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Simple Summary: The aim of this review is to evaluate the present status of the use of cell-free
DNA and its fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO
guideline was published regarding the application of ctDNA in patient care. In the near future the
data obtained from ctDNA may routinely be used for finding minimal residual disease, detecting
relapse, determining either the unknown primary tumor, or the site of metastases. It can also be used
for deciding upon the appropriate efficiency of the therapy and/or emerging resistance to the therapy.
Therefore, clinicians should be aware of the potentials and the limitations of the assays. Of course,
several open questions are still under research and as a result, cfDNA and ctDNA testing are not part
of routine care yet.

Abstract: The aim of this review is to evaluate the present status of the use of cell-free DNA and its
fraction of circulating tumor DNA (ctDNA) because this year July 2022, an ESMO guideline was
published regarding the application of ctDNA in patient care. This review is for clinical oncologists
to explain the concept, the terms used, the pros and cons of ctDNA; thus, the technical aspects of the
different platforms are not reviewed in detail, but we try to help in navigating the current knowledge
in liquid biopsy. Since the validated and adequately sensitive ctDNA assays have utility in identifying
actionable mutations to direct targeted therapy, ctDNA may be used for this soon in routine clinical
practice and in other different areas as well. The cfDNA fragments can be obtained by liquid biopsy
and can be used for diagnosis, prognosis, and selecting among treatment options in cancer patients.
A great proportion of cfDNA comes from normal cells of the body or from food uptake. Only a small
part (<1%) of it is related to tumors, originating from primary tumors, metastatic sites, or circulating
tumor cells (CTCs). Soon the data obtained from ctDNA may routinely be used for finding minimal
residual disease, detecting relapse, and determining the sites of metastases. It might also be used
for deciding appropriate therapy, and/or emerging resistance to the therapy and the data analysis
of ctDNA may be combined with imaging or other markers. However, to achieve this goal, further
clinical validations are inevitable. As a result, clinicians should be aware of the limitations of the
assays. Of course, several open questions are still under research and because of it cfDNA and ctDNA
testing are not part of routine care yet.

Keywords: circulating tumor DNA (ctDNA); cell-free DNA (cfDNA); solid tumor; clinical decision
making

1. Introduction

Diagnoses and treatment decisions in oncology are based upon histological investiga-
tion and sometimes molecular profiling of tissue samples. The latter is gaining more and
more importance when selecting appropriate treatment for individual patients. Moreover,
in the case of metastatic disease, the treatments are targeted to the metastases instead of
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the primary tumor, if possible. Consequently, the role of liquid biopsy in decision making
is under investigation regarding circulating tumor cells [1] (CTC) as well as cell-free (or
circulating free) DNA (cfDNA) [2]. The majority of cfDNA originates from normal cells
of the body or food uptake [3] and only a small fraction representing <1% of cfDNA is
related to tumors. This so called ctDNA is delivered from primary tumors, metastatic
sites, or CTCs. It should be noted however, that CTCs and ctDNA have overlapping roles
in oncology such as diagnosing cancer, detecting progression, and predicting treatment
response [4]. Comparison of the main features of CTC and ctDNA are presented in Table 1.

Table 1. Comparison of CTC and ctDNA.

Aspect ctDNA CTC

Procedure Minimally invasive Minimally invasive

Sample collection Prospective Prospective

Intratumoral heterogeneity

Adequately represent, but false-negative
and false-positive errors could occur
more than 15% [5]
May identify resistance mechanisms,
discordant clinical history, and
intertumor/intratumor heterogeneity

Adequately represent, but small and
fragile sample population; detection
increased with increasing stage

Phenotype [6] Study the methylome may provide
information about phenotype

Structural evaluation of the tumor might
be possible

Tumor burden Sensitive indicator Still obscure how adequately represent
tumor burden

Resistance The emergence of resistance could
be addressed

The emergence of resistance could
be addressed

Recommended application NCCN
and ESMO [7,8]

Should not be used to diagnose!
Analysis DNA methylation changes,
copy, and mutations can be used to
identify EGFR, ALK, and other oncogenic
biomarkers that would not otherwise be
identified in patientswith
metastatic cancer
In ER+ breast cancer PIK3CA mutations
to identify candidates for alpelisib
plus fulvestrant
In CRC, post-surgical ctDNA is a marker
for an elevated risk of recurrence in stage
I–III colon cancer

Should not be used to diagnose!
May be considered at progression of
NSCLC instead of tissue biopsy to detect
whether patients have lung cancer;
however, if plasma testing is negative,
then tissue biopsy is recommended

In several studies, single CTCs and ctDNA were concurrently isolated from patients
with solid tumors to evaluate the genetic heterogeneity of tumor types. Compared to
ctDNA, higher heterogeneity was found in CTCs; moreover, when the alterations present
both in CTCs and ctDNA, these were sometimes undetected in the primary cancer. Blood-
based tumor compartments showed a higher degree of concordance with the metastatic
tumor than with the primary one. Since most cancer patients die due to metastases, it was
not an unexpected finding that the alteration detected in CTCs or ctDNA correlated with
worse survival. The majority of the observed DNA aberrations were detected consistently
in the case of repeated liquid biopsy samples. In most cancers, CTCs and ctDNA were
found to be able to predict therapeutic response, disease progression and overall survival
(see Table 2) [8–10].

It is important to understand when to use ctDNA or CTC. The ctDNA test usually
requires prior knowledge of the target of interest. Moreover, not all DNA mutations are
expressed. As for CTC, the intact tumor cell may originate from a resistant clone; thus,
its DNA could provide valuable information about the mechanism of resistance as well
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as support therapeutic decisions. Moreover, CTC can be multiplied in culture to evaluate
drug resistance both in vitro and in vivo. Overall, CTCs may prove to perform better
at identifying novel targets and frequency of multiple known targets, whereas targets
identified by ctDNA may be useful in clinical trials (see Table 2). An important point is to
consider is that isolation of CTC is more costly and technically more challenging than that
of ctDNA.

Liquid biopsy samples are potentially suitable for molecular profiling. Circulating
tumor cells correspond to the population of metastatic cells; however, it is still uncertain
whether circulating cfDNAs accurately represent the primary cancer and/or metastases.
Moreover, it remains unclear whether cfDNA fragments provide appropriate information
to diagnose cancer or select treatments for a given patient. The aim of this review is to
evaluate the present status of the use of cfDNA from these two points of view. Just in 2021,
searching PubMed for the terms „liquid biopsy cancer”, “cfDNA”, and “ctDNA”, 1690,
1790, and 1500 publications were found, respectively. There is likely to be some overlap
between them, but the sheer number of publications highlights the increasing importance
of liquid biopsy in cancer research. In this article, our aim is to summarize the potential
of these techniques for decision making in medical oncology targeting clinical oncologists
primarily. It is not our goal to give detailed technical information concerning preparation
of cf/ctDNA, but instead we want to improve the understanding of the clinical oncologists
who are not experts in molecular biology, genetics, and next-generation sequencing (NGS).
Regarding the technological advances in the methodology including analytical aspects and
research areas, we refer to recent comprehensive reviews [10–16].

Since molecular biology data is integrated more and more in the decision making
of precision oncology, the clinical oncologist should gain insight into the many potential
applications of cf/ctDNA. It is important to note, that the maturation of liquid biopsy
will require multidisciplinary cooperation. The clinician should work together with the
molecular biologist, geneticist, and bioinformatic scientist in routine oncology care [17].
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Table 2. Future possibilities in the clinical management of ctDNA in solid tumors [18].

