if >20)

48.84 ± 8.381
51

[25.7; 60]

48.12 ± 2.778
47.4

[45.4; 53]

45.93 ± 2.809
45.3

[43; 51]

31.15 ± 3.787
30.85

[25.7; 36.4]

52.05 ± 2.775
53

[46.1; 55]

53.63 ± 4.780
54.5

[39.7; 60]
<0.001

Enriched libraries
metric (ng/ul) (QL)

(CV if >3)

7.033 ± 4.702
6.51

[0.80; 19.6]

5.145 ± 3.821
5.755

[0.8; 9.03]

9.685 ± 6.081
7.45

[3.8; 18.6]

6.893 ± 6.023
5.615

[1.07; 17]

6.981 ± 5.636
5.25

[1.12; 19.6]

6.920 ± 3.372
6.925

[2.1; 13.8]
0.635

QT: variable of quantification; QL: variable of qualification; u: units; QC: Quality Control; NA: Not Available
(i.e., QC not performed); NE: Not Expected; u: units; KW: Kruskal–Wallis test.

In addition, exon 100X (95.76 ± 8.56), Target 100X (95.09 ± 9.03) and Target 250X
(82.49 ± 24.88) suggested a reliable sequencing process for both the coding (exon) and
target regions (Table S3).

Finally, the coverage MAD (median absolute deviation; i.e., the median normalized
deviation across all regions used for CNV calling) provided acceptable evidence both in
relation to the compliance threshold (≤0.21, 61/71 = 86%) and mean and median values
equal to 0.164 (±0.047) and 0.161, respectively.

The correlation results between coverage and wet metrics were reported respectively
for DNA (Table 3) and RNA (Table 4).

Concerning the RNA samples, a small fraction of them was affected by coverage
depletion at 5–10X (3/59 and 4/59 samples, respectively; see Table S12) and a higher
fraction at 50X (13/59 samples). Moreover, the RNA sample coverage is generally limited
by the smaller quantity of the initial nucleic acid concentration strong correlation between
the A260 and 280 or A260 and 230 ratios and RNA coverage at 5–50X (Table 4).

Figures 2 and 3 show the boxplots of the sequencing quality metrics by run for DNA
and RNA, respectively (original data from Table S3). For each metric, the panels show
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significant differences between runs (Wilcoxon rank-sum test p-value < 0.05). Despite these
differences, all runs showed metrics above the platform guidelines [6].
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Figure 2. DNA sequencing quality metrics over 71 samples. Each boxplot shows the metrics
distribution for the five runs. Pairwise comparisons between runs were done through a two-sided
Wilcoxon rank-sum test (p-value: *** < 0.001, ** < 0.01 and * < 0.05). (a) Total number of reads passing
(quality score > 30). (b) Read enrichment as the percentage of reads aligned on target over the total
aligned ones. (c) Mean read coverage on the panel target probes.
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reads and a high depth of coverage. 
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The correlation patterns between the wet metrics and coverage for both DNA (Table 
3 and Figure 5) and RNA (Table 4 and Figure 6) samples were evaluated by Kendall’s tau 
correlations. Both tables and heatmaps showed high-coverage metrics correlations 
measured across the regions designed for CNV and SNV detection. On the other hand, 
RNA metrics showed a consistent coverage correlation from 5X to 50X. 

Figure 3. RNA sequencing quality metrics over 59 samples. Each boxplot shows the metrics distribu-
tion for the five runs. Pairwise comparisons between runs were done through a two-sided Wilcoxon
rank-sum test (p-value: ** < 0.01). (a) Total number of reads passing (quality score > 30). (b) Total
number of reads mapping to the target regions. (c) Mean read length (bp) by run.

In addition, Figure 4 shows the radar chart of the relevant sequencing coverage and
mapping quality metrics. Both the DNA and RNA samples show low levels of chimeric
reads and a high depth of coverage.
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Figure 4. Radar plot reporting sequencing coverage and mapping quality metrics for 71 DNA (a) and
59 RNA (b) samples.

The correlation patterns between the wet metrics and coverage for both DNA (Table 3
and Figure 5) and RNA (Table 4 and Figure 6) samples were evaluated by Kendall’s
tau correlations. Both tables and heatmaps showed high-coverage metrics correlations
measured across the regions designed for CNV and SNV detection. On the other hand,
RNA metrics showed a consistent coverage correlation from 5X to 50X.
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Table 3. Correlation analysis between the median coverage and wet metrics for the DNA samples.
Correlations were evaluated through a tau test, evaluating the Kendal’s rank correlation (tau) sig-
nificance between wet metrics and coverage at three different depths (100X, 250X and 500X) for
SNV and CNV. Each cell reports: Kendall’s tau coefficient, p-value and tau 95% confidence interval.
Significant correlations (p-value < 0.05) are highlighted in bold.