Tumor Type Screening Early Stage Monitoring for MRD Metastatic Disease To Prove Therapeutic Effect Targeted Therapy
Indicated Based on a ctDNA Test

Bladder [19–21]

Liquid biopsy in muscle-invasive
bladder cancer (MIBC) and

nonMIBC urinary-cfDNA for
those, who are not taking flexible

cystoscopy [22]

Yes Yes Yes Yes

Ongoing trials [23]:
deraazantinib, erdafitinib,
futibatinib, infigratinib,
lenvatinib, pemigatinib,
regorafenib, regoratinib,

Breast [24–28]

ctDNA assays hold substantial
potential as an early cancer

screening test, but very early
stage (asymptomatic) tumors are

not likely to release enough
ctDNA to be detectable in a

typical blood draw of 10 mL [29]

No Yes

Yes.
Brain and meningeal metastasis

from cerebrospinalfluid
ctDNAs [30,31]

Yes

Alpelisib [32]; Ribociklib,
Neratinib, abemaciklib
Trials ongoing: PADA-1,
SOLAR-1, MONALEESA-2,3,7;
BELLE-2,3; PALOMA-3,
POSEIDON, SUMMIT, BEECH,
I-SPY2, MONARCH2, LOTUS,
INSPIRE, Neo-ALTO, MONAL

CRC [33–38] Yes Yes Yes
Visceral metastases were found
to be associated with detectable

ctDNA [39]
Yes

Trials ongoing [40]:
CIRCULATE-Idea;
GALAXY, ALTAIR,
DYNAMIC, TRACC,
MEDOCC-CrEATENRG-GI-005,
VEGA, ACT-3, IMPROVE-IT2

Esophagus [41–43] Not good for screening [34] No Yes Yes No [44] Afatinib, crizotinib, ABBV-321
trial: serclutamabtalirine [45]

Gastric cc [46,47] Yes Yes Yes Yes Yes –

Head and neck [48,49] Not good for screening No Yes Yes After radiation therapy [50] –

Liver/bileduct [33,51–53] Yes
Even from the bile fluid [54] Yes Yes Yes Yes

Trials ongoing in HCC [55]:
Sorafenib, sunitinib, cedirabinib,
linifanib, dovotinib, brivanib

Melanoma malignum [56,57] No data No data Yes Yes Yes Dabrafenib plus trametinib [58]

NSCLC [59–63] Yes Yes Yes Yes Yes Durvalumab, amivantamab [64]

Ovary [35,65,66]
Specificity and sensitivity is better
than if CA-125and HE combined

wihcfDNA [67]
Not yet Not yet Yes Yes –

Pancreas [68–70] Not good for screening [71,72] No Yes Yes ctDNA and CA19- showed
similar trends –

Prostate cancer [73,74] Yes Yes Yes Yes Yes [75] –

SCLC [76,77] Yes Yes Yes
May predict the progression of

lung cancer patients earlier
than imaging [78]

yes –
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2. Liquid Biopsy

The term of liquid biopsy refers to obtaining any tumor-derived material from blood
or other fluids (e.g., such as cerebrospinal fluid, pleural effusion, ascites, saliva, bile, stool,
and urine) [79,80]. Liquid biopsy is a minimally invasive method to yield cell-free RNA and
DNA, tumor-related exosomes, extracellular-membrane-encased vesicles, and circulating
tumor cells for further analyses. It is important to note that cell-free RNA is less stable
than DNA [81]. Another possible definition could be that liquid biopsy is the analysis of
biomarkers in non-solid biological tissue, where cfDNA as a term refers to fragmented
DNA obtained from blood as a noncellular component.

3. Cell-Free DNA (cfDNA)

The cfDNA in healthy persons is mainly found as double-stranded fragments of
approximately 150 to 200 base pairs in length, as fetal and maternal samples show [82]. The
cfDNA was first described in 1948 [83], whereas elevated concentrations of disease-related
cfDNA were reported in systemic lupus erythematosus in 1966 [84]. The relationship of
cfDNA with cancer was reported in 1977 [85]. Somatic point mutations in cfDNA were
identified only in 1994 [86].

The cfDNA fragments are thought to originate mostly from apoptosis and necrosis,
both of which can occur in cancer tissue. There are three categories and three sources of
circulating DNA in colorectal cancer, normal extratumoral cells, tumor microenvironment
cells, neoplastic cells, and necrosis, apoptosis, and active secretion, respectively [87].

cfDNA levels can increase due to tissue injury caused by surgery, inflammation,
or even strenuous exercise [88]. Other factors influencing cfDNA levels might include
ethnicity, gender, age, smoking, body-mass index, and diet [89].

Moreover, cfDNA fragments of nontumor origin may increase during sample taking,
sample processing, ordue to hemolysis [90]. A recent study investigated the day-to-day
and within-day biological variations of cfDNA in healthy volunteers (n = 33) as well as in
cancer patients (n = 10) [91]. Plasma samples were taken over three days and on the second
day, every third hour for 12 h (noon, 3 pm, 6 pm, 9 pm). The between- and within-subject
variation was close to each other, 30% and 25%, respectively. No systemic difference from
day-to-day levels was observed regarding cfDNA (p = 0.061), but a significant decline was
detected during the day (p = 0.03).

The plasma half-life of these cfDNAs is possibly dependent on many processes (e.g.,
plasma nuclease activity, physiological or pathological conditions such as pregnancy,
hemodialysis, cancer); however, the exact method of the elimination is still not clearly
known. It is believed that urinary excretion could play an important role [92]. The cfDNA
can be used in cancer because the available data suggest that in the case of cancer, the
amount in plasma is elevated compared to healthy individuals. In healthy people, the
average cfDNA levels in plasma are found to be in the range from 0.3 to 15 ng per milliliter
and cancer patients have increased levels compared to persons without cancer [18,93].
The timing of taking the blood sample might influence the variability of cfDNA yield;
however, this study investigated only sixteen healthy volunteers [94]. Blood samples were
taken three times (7 am, noon, 5 pm), and for most subjects, maximal values of cfDNA
were observed at midday, but maximum values also occurred in the morning or afternoon,
revealing no statistically significant differences between the timepoints. The clinical course
might also influence the timing of liquid biopsy, e.g., sample taking at the time when the
cancer is responding to therapy might reduce the sensitivity of the ctDNA test.

Circulating tumor cells are also sources of cfDNA, but the amount produced by this
route is variable: from less than 0.1% to more than 90% of the total amount of cfDNA [95].
In prostate cancer, it was shown that there is a relationship between circulating tumor-
associated DNA in the blood and the occurrence of CTC [96]. On the other hand, it seems
that cfDNA significantly decreases in the blood following anticancer treatments such as
surgery, surgery and radiation, neoadjuvant chemotherapy, and surgery by the end of all
these treatments [97].
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Due to the short half-life and low level of cfDNA, special ultrasensitive techniques
were developed for isolation as well as analysis, but a detailed description of these are out
of the scope of this paper; thus, we are referring to some review papers [98–101].

The cfDNA pool also contains mitochondrial DNA released by the tumor [102–104].
Circular double-stranded mtDNA exists in the energy producing center of mitochondria up
to thousands of copies and contains a significant amount of unmethylated DNA. This cell-
free mitochondrial DNA (cfmtDNA) is still not well characterized; however, the cfmtDNA
seems to be more fragmented and its size ranges between 40–300 bp [105]. There are data,
however, about cfmtDNA in both healthy volunteers and cancer patients [106,107]. Based
on the mitochondrial DNA, it may be possible to differentiate cancer patients from the
controls [108].

It is of interest, however, that the amount of cfDNA decreases by approximately 90%
following radiation therapy indicating that necrosis might not be the primary pathway of
cfDNA release, since after radiation, an increase would be expected [18]. A potential expla-
nation of this phenomenon is the observed reduction due to radiation-induced inhibition
of cfDNA release pathways in healthy cells [109].

Apart from cellular destruction, some studies indicate that cfDNA may be also derived
from active cellular secretion [110,111]. Data obtained from in vitro cell culture studies
have shown that cfDNA can be found in the culture medium. Its level did not correlate
either with cellular destruction (apoptosis, necrosis), or with DNA replication [112,113].
The secreted cfDNA fragments are usually in the range of 1000–3000 bp which is different
from those associated with apoptosis or necrosis [114]. The exact mechanisms of this active
release of cfDNA are still obscure but it might be due to genomic instability [115].

There is another regulated source of DNA release into the human blood, namely
fragments associated with extracellular vesicles, such as exosomes. These vesicles carry
cfDNA fragments ranging from 30 bp to 20,000 bp [116–118]. The problem with evaluation
of exosomal DNA is that the ratio of cfDNA localized in the interior of vesicles vs. the
ones bound to the exterior surface is not yet exactly determined. This makes it difficult to
analyze the cfDNA content of exosomes playing a role in cell regulation.

It is now clear that cfDNA originates from many sources and is released to the blood
through various mechanisms. These mechanisms could be modulated by several en-
vironmental and/or biological factors; thus, cfDNA may be unique to each individual.
Consequently, individual monitoring of cfDNA might offer the best information from a
given patient. It has clinical relevance that the application of cfDNA testing is growing
rapidly, but no practice guidelines exist [119].

Due to the lysis of the normal cells in the sample, contamination continuously can
occur, since the isolated cfDNA fragments from the plasma will contain fragments of the
normal cell DNA. In the isolation of ctDNA from cfDNA, the two critical issues to be
considered are stability and purity. Consequently, quick removal of the cells, as well as
obtaining the cfDNA fraction from the plasma is important. In fact, the purity and cfDNA
concentration shows correlation with processing time and may increase the variability
of the results; thus, it makes the interpretation of data difficult [120]. To overcome this
problem, cfDNA collection tubes were developed which contain additives stabilizing both
cfDNA and the normal cells for up to 14 days at room temperature [121]. In the case
of cancer patients, the ratio of cfDNA originating from normal and cancer cells is very
variable but generally the amount of ctDNA is low, namely, among all alleles (including
wild-type alleles), the percentage of variant alleles is scarce [122]. In fact, the ctDNA is
extremely under-represented compared to the massive background of normal cfDNA, and
thus limited in yield. However, the modern techniques are able to identify and quantify
alterations of allele frequencies in cfDNA of 0.01% or less [123]. In healthy individuals, it is
now possible to detect genomic alterations from cfDNA with a limit as low as 0.08% allelic
frequency; thus, screening for cancer by cfDNA is possible [124]. It is important to note that
different cancers could share common mutations (e.g., KRAS, BRAF, TP53); thus, detecting
these from ctDNA will not give information from the location of the primary tumor [125].
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Moreover, cfDNA from benign lesions may also contain mutations found in cancers that
will make the proper evaluation of the cfDNA test result harder. In fact, it was shown that
benign nevi contained the same BRAF mutation found in melanoma [126]. The detectable
mutations in cfDNA are often derived from either aberrant or benign clonal populations of
the bone marrow [127]. The frequency of clonal hematopoiesis of indeterminate potential
(CHIP), as this phenomenon is termed, could increase significantly with age, and over the
age of 70, may occur in more than 10% of patients [128,129]. There are data indicating
that parallel sequencing of white blood cells might overcome the problem of mutations
originating from CHIP. It is important to understand that variants detected in ctDNA test
could be either of germline origin or may not be related to tumor, e.g., CHIP. Follow-up
testing of leukocyte DNA could decide if the observed variant is associated with CHIP.
This is important since CHIP is a frequent cause of false-positive results in ctDNA tests.
Finally, resistant clones to therapy frequently develop in cancer tissues and may overgrow
the sensitive cells. In fact, in a retrospective analysis of cfDNA from 21,807 late-stage
cancer patients who received therapy and represented more than fifty cancer types revealed
sub-clonal structures as well as emerging resistance [130].

The acquired resistance is frequently characterized by outgrowth of multiple resistant
subclones in a patient receiving therapy [131]. These resistant clones can occur in the
primary tumor or in a distinct metastatic site. Consequently, tumor biopsy of a single
lesion might under-represent the tumor heterogeneity while the cfDNA, originating from
all tumor tissues, reflects it more accurately. In fact, data available comparing multiple
tumor biopsies with cfDNA obtained from a single plasma sample can cover all unique
alterations observed in different metastatic sites [132].

In a study, data was obtained by both tissue sampling and liquid biopsy of 229 lung can-
cer patients [133]. The liquid biopsy detected 82 (35.8%) while the tissue biopsy identified
47 (20.5%) patients with targetable mutations. Thus, liquid biopsy using cfDNA/ctDNA
might be a suitable alternative to tissue biopsy for those who have no access to tissue
biopsy (e.g., high risk of tissue sampling) or the tissue biopsy sample is of low quality.
Using repeated liquid biopsy for monitoring the patient’s disease state may also lead to
early detection of emergent genetic alterations driving acquired resistance to the applied
therapy and a provide foundation to therapy switch. In a study, early signs of secondary
drug resistance were detected by monitoring cancer patients over a two-year period [134].

Considering that liquid biopsy is a minimally invasive intervention and easily repeat-
able, it might be used for longitudinal studies monitoring progression from pre-cancerous
states to transforming to cancer.

In a recent paper, 1370 cancer clinical trials were identified which involved liquid
biopsy. The data obtained regarding early detection is promising, by observing progres-
sion, or real-time monitoring of the development of acquired resistance by analyzing
cfDNA [135]. There are, however, several issues to standardize before applying liquid
biopsy in clinical oncology as a routine test including blood collection tubes, handling the
obtained sample material, isolation, and quantification of cfDNA.

Due to the accumulation of data on DNA methylation, a new paradigm emerged
regarding not only cellular regulation but also for the treatment of diseases. DNA methy-
lation is an epigenetic modification which is necessary to the normal genome regulation
and development. In fact, the role of epigenetics is to study those heritable changes that
occur in the phenotype or gene expression but not due to the changes in the primary DNA
sequence. There are other recognized epigenetic mechanisms as well including microR-
NAs, long noncoding RNAs, chromatin remodeling, and post-translational modification of
histones [136–138]. These epigenetic mechanisms contribute to the regulation of several
important molecular processes in the nucleus including repair, replication, RNA processing,
and transcription, as well as modulating the chromatin structure.

The vertebrae genomes are predominantly methylated at the dinucleotideCpG. The
CpG sites are those regions of DNA where a cytosine (C) nucleotide is followed by a
guanine (G) nucleotide in the linear sequence of bases, in 5′ → 3′ direction and not a C–G
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bound between the two DNA strands. When the CpG sites occur with high frequency in
certain parts of the genome, they are called CpG islands (or CG islands). In the CpG, the
C can be methylated by adding a methyl group to the fifth carbon of C (5mC) via DNA
methyltransferase. In fact, in mammals the C-s are methylated at the CpG sites 70–80% [139].
Similar data was obtained regarding normal human cells. In the human fibroblast cell line,
the C is methylated 4.25% in the whole genome, the CpGs were methylated 67.7%,and
99.98% of mC occurred in CpG. In human embryonic stem cell lines, these were 5.83%,
82.7%, and 25%, respectively [140].

The methylated-C is further modified by the TET (ten-eleven translocation) enzymes.
In this process, 5mC is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine
(5fC), and 5-carboxylcytosine (5caC). The regeneration of 5fC and 5caC to cytosine is possi-
ble due to the base excision repair as well as the thymidine DNA glycosylase pathway. It
is important to note, that methylating the C can change the expression of a gene, and the
methylated-Cs often mutate to thymines; both of these mechanisms can contribute to the
development of cancer. In normal health status, the CpG islands are mostly unmethylated,
but the CpG dinucleotides outside CpG islands are usually methylated. In the case of
malignant transformation of the cells, these methylation patterns reverse to the opposite,
namely, the CpG dinucleotides become hypomethylated outside the CpG islands and hy-
permethylation of CpG islands occurs [141]. Moreover, in humans about 70% of promoters
can be found near to the transcription start-site of a gene (proximal promoters) and contain
CpG islands [142,143].