SNV 100X SNV 250X SNV 500X CNV 100X CNV 250X CNV 500X

DNA
0.013
0.891

−0.222, 0.249

0.126
0.181

−0.076, 0.328

0.170
0.060

−0.009, 0.350

0.013
0.891

−0.222, 0.249

0.067
0.474

−0.138, 0.274

0.196
0.029

0.016, 0.375

A 260/280
0.047
0.634

−0.158, 0.252

0.035
0.710

−0.145, 0.217

0
1

−0.180, 0.180

0.047
0.634

−0.158, 0.253

0.033
0.727

−0.149, 0.216

−0.010
0.913

−0.190, 0.170

A 260/230
−0.058
0.549

−0.278, 0.161

−0.027
0.774

−0.195, 0.141

0.051
0.578

−0.128, 0.229

−0.058
0.550

−0.278, 0.161

−0.019
0.836

−0.188, 0.149

0.062
0.489

−0.113, 0.238

Delta Cq
0.230
0.019

0.011, 0.449

0.022
0.812

−0.188, 0.234

−0.001
0.991

−0.191, 0.189

0.230
0.019

0.012, 0.449

0.048
0.615

−0.166, 0.262

−0.008
0.926

−0.196, 0.179

Quality Control post
Fragmentation

0.170
0.081

−0.053, 0.393

−0.031
0.737

−0.224, 0.161

−0.114
0.201

−0.287, 0.058

0.170
0.081

−0.053, 0.393

−0.028
0.762

−0.224, 0.167

−0.136
0.130

−0.311, 0.037

Pre-capture libraries
metric

−0.120
0.221

−0.323, 0.083

−0.257
0.007

−0.420, −0.094

−0.216
0.018

−0.374, −0.058

−0.120
0.222

−0.323, 0.083

−0.250
0.008

−0.419, −0.080

−0.216
0.017

−0.373, −0.059

Enriched libraries
metric

0.283
0.003

0.032, 0.534

0.450
<0.001

0.280, 0.620

0.391
<0.001

0.245, 0.536

0.283
0.003

0.032, 0.534

0.474
<0.001

0.314, 0.633

0.392
<0.001

0.238, 0.545

Cancers 2022, 14, 6152 11 of 15 
 

 

Table 3. Correlation analysis between the median coverage and wet metrics for the DNA samples. 
Correlations were evaluated through a tau test, evaluating the Kendal’s rank correlation (tau) 
significance between wet metrics and coverage at three different depths (100X, 250X and 500X) for 
SNV and CNV. Each cell reports: Kendall’s tau coefficient, p-value and tau 95% confidence interval. 
Significant correlations (p-value < 0.05) are highlighted in bold. 