It is known that at the genomic level, the onset or the progression of a tumor causes
changes in DNA methylation that proves that epigenetic modulation occurs in cancer. The
importance of epigenetics in cancer is underlined by the fact that in certain epigenomic
environments, the loss of p53 function or the tumor-driving effects of KRAS could be
promoted [144,145]. The aberrant methylation of DNA is an early event of tumor devel-
opment, and it is present abundantly during the entire disease process [146]. In fact, the
cancer-specific changes of DNA methylation could occur even before the occurrence of
gene mutations during tumorgenesis [147]. The main difference between normal tissue
and cancer is that cancer tissues contain much less hydroxymethylC (hmC). In fact, almost
any type of cancer tissue shows a highly significant reduction regarding hmC, but there
is only a mild loss of mC [148]. It is still not known why hmC is lost in the case of cancer.
One potential explanation is that due to the fast proliferation the enzymatic machinery
(TET proteins) may be exhausted. In contrast, it is known that dormant cancer cells are
also negative for hmC. This might help to detect non-proliferating cancer cells. One of the
main aims of liquid biopsies is to detect cancer even if the imaging tests are negative. It is
important to note, that the methylation patterns are usually tissue-specific; thus, the distinct
hmC patterns make it possible not only to identify cancer but also the tissue of origin,
which is important in the case of unknown primary tumors. Finally, the characteristic
cancer mutations may occur in a relatively low number of genetic locations, but there
are about 30 million methylation sites scattered around across the human genome; thus,
they provide a rich signal for cancer detection [149]. Unfortunately, there are limitations
to the cfDNA analysis, since the epigenetic alterations found in cancer may also occur in
noncancer tissues, resulting in false positivity [150]. As an example, several methylation
alterations are shared by esophageal cancer and Barrett’s esophagus [151]. False-negative
outcomes are also possible if the detection signaling is below the limit of detection. The use
of the methylation pattern of ctDNA, however, could acquire an important role in oncology.
In a recent paper, it was shown that based on ctDNA methylation profile discrimination
among intracranial tumors (e.g., IDH mutant gliomas, IDH wild-type gliomas, menin-
giomas, hemangiopericytomas, low-grade glial-neuronal tumors, and brain metastasis of
unknown primary cancer) is possible [152]. This is important since invasive neurosurgical
intervention for diagnoses might be avoided by this approach.

It should be noted, however, that cfDNA may contain exceedingly low allele frequen-
cies which are close or below the error rate of the applied techniques (PCR, NGS). The
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molecular barcoding techniques may overcome this problem [153]. Moreover, optimization
of this method might lead to the detection and analysis of ctDNA in the clinical practice.
This is because ctDNA analyses can provide much more information than just mutation
analysis including size fragment patterns, transcriptomics, methylation status, or even viral
load [154].

4. The Circulating Tumor DNA (ctDNA)

Personalized therapy in oncology based on the knowledge that the molecular changes
in the background of a patient’s tumor provide a chance to selectively target these genetic
changes in the cancer cells with curative intent. Thus, targeting cancer-related mutations
becomes a fundamental part of oncology [155]. The ctDNA together with tissue samples or
CTCs are the source to find out these cancer-related genetic alterations.

The amount of ctDNA reflects tumor burden, namely, sums up to 1% in early-stage
cancer and up to 40% in late-stage disease. It is important to note, that the amount of
tumor burden and the level of ctDNA do not necessarily reflect each other, indicating
differences in the rate of cell death in different types of cancers [156]. Thus, ctDNA could
only be detected in individuals having cancer. Moreover, the ctDNA fragments obtained
by liquid biopsy contain epigenetic abnormalities, e.g., methylation changes, as well as
genetic alterations characteristic to the primary cancer which can be utilized in diagnosing
the type of the tumor, selecting appropriate treatment, detecting recurrence, or predicting
the prognosis [12]. Thus, ctDNA could be applied for different objectives at different
timepoints during the course ofthe cancer. There are attempts for the monitoring as well as
adapting of cancer treatment by using ctDNA kinetics [157]. To achieve clinically useful
ctDNA kinetic tools, however, requires validated measurement methods, timepoints, and
advanced bioinformatics.

Moreover, it seems that the ctDNA (~134–144 bp) that were reported are shorter
than that of cfDNA (~166 bp) [157,158]. Others found the opposite, namely, the cfDNA
of apoptotic origin consist of fragments shorter than 1000 bp, while fragments released
by exosomes, or necrotic (tumor) cells are longer in size over 1000 bp [109]. In fact, data
indicate that the vast majority of ctDNA in plasma originates from apoptosis. Consequently,
their size is in the range to be nucleosome protected DNA (range 120–220 bp; peak around
167 bp) [159]. It should be kept in mind, however, that the ctDNA could contain very
long-sized fragments (~10,000 bp) due to the necrosis of tumor cells [160]. If larger DNA
fragments are increased in plasma, that might result in false negativity due to interference
with the detection of ctDNA.

Since the discrimination of ctDNA from the normal cfDNA based on mutation hotspots
is limited, it seems that the analysis of the methylation of ctDNA is a more sensitive ap-
proach for diagnosing cancer as well as predicting prognosis [161,162]. DNA methylation
is a covalent modification that changes gene expression consequently. DNA methylation
is a mechanism for transmitting and perpetuating epigenetic information through DNA
replication and maintaining that during cell divisions. Thus, it became a therapeutic target
in cancer and other diseases [163,164]. The methylation patterns of DNA are stable and do
not change in purified genomic material. The DNA or cfDNA, and ctDNA methylation
pattern is thought to be a sensitive and reliable method not only for the diagnosis of cancer
but it may also be a prognostic marker [165]. Recently, several technologies were devel-
oped to study the methylation of cell-free DNA (methylome) including next-generation
sequencing, genome-wide methylation profiling, and DNA methylation analysis [166].
Since during bisulfite DNA sequencing, false positivity is a concern, it is rarely used to-
day. The new technologies do not need bisulfite treatment of the DNA. NGS is suitable
for genome-wide methylation studies because DNA methylation sites in a single-base
resolution could be detected [167]. The cfDNA methylation analysis in cancer has the
potential of clinical applications, e.g., investigating single-gene methylation profiles in
different cancer types [168]. Recently emerged the possibility to develop a single test for
early cancer detection (stMCED) by using ctDNA methylation fingerprints as a biomarker
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of malignancies [169]. The “methylome” leads to a better understanding of the onset and
the phenotype evolution of a cancer. Recently, it was shown that tissue damage caused by
metastasis induces the release of cfDNA from affected tissues to the circulation and this can
be detected by using tissue-specific methylation markers [170]. This is a breakthrough, if
confirmed, because then liquid biopsy is not only able to detect metastatic disease but also
to suggest the tissue location of metastases. This method may be used to find the location
of a cancer of unknown primary origin [171].

5. The Applications of cfDNA and ctDNA in Clinical Oncology

It would be important if ctDNA could replace tumor tissue biopsy since obtaining flu-
ids is easier, less risky, and less painful. Thus, liquid biopsy makes it possible to monitor the
tumor DNA over time and makes it also possible to alter the treatment if necessary. This is
especially important if the patient has several metastatic sites because ctDNA may represent
the heterogeneity of metastatic sites better than tissue biopsy from one metastasis. In fact,
liquid biopsy could represent the whole picture of a metastatic or advanced cancer patient’s
malignancy [172,173]. Consequently, selecting treatment for multiple metastatic patients
might lead to better outcomes if the decision making is based on the results of liquid biopsy,
but this is still to be proven. In fact, in some studies, low concordance regarding DNA alter-
ation comparing tumor and plasma samples from the same patient are suggested [174,175].
Large-scale, well-designed studies show an 80–90% concordance between DNA samples
obtained from plasma and tumor simultaneously [176,177]. Moreover, when the mutation
frequencies of cfDNA and tissue sequencing databases were compared in colorectal cancer,
it was found to be closely matched [178]. The same study also revealed that regarding
anti-EGFR mAb therapy, patients may harbor up to thirteen different resistance alterations
and less than 10% of colorectal cancer patients have only one resistance alteration. Thus,
the cfDNA and ctDNA test might become a valuable tool for detecting resistance to a drug
before initiating or deciding to rechallenge with anti-EGFRtherapy [179]. The driver genes
are expected to be more important in time regarding the decision making in oncology [180].

However, available data shows that in the case of metastatic cancer, approximately
15% of the samples taken will not contain enough cfDNA for molecular profiling [181,182].
If there is enough plasma DNA in the biopsy, the level seems to correlate over time with
either the tumor burden or response to therapy. In a prospective study, the results of tumor
biopsy and liquid biopsy were compared in 42 gastrointestinal cancer patients following
progression, regarding possible acquired resistance alterations. Investigating cfDNA, the
data revealed that in the case of liquid biopsy, when clinically relevant resistance alterations
or even multiple resistance mechanisms were found in the matched tumor biopsy, then no
resistance was detected in 78% of cases [183].

In early stage TNBC (triple-negative breast cancer) revealed that the probability of
distant disease-free survival at 24 months for ctDNA-negative and positive patients were
56% and 81%, respectively [184]. The follow-up of TNBC patients who received neoadju-
vant therapy showed that the first sign of metastatic disease—irrespective of other signs
or symptoms—in about three quarters of patients, was the persistence or reappearance of
ctDNA [185].

These data obviously predict the increasing role of liquid biopsy in the near future.
In the era of targeted therapy, the molecular profiling of cancer DNA has become a

standard approach in oncology. The use of ctDNA could increase the number of patients
receiving targeted therapy. The ctDNA test could help in selecting the most appropriate
treatment considering not only the efficacy but also the issue of potential drug resis-
tance [181]. Due to the low risk of obtaining ctDNA, the test can be useful in several clinical
scenarios (Figure 1).
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Figure 1. The potential use of ctDNA in clinical decision making.

Data are accumulating that plasma-derived ctDNA contains genetic material which is
representative of the tumor genetics. In fact, the mutations observed in the primary tumor
as well as in the metastatic sites can be captured by ctDNA. Thus, ctDNA is suitable not
only for diagnosis but also for selecting an appropriate targeted therapy for the individual
patients [116]. It is important to note, however, that among cancer patients with the same
type of malignant disease, there is significant variability in the amount of ctDNA reflecting
the biological differences of the dynamics of cell death in the individual tumors. Moreover,
in the case of different tumor types, the frequency of detecting ctDNA shows great variation.

6. Cell-Free DNA in Diagnosis

The half-life of cfDNA is short; consequently, it may be appropriate for monitoring the
current tumor burden in response to therapy. In fact, the plasma half-life of the circulating
cfDNA including ctDNA is between 16 min and 2.5 h. Thus, liquid biopsies seem to allow
real-time monitoring of the tumor burden [186]. This would be a great advantage since the
serum half-life of standard tumor markers such as CA-125 and CEA is days or weeks [37].
There are data indicating that changes in ctDNA may be more accurate in the prediction of
treatment response than traditional tumor markers [187].

The mechanism of clearance is poorly understood but it may involve DNase activ-
ity, uptake by the liver and spleen following macrophagic degradation, or renal excre-
tion [188–191]. The clearance could be further influenced by the association of the cfDNA
fragments to serum proteins including C-reactive protein, albumin, HDL, transferrin, pro-
thrombin, fibrinogen, fibrin, etc. [192]. The clearance might be further altered by the fact
that cfDNA can be recognized by different cell surface DNA-binding proteins following
celluptake for possible degradation [193].

Thus, a machine learning model was developed (DNA evaluation of fragments for
early interception—DELFI) for detecting ctDNA by genome-wide analysis of cfDNA frag-
mentation. In this prospective study, the fragmentation profile of 236 cancer patients having
different tumors (breast, colorectal, lung, ovarian, pancreatic, gastric, or bile duct) were
compared to data obtained from 245 healthy individuals. The sensitivity of this model was
different among cancer types (ranging 57–99%) at 98% specificity. In 75% of patients, the
fragmentation profile was useful to detect the tissue of origin. By combining DELFI with
mutation-based cfDNA, the cancer detection rate was further improved (91%) [194]. It is be-
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lieved that the sensitivity of ctDNA tests could be enhanced if combined with methylation
or fragmentation patterns [195,196].

In a recent study, the same model was applied to study the fragmentome of lung
cancer [197]. During this prospective study, individuals who had a risk for lung cancer
(heavy smokers, age 50–80 years) participated. The fragmentome was analyzed together
with CEA level, clinical risk factors, as well as CT imaging was carried out. Out of
365 individuals studied, 129 were found to have lung cancer. The DELFI score of the
cancer patients was not affected by acute or chronic inflammation. Moreover, despite of the
small number of SCLC, data indicates that the analysis of the fragmentation profile may be
able to differentiate among lung cancers of different histology. Additionally, the ctDNA
detection could be a powerful biomarker for observing minimal residual disease or relapse
of NSCLC. Applying post-treatment surveillance, the sensitivity and specificity to detect
relapse ranges from 82–100% and 70–100%, respectively [198].

A recent meta-analysis on 27 studies including 3459 patients showed that post-
operative ctDNA is a strong prognostic marker of RFS in CRC [199]. The ctDNA serial
monitoring of patients with negative radiographic evidence of the disease might outper-
form the traditional pathologic prognostic approach for the evaluation of risk of recurrence
in CRC. The ctDNA test also allows for the early detection of relapse in stage II colon
cancer [200]. The ctDNA testing might also be useful to detect MRD across luminal GI
malignancies, in particular CRC [201].

Breast cancer diagnosis is based upon immunohistochemistry. Data indicate that
following neoadjuvant treatment, the ctDNA clearance was associated with a higher rate of
complete pathological response. The ctDNA test is able to detect early breast cancer [25].
In metastatic breast cancer, ctDNA can guide the optimal treatment sequence to be fol-
lowed [24]. In breast cancer, the cerebrospinal fluid is used to detect leptomeningeal
metastasis; however, this may require repeated lumbar puncture. Thus, plasma ctDNA
analysis of 30 patients with known leptomeningeal metastasis was carried out to assess
the potential of ctDNA in diagnosing this disease stage. Plasma ctDNA yield was lim-
ited to patients who had previous whole-brain irradiation and had extracranial disease
progression [28].

Among gynecological cancers, the endometrial cancer is the most frequently occurring
and ovarian cancer is the most lethal one. At present, the final diagnosis of these tumors is
based upon histopathology obtained from the tumor tissue. Recently, the use of cfDNA
in both ovarian cancer (OC) and endometrial cancer (EC) was explored [202,203]. These
papers revealed that the use of cfDNA in OC is limited to the advanced stage or types
of OC, and the ctDNA in EC patients was detected in only 42.2% of cases mainly with
aggressive disease. Thus, further large-scale studies are needed to evaluate the applicability
of cfDNA in these indications especially in diagnosing early-stage cancers.