 SNV 100X SNV 250X SNV 500X CNV 100X CNV 250X CNV 500X 

DNA 
0.013 
0.891 

−0.222, 0.249 

0.126 
0.181 

−0.076, 0.328 

0.170 
0.060 

−0.009, 0.350 

0.013 
0.891 

−0.222, 0.249 

0.067 
0.474 

−0.138, 0.274 

0.196 
0.029 

0.016, 0.375 

A 260/280 
0.047 
0.634 

−0.158, 0.252 

0.035 
0.710 

−0.145, 0.217 

0 
1 

−0.180, 0.180 

0.047 
0.634 

−0.158, 0.253 

0.033 
0.727 

−0.149, 0.216 

−0.010 
0.913 

−0.190, 0.170 

A 260/230 
−0.058 
0.549 

−0.278, 0.161 

−0.027 
0.774 

−0.195, 0.141 

0.051 
0.578 

−0.128, 0.229 

−0.058 
0.550 

−0.278, 0.161 

−0.019 
0.836 

−0.188, 0.149 

0.062 
0.489 

−0.113, 0.238 

Delta Cq 
0.230 
0.019 

0.011, 0.449 

0.022 
0.812 

−0.188, 0.234 

−0.001 
0.991 

−0.191, 0.189 

0.230 
0.019 

0.012, 0.449 

0.048 
0.615 

−0.166, 0.262 

−0.008 
0.926 

−0.196, 0.179 

Quality Control post 
Fragmentation 

0.170 
0.081 

−0.053, 0.393 

−0.031 
0.737 

−0.224, 0.161 

−0.114 
0.201 

−0.287, 0.058 

0.170 
0.081 

−0.053, 0.393 

−0.028 
0.762 

−0.224, 0.167 

−0.136 
0.130 

−0.311, 0.037 

Pre-capture  
libraries metric 

−0.120 
0.221 

−0.323, 0.083 

−0.257 
0.007 

−0.420, −0.094 

−0.216 
0.018 

−0.374, −0.058 

−0.120 
0.222 

−0.323, 0.083 

−0.250 
0.008 

−0.419, −0.080 

−0.216 
0.017 

−0.373, −0.059 

Enriched libraries 
metric 

0.283 
0.003 

0.032, 0.534 

0.450 
<0.001 

0.280, 0.620 

0.391 
<0.001 

0.245, 0.536 

0.283 
0.003 

0.032, 0.534 

0.474 
<0.001 

0.314, 0.633 

0.392 
<0.001 

0.238, 0.545 

 
Figure 5. Kendall’s tau correlation coefficients between the DNA wet and sequencing coverage 
metrics. 

Figure 5. Kendall’s tau correlation coefficients between the DNA wet and sequencing coverage metrics.



Cancers 2022, 14, 6152 11 of 14Cancers 2022, 14, 6152 12 of 15 
 

 

 
Figure 6. Kendall’s tau correlation coefficients between the RNA wet and sequencing coverage 
metrics. 

Table 4. Correlation analysis between the median coverage and wet metrics for the RNA samples. 
Correlations were evaluated through a tau test, evaluating the Kendal’s rank correlation coefficient 
(tau) significance between the wet metrics and coverage at three different depths (5X, 10X and 50X). 
Each cell reports: Kendall’s tau coefficient, p-value and tau 95% confidence interval. Significant 
correlations (p-value < 0.05) are highlighted in bold. 

 5X 10X 50X 

RNA 
0.141 
0.144 

−0.047; 0.329 

0.175 
0.062 

−0.207; 0.559 

0.188 
0.036 

0.039; 0.336 

RNA A260/280 
−0.306 
0.002 

−0.473; −0.138 

−0.361 
<0.001 

−0.531; −0.192 

−0.344 
<0.001 

−0.507; −0.181 

RNA A260/230 
0.265 
0.006 

0.087; 0.445 

0.252 
0.008 

0.073; 0.430 

0.218 
0.016 

0.050; 0.386 

DV200 
0.249 
0.010 

0.082; 0.415 

0.202 
0.032 

0.039; 0.366 

0.109 
0.226 

−0.058; 0.275 

Pre-capture libraries 
metric 

0.105 
0.284 

−0.080; 0.290 

0.132 
0.165 

−0.041; 0.306 

0.093 
0.303 

−0.084; 0.272 

Enriched libraries metric 
0.356 
<0.001 

0.184; 0.528 

0.279 
0.003 

0.102; 0.456 

0.172 
0.056 

−0.015; 0.358 

  

Figure 6. Kendall’s tau correlation coefficients between the RNA wet and sequencing coverage metrics.

Table 4. Correlation analysis between the median coverage and wet metrics for the RNA samples.
Correlations were evaluated through a tau test, evaluating the Kendal’s rank correlation coefficient
(tau) significance between the wet metrics and coverage at three different depths (5X, 10X and 50X).
Each cell reports: Kendall’s tau coefficient, p-value and tau 95% confidence interval. Significant corre-
lations (p-value < 0.05) are highlighted in bold.

5X 10X 50X

RNA
0.141
0.144

−0.047; 0.329

0.175
0.062

−0.207; 0.559

0.188
0.036

0.039; 0.336

RNA A260/280
−0.306
0.002

−0.473; −0.138

−0.361
<0.001

−0.531; −0.192

−0.344
<0.001

−0.507; −0.181

RNA A260/230
0.265
0.006

0.087; 0.445

0.252
0.008

0.073; 0.430

0.218
0.016

0.050; 0.386

DV200
0.249
0.010

0.082; 0.415

0.202
0.032

0.039; 0.366

0.109
0.226

−0.058; 0.275

Pre-capture libraries metric
0.105
0.284

−0.080; 0.290

0.132
0.165

−0.041; 0.306

0.093
0.303

−0.084; 0.272

Enriched libraries metric
0.356

<0.001
0.184; 0.528

0.279
0.003

0.102; 0.456

0.172
0.056

−0.015; 0.358



Cancers 2022, 14, 6152 12 of 14

4. Discussion

The goal of this study was to evaluate the performance of the Illumina TSO500 HT
platform on a set of critical SNVs and CNVs, representing key prognostic biomarkers
and targets for personalized therapy. In addition, we studied the correlation between the
Illumina wet [11], sequencing [5] and coverage metrics [9], providing an open-source set of
bioinformatics tools for the TSO500 assessment.