Despite prostate cancer (PC) being the primary cause of death among men in devel-
oped countries, screening by prostate-specific antigen has a low specificity (about 15%
of asymptomatic PC patients do not present with elevated PSA). Thus, more sensitive
biomarkers are needed. Methylation of the CpG islands occurs in PC [204]. In fact, DNA
aberrations found on the androgen receptor gene detected by cfDNA strongly correlated
with the outcome of castrate-resistant PC patients [205]. Targeted sequencing using CTC or
cfDNA is applied to guide androgen-directed therapy [206]. The amount of cfDNA did not
relate to the presence of PC, but higher amountswere found in advanced disease [73]. The
same study, however, revealed that there are some potential markers to identify aggressive
forms (HOXD8rc, CXCL14, SLC16A5rc, and GRASP) or progression (DOCKK2, HAPLN3,
and FBXO30) of PC, but the methylation of some of these markers found in the tissue
samples was not detected in ctDNA. These data indicate the uncertainty of using ctDNA in
PC. In a study, target sequencing of 182 serial ctDNA samples from 53 advanced urothelial
cancer patients was performed [207]. The serial ctDNA data and monitoring the variant
allele frequencies was combined with clinical factors. An increase of ctDNA aggregate
variant allele frequencies by ≥1 predicted disease progression within five months in 90% of
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patients. However, patients with ctDNA aggregate variant allele frequencies ≤0.7 achieved
more than six months of clinical responses. Variant allele frequency (VAF) of gene mu-
tations is defined as the number of variant reads divided by the number of total reads,
reported as a percentage. The information on VAF is thought to be important since it may
provide evidence of the subclonality of a variant. The subclonal variants are believed to
insufficiently react to a therapy targeting the variant. A recent meta-analysis indicates
that a high VAF is an independent, adverse prognostic factor for OS in TP53-mutant MDS
patients [208]. If the ctDNA is low in the sample, that limits the reliable assessment of
VAF. At present, VAF is not to be used in clinical decision making because of a lack of clear
evidence that true subclonal variants are predictive of lack of response.

One of the most important aims of using ctDNA in clinical oncology is to detect the
presence of a tumor without clinically evident disease. Data indicate that the level of
circulating tumor DNA may be increasing weeks or months before progression detected
by imaging services [209]. If tumor-specific mutations persist in cfDNA samples taken
four weeks following surgery that could be considered as evidence of residual tumor.
The relationship between post-operative detection of tumor-specific mutations in cfDNA
analysis and residual disease, as well as tumor relapse, was also proven in the case of breast,
lungand pancreatic cancer [25,78,210]. In advanced esophageal cancer, ctDNA is highly
diagnostic but it is not appropriate for early diagnosis of esophageal cancer [41]. Among
colon cancer patients with stage II disease who did not receive adjuvant chemotherapy,
those who had persistent tumor-specific mutations detected in the liquid biopsy had a risk
of residual tumor which was 18 times higher (p < 0.001) compared to patients with unde-
tectable tumor-specific mutations [201]. In stage III colorectal cancer, using serial ctDNA
measurements could be used for risk stratification since repeated ctDNA measurements
showed a strong correlation with tumor growth rate [211]. These data indicate that ctDNA
may be useful to detect clinically silent tumors of individuals thought to be healthy. In a
systematic review analyzing the literature, it was found that ctDNA could be useful for
predicting the treatment response of neoadjuvant chemo-radiotherapy, as well as poten-
tially serving as a prognostic marker for locally advanced rectal cancer [212]. Moreover,
ctDNA analysis may play an important role in clinical trials influencing trial designs. In
fact, in oncology clinical trials, the concept of ctDNA-based molecular residual disease is
introduced [213]. Data is accumulating that in the case of adjuvant immunotherapy, the
benefit is restricted to ctDNA-positive cases [214].

Unfortunately, liquid biopsy for the detection of early stages of tumors is still a problem
sometimes due to the small tumor bulk since the low plasma ctDNA may be undetectable
with the methods available today [215].

7. The cfDNA and ctDNA in Cancer Treatment

There is scarce data available that the ctDNA level could increase transiently following
targeted therapy and this may indicate the effectiveness of therapy [216]. Quick temporary
increases of ctDNA level might also occur following chemotherapy indicating increased
release but not necessarily indicating the therapeutic outcome. Moreover, if the therapy
is effective, the cfDNA level decreases significantly within 1–2 weeks. Early decrease
of ctDNA after initiation of therapy might not be the sign of effective therapy but the
temporary inhibition of ctDNA release. Therefore, the repetition of the ctDNA test at later
time is suggested.

Detecting treatment response early may reduce the duration of time of insufficient
therapy since the imaging control to evaluate treatment response generally occurs every
2–3 months. Regarding targeted therapy, it was found that resistance to the drug can
be detected much earlier in cfDNA samples than observing by imaging or applying the
standard tumormarkers [217,218]. Moreover, liquid biopsies seem to have the potential
to discover novel cancer biomarkers for tumor diagnosis and prognosis [219,220]. The
cfDNA test in ER-positive breast cancer revealed one or more ESR1 mutations indicating
a poor outcome for an additional line of anti-hormonal treatment [221]. In advanced
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breast cancer, ctDNA analysis detected uncommon but targetable mutations of HER2
and AKT1 mutations; the first one being sensitive to neratinib and the second one being
sensitive to capivasertib, indicating the clinical value of ctDNA tests [222]. In fact, in a
recent clinical trial in metastatic triple-negative breast cancer, it was found that liquid
biopsy is a quicker approach for molecular testing than tissue biopsy [223]. This is another
advantage of liquid biopsy since clinical oncology is an area racing with time; the more
quickly the adequate therapy is initiated, the better the outcome can be. In a study, the use
of ctDNA was tested to predict response to neoadjuvant therapy in breast cancer. Blood
samples were obtained prior therapy, following four cycles of chemotherapy or 12 weeks of
aromatase inhibitor treatment (middle of the therapy (MT)) and at surgery (end of treatment
(ET)). Prior to therapy, ctDNA was detected in 63/145 (43.4%) of patients. In the case of
25/63 (39.7%) patients, the ctDNA persisted at MT and 15/53 (23.8%) at ET. Among those
with persisting ctDNA, there was significantly more residual disease detected at surgery.
Moreover, out of 31 patients with detectable ctDNA during the treatment (MT), 30 patients
were non-responders (96.8%). Thus, the authors concluded that persistent ctDNA during
treatment may negatively predict the response in the case of neoadjuvant treatment of breast
cancer [224]. A systematic review and meta-analysis investigating a similar question found
that the detection of ctDNA at either baseline treatment or after completing neoadjuvant
treatment is associated with significantly worse overall survival, HR 19.1, 95% CI: 6.9–53.04
and HR 4.00, 95% CI: 1.90–8.42, respectively [225]. An interesting finding of this paper was
that the detection of ctDNA did not associate with the probability of achieving pathological
complete remission. Thus, the use of ctDNA to evaluate neoadjuvant treatment is still
obscure and requires further evaluation.

The potential of cfDNA in lung cancer was analyzed in 218 patients before the start
of platinum-based chemotherapy and after two or three cycle of treatment [226]. Those
patients who had the baseline value of cfDNA in the highest tertile had significantly worse
disease-free (DFS) and overall survival (OS) rates compared to those with lower concentra-
tions (median OS 10 months (95% CI, 10.7–13.9) versus 14.2 months (95% CI, 12.6–15.8),
respectively; p = 0.001). Increased levels of cfDNA were found as an independent prognos-
tic factor in multivariate analysis; however, the total cfDNA did not predict response to
chemotherapy.

A good example for using ctDNA in therapy decision making is the identification of
the emergence of the EGFR (epidermal growth factor receptor) T790M gatekeeper mutation
(found in around 50% of lung cancer patients) by applying EGFR-inhibitory treatment in
EGFR-mutated NSCLC (non-small-cell lung cancer) [227]. Another important finding of
this study was that the cfDNA test could identify the coexistence of the T790M mutation
and MET amplification, too, since these patients with the coexisting alteration might
not benefit from changing to a third-generation EGFR inhibitor. It was shown also that
the test results of tumor tissue tests and cfDNA of the same patients matched in high
degree regarding the detection of the T790M mutation [228]. This single mutation can be
successfully treated with third-generation EGFR inhibitors [229]. However, the clinical
problem is that resistance mechanisms can also develop for the third-generation EGFR
inhibitors which are different between patients and heterogeneous among tumor sites.
NGS of cfDNA is suitable to clarify the resistance mechanisms of a given patient. To
overcome this drug resistance, novel combinations [7,8] as well the fourth-generation
EGFR-TKIs were developed [230]. In the case of SCLC, data indicate that genotyping by
PCR could be inadequate since the EGFR L747_A755delinsSS exon 19 deletion was not
detected by the real-time PCR but it was found by NGS [231]. This finding indicates the
adequate comparisons of different methods used before implementing any of them in
clinical practice. The programmed-death-ligand 1–programmed-death-1 (PD-L1–PD-1)
inhibitors are proved to be effective for NSCLC patients with extensive PD-L1 expression
or high tumor mutational burden. Thus, a new method was developed for analyzing
the tumor mutation burden using ctDNA. The retrospective analysis of two large-scale
clinical trials showed that those NSCLC patients can be identified who will benefit from
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atezolizumab therapy in the second line or higher [232]. In fact, recent studies in various
cancer types such as colon cancer, melanoma, urothelial cancer, and NSCLC indicated
that ctDNA analysis can identify those patients who can respond to immune checkpoint
inhibitor therapy; moreover, the pseudoprogression under therapy may be separable from
the real clinical progression [233,234]. The tumor mutational burden (TMB) is the total
number of mutations found in the DNA of the cancer cells. It is considered as a special
biomarker since it is believed that tumors with a high number of mutations may respond
to certain types of immunotherapy. The data, however, are contradictory. In a recent paper,
data of 10,000 patients with solid tumors were analyzed and did not support that high
TMB is a biomarker for treatment with immune checkpoint blockade (ICB) in any solid
cancer types [235]. Others, in smaller patient populations, found a correlation with high
TMB and the favorable outcome with ICB treatment [236,237]. Data is accumulating that
blood-based TMB, by analyzing ctDNA obtained by liquid biopsy, is feasible [238]. At
present, immunotherapy should not be based on blood TMB alone. It was found that
higher ctDNA TMB, at the current commercial sequencing length, reflects worse clinical
outcomes in NSCLC [239]. Nowadays, in the case of metastatic NSCLC, ctDNA analysis
could provide useful information in specific clinical scenarios [240]. The application of
blood TMB is still uncertain and not a routine part of clinical decision making.

In the case of colorectal cancer, it was shown that patients with BRAFV600E-mutant
cancer, the changes of this mutation level in cfDNA one month after the initiation of the
targeted therapy shows a statistically significant correlation with response [241]. Namely,
the responding patients showed a 90% or more reduction in ctDNA level. This is important
since CEA did not show a correlation with treatment response. In fact, this data indicates
that the cfDNA test is more suitable to predicting response to therapy than the standard
tumor markers routinely applied in oncology. Moreover, liquid biopsy is a potentially
useful technique to discover novel cancer biomarkers [221]. KRAS and NRAS mutations
detected in metastatic colorectal cancer can predict negative response to anti-EGFR therapy.
The ctDNA test could detect these mutations. Thus, comparison of two different methods
of ctDNA mutational analysis (Beaming digital PCR [OncoBEAM] and IdyllactDNA qPCR)
was carried out. In the study, 47 metastatic colorectal cancer patients participated who
were previously tested for the RAS mutation using the tumor tissue. The overall agreement
between the two PCR analyses was 91.7%. The concordance between tumor tissue and
ctDNA analyses using the OncoBEAM and Idylla assays was 83% and 78.7%, respectively,
which was improved to 96.2% and 88.5%, respectively, in treatment-naive patients. The
authors concluded that analysis of ctDNA is a viable strategy for the clinical management
of mCRC patients [242]. Data are accumulating that ctDNA in CRC patients might be
used for surveillance since it detects recurrence 3–11.5 months earlier than imaging. The
ctDNA decreases during first- or second-line therapy correlate with tumor response [37].
The ctDNA also has a high prognostic value in patients with resected CRC [243].

Detecting the high tumor burden is important from a clinical point of view since data
are accumulating that this has a negative effect on cancer immunity. The ctDNA or circulat-
ing tumor cells bear the potential of indicating high tumor burden. Thus, measuring ctDNA
might be an indicator for the use of immune-checkpoint inhibitors in the future [244].

The development of acquired resistance is one of the main obstacles of successful
therapy in medical oncology. Acquired resistance is driven by the overgrowth of tumor
cell clones with pre-existing resistance alterations [245]. Unfortunately, recent data indicate
that many patients in fact, harbor more than one resistant subclone at the time of progres-
sion [27,246,247]. Since these resistant subclones may be found in the primary tumor or
in the metastatic lesions [218]. Thus, the biopsy of one lesion may be unable to detect
important resistance mechanisms developed outside of the biopsied region [187,248]. The
ctDNA could be used to detect the emergence of acquired resistance [43,249].
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8. Combined Analysis of ctDNA with Other Parameters

To expand possible applications of liquid biopsy, we must develop methodologies that
enable simultaneous evaluation of ctDNA, ctRNA, CTC, and exosomes. In fact, the analysis
of various samples obtained by liquid biopsy can be combined to improve the chances of
more accurate information [250]. Scarce data are available regarding the combined use of
the so-called circulome parameters. The circulome could reflect the tumor heterogeneity
since these components (e.g., CTC, ECV, ctDNA, ctRNA) are derived from each cancer
clone. Consequently, each blood sample reflects real-time information of the cancer [251].
The ctRNAs, EVs, and TEPs are relatively new players of the tumor circulome, but each
has many promising potentials from diagnosis to prognosis and beyond at all stages of
cancer [252]. The ctRNA could exist as free-floating, encased in exosomes, or carried by
platelets [253]. Combined examination of RNAs contained in the exosomes and ctDNA
have increased the sensitivity for mutation detection for EGFR in NSCLC, especially in
cases with low levels of nucleic acids [254]. Joint analysis of ctRNA and ctDNA was highly
sensitive to explore genomic alterations in metastatic castration-resistant prostate cancer in
response to GT0918 (a potent AR antagonist) treatment [255]. Data indicate that a combined
assay of CTC/ctDNA could enhance the sensitivity to diagnose primary lung cancer and
may improve the early detection [60,61]. CTCs of the breast cancer might be able to predict
the risk of CNS metastasis, since they show distinctive “breast cancer brain metastasis
gene signature” [30]. It is not known yet, that ctDNA could provide such information.
CTC may reveal the genetic signature of the tumor but shares significant overlaps with
ctDNA. It seems that only a fraction of CTCs induces metastases [256]. Analyzing the
tumor-derived exosome content may provide clinically useful information [257]. The
tumor-derived exosomes may promote tumor progression by modulating the host micro-
environment in a distant site. Since the tumor-derived exosomes preferentially fuse with
resident cells at their predicted destination, the tumor exosome integrins may determine
organotropic metastases [258]. There is data indicating that there are protein markers
within the extracellular vesicles derived from breast cancer cells [259]. If this is proven in a
clinical scenario for the solid tumors, that might further improve the utility of liquid biopsy.

The present standard for solid tumor evaluation is histopathological assessment of
the obtained tumor tissue combined with imaging. However, frequently repeated biopsies
for follow-up raise other problems such as the potential danger of biopsy (pain, bleeding,
infection). Thus, replacement of biopsy with less-invasive interventions such as liquid
biopsy is advantageous for the patients. Since the liquid-biopsy-obtained markers provide
information for the tumor molecular phenotype, the combination of imaging and liquid
biopsy might replace the present standard soon.

The liquid biopsy also makes it possible to obtain the serum protein tumor markers;
thus, combined analysis of them with other liquid biopsy parameters is possible. Combined
use of tumor markers and ctDNA obtained from cerebrospinal fluid was used in order
to detect leptomeningeal metastases. The CSF cytology was positive 30.7%, whilst the
MRI positivity was 58.9%. The sensitivity of CEA, NSE, and CFRA-211 was 75.8%, 51.7%,
and 33.3% respectively. The ctDNA was positive in the CSF 92.3%, but the combined
use of ctDNA and tumor markers obtained 100% positivity [260]. Combined analysis
of pre-operative plasma ctDNA and protein tumor markers (CA 125 and CA 19-9) was
carried out in a retrospective study. 19/51 patients without and 6/7 patients with detected
ctDNA had recurrence (p = 0.001). 17/47 patients without and 8/10 with positive serum
markers had recurrence (p = 0.0002). Altogether, 15 patients were positive for both ctDNA
and serum markers and 12 of them had recurrence (p = 0.0001). Thus, the prediction of
recurrence in surgically treated early-stage lung adenocarcinoma may be further improved
by the combined analysis [261]. There are data available about the combined evaluation of
the circulome and imaging. A study found that combined measuring the functional tumor
volume (FTV) by MRI and ctDNA level might improve the prediction of both pathologic
complete remission and recurrence risk in early breast cancer after neoadjuvant chemother-
apy. In fact, ctDNA positivity after neoadjuvant chemotherapy contributed significantly to
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FTV in identifying patients who had an increased risk of metastatic recurrence or death
(p = 0.004) [262]. In lung cancer patients, the decrease of methcfDNA between the baseline
and the first control was in parallel with a decrease in CT-derived tumor surface area,
independently from the tumor mutational status [263]. In 52 melanoma patients who
received systematic therapy for metastatic disease, a comprehensive analysis was carried
out regarding serial ctDNA and FDG-PET investigations. In a cohort study, it turned out
that the ctDNA assay may not provide advantages for surveillance compared to imaging
and CEA levels [264]. It was found that ctDNA is very useful as a complementary modality
to functional imaging monitoring the tumor burden real-time, as well as genomic changes
throughout the therapy [265]. As knowledge is increasing regarding all liquid-biopsy-
obtained biomarkers (CTC, ctDNA, ctRNA, exosomes), in the near future, simultaneous
analysis of these will be implemented in the personalized therapy of cancer [266]. The
integration of all circulome biomarkers and their combinations, however, can only enter
into the oncology practice if their use is justified by improved clinical outcomes [267].
Moreover, there is a lack of evidence that integration of liquid biopsy data can improve not
only the outcome of therapy but also the quality of life of the patients

9. Conclusions

The decision of indicating adjuvant chemotherapy is still based on clinical risk strati-
fication. However, among the clinically low-risk patients, more than 10%, depending on
cancer type, will eventually relapse. Thus, more accurate stratification would be necessary.
The cfDNA-based decision making has the potential of replacing clinical risk stratification
in the future. In fact, liquid biopsy may become the primary method soon, not only for
molecular profiling of cancer but also for selecting precision therapies. However, the histo-
logical structure of tumor tissue is needed, as well as the detection of protein expression
including hormonal receptors that is only possible at present following tumor biopsy, but
this cannot be carried out by investigating cfDNA [268]. Thus, one of the great potentials
of liquid biopsy is the minimal risk of repeated sampling, especially if considered the
wealth of information that could be extracted via the blood-based tumor compartment.
The analysis of genetic changes and epigenetic alterations might be used for several other
purposes such as screening for cancer, assessment for prognosis, evaluation of tumor bur-
den, surveillance of recurrence, and monitoring treatment. If ctDNA monitoring could
be implemented in medical oncology, it would also allow for the detection of molecular
mechanisms driving the resistance. Since several different resistance alterations can coexist
at different metastatic sites of the primary tumor, analysis of CTC or ctDNA may be an
irreplaceable tool for detecting these collectively from a single sample of liquid biopsy. The
analysis of liquid biopsy samples may also be a useful tool to find out the explanation of
mixed clinical responses to therapy.

The usefulness of ctDNA mainly depends on how accurately it reflects the genetic
changes detected in the tumor tissue sample. There are data indicating advantages and
disadvantages as well. A clear advantage is that ctDNA may represent the whole tumor
burden including metastases. Consequently, information regarding genetic alterations of
the tumor mightbe more representative based on ctDNA than from tissue biopsy. Thus,
clinical oncology decision making will be based on ctDNA in the future. There are data
to prove that the application of ctDNA-based MRD analysis not only supports clinical
decision making, but also enhances patient survival outcomes [269].

The disadvantage is the potential for non-concordance of key alterations. In fact,
non-concordance is mainly observed in patients with low ctDNA levels. There are still
many problems that need to be overcome such as improving the techniques of detection,
especially considering the low amount of ctDNA and high background signals. Moreover,
the ctDNA tests still have lower sensitivity to detect fusion events and copy number
changes. Improvement of technologies is expected to allow more precise, quick, and
inexpensive testing of ctDNA.
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Integration of ctDNA in clinical decision making is inevitable but requires thorough
understanding of the limitations, as well as usability to select effective therapies, detect re-
sistance to therapy, or provide real-time monitoring of therapy response. It is also important
to clarify the pros and cons of the techniques applied and the many details regarding the
clinical application of these, e.g., optimal timing of liquid biopsy, the feasibility of sample
processing in clinical circumstances, etc. The ongoing studies will answer these questions.
Thus, standardization, as well as validation of the new platforms potentially applied in
clinical practice is necessary before routine use. According to a clinically validated new
platform for the next-generation sequencing of circulating tumor DNA point mutations,
insertions/deletions, copy number alterations, gene fusions, as well as oncogenic viruses
(Epstein–Barr virus (EBV) and hepatitis B virus (HBV)), and microsatellite instability (MSI)
could be detected [79]. To fully integrate ctDNA tests in medical oncology, it is important to
demonstrate that modifying therapy based on ctDNA changes before progression observed
by radiology will improve overall survival in metastatic cases. The initiation of therapy
after curative-intent therapy if the ctDNA test suggests MRD will provide benefit to the
patients [78,198].

The other limitation of using ctDNA in oncology is that it is unable to detect non-
genetic mechanisms of resistance. Moreover, it seems that ctDNA testing shows lower
sensitivity than that available from tissue samples. Unfortunately, today, there is no
single ctDNA test that could be used for all potential applications. Thus, to integrate
ctDNA into routine care, it is necessary to improve sensitivity without a negative impact
on specificity [270]. Since ctDNA is not always detectable in cancer patients, the use of
ctDNA could not be implemented in the decision making for all patients. In certain cases
(e.g., primary brain tumors, metastatic disease with brain metastases only), the amount
of ctDNA in the blood is usually low; thus, the application of ctDNA tests are limited.
However, using cerebrospinal fluid for the ctDNA test may overcome this problem [271].
Low ctDNA yield could also be expected in the case of nodal involvement, as well as in
oligometastatic disease leading to false-negative results. The most uncertainty regarding
the use of liquid biopsy exists in the case of early detection where it would be most useful.
It is still an open question whether ctDNA is useful for diagnosing precancerous conditions
in asymptomatic subjects.

The ctDNA is a powerful tool which has the potential to support tailored management
of patients since it could support timely treatment decisions to optimize efficacy, it could
provide real-time information regarding tumor activity, it is able to detect resistance,
and minimize the unnecessary treatment burden for patients. In science, the promise
of a new approach is not enough; only validated, cross-checked methodologies can be
implemented in the use of patient care. However, if liquid biopsy meets the expectations of
researchers in all areas investigated, it will revolutionize medical oncology [8]. The use of
ctDNA demonstrated many potential benefits in the pre-clinical setting, but it is important
that such benefits are confirmed in medical oncology where it should be established by
prospective, randomized, and controlled clinical trials. Thus, further large-scale studies
are needed to fine-tune the use of liquid biopsy in clinical oncology. In the recent ESMO
guidelines on the use of ctDNA in clinical oncology, ctDNA was not recommended in
routine clinical practice to detect molecular residual disease or molecular relapse [8]. The
use of ctDNA is still under research development; thus, it is not recommended for routine
clinical applications for identifying patients who are not responding to therapy based on
early changes