Our results indicate that TSO500 is a reliable test with a robust workflow both for
the wet and for the computational steps in the SNV and InDel analyses. All expected
alteration were detected, and a good coverage performance was provided: high values of
the median coverage, coverage MAD, median insert size, exon 100X and target at 100X
and 250X probed the reliability of the bioinformatics pipeline, useful to call SNV and indel
variants, for both the exon and target regions [1,2]. Accounting for this, no false negatives
were detected in the small variants calling. These high performances were expected and in
line with the recent literature reports [2,15,16].

On the other hand, the CNV analysis showed major limitations, identifying only six
out of twenty alterations, with BRCA1 not detected at the exon resolution (samples D036
and D037). The Illumina Local App algorithm is not designed for an exon resolution
analysis, thus detecting only complete gene deletions. Consequently, we recommend
caution when using this panel for the detection of clinically relevant CNVs. Although the
recent literature considered this panel generally safe for CNV detection [2,15,16], we found
coverage-related issues that could be worthy of attention.

Regarding the coverage analysis, two broad profile types emerged: a high-coverage
profile, characterized by a flat exon plateau with gradual decay beyond the exon–intron
boundaries and a low-coverage profile, with an irregular or discontinuous plateau and
coverage breakoffs starting before the exon boundaries, generating large portions of signal
depletion (nonuniform coverage profile). Our exon MPC measurements showed that,
at high depths (250–500X), coverage-depleted regions could involve entire exons, and large
parts of a gene (Table S12, depth 250–500X), hampering SNV and CNV calling, even if
the global coverage metrics are above the guideline values (Table S2). As previously
reported [17,18], low coverage and coverage nonuniformity could deeply affect the whole-
exome sequencing performances, especially for CNV detection, often based on the detection
of continuous depleted or enriched adjacent exons [17]. This issue could be further intensi-
fied in long exons, where nonuniformity might cause a failure in calculating the background
coverage [17]. In addition, it is widely recognized how a critical contribution to incomplete
sequencing is a reduced coverage in regions showing a drop in high-quality mapped reads,
potentially affecting the variant calling performances [18].

However, low-coverage issues are strongly restrained at medium-low depths (Table S12,
depth 50–100X), making this technology safe for both SNV/indel and CNV calling, unless
possible low-coverage regions are monitored at the gene and exon level for each sample
through a dedicated bioinformatic protocol (Figure 1). By profiling the sample-level median
exon coverage, we showed how depleted regions are rare and affect only a tiny fraction
of the DNA samples at 50X and 100X (0/71 and 1/71 samples, respectively, for both
SNV/indels and CNV coverage; see Table S12).

Analogous considerations can be done for RNA samples, a small fraction of which was
affected by coverage depletion at 5–10X (3/59 and 4/59 samples, respectively; see Table S12)
and a higher fraction at 50X (13/59 samples). Therefore, at greater depths, the TSO500
RNA samples might suffer from low coverage, possibly affecting RNA fusion detection.
RNA sample coverage is generally limited by an inferior quantity of the initial nucleic
acid concentration compared to the DNA samples. This was highlighted by the strong
correlation between the A260 and 280 or A260 and 230 ratios and RNA coverage at 5–50X
(Table 4 and Figure 6).

Finally, regarding the repeatability, even if these key metrics provided evidence of
variability across the run, the high medians, the compliant values in relation to the guideline
thresholds and the low intra-run variability validated the process.
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5. Conclusions

This study showed a 100% agreement between TSO500 and the standard approaches
in detecting key cancer-specific molecular alterations, meaning it is a reliable assay for
clinical practice. The current limits in CNV variants and intragenic analyses must be
addressed before using the assay in ovarian, pancreatic and prostate cancer, which require
accurate assessments of the BRCA 1/2 genes. Finally, we highlighted the importance of
accurately monitoring coverage-depleted and nonuniform coverage profiles, since they
could negatively affect the SNV and CNV detection ability of this panel.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14246152/s1: Table S1: Annotation and comparison of
expected and observed DNA variants. Table S2: Wet quality metrics. Table S3: Sequencing quality
metrics. Table S4: Bioinformatics analysis workflow. Table S5: Correlation analysis between median
coverage (by depth) and wet metrics (1st run). Table S6: Correlation analysis between median
coverage (by depth) and wet metrics (2nd run). Table S7: Correlation analysis between median
coverage (by depth) and wet metrics (3rd run). Table S8: Correlation analysis between median
coverage (by depth) and wet metrics (4th run). Table S9: Correlation analysis between median
coverage (by depth) and wet metrics (5th run). Table S10: DNA and RNA sequential phases of the
post-sequencing. Table S11: Sequencing quality control metrics by sample and feature type. Table S12:
Descriptive statistics of coverage.
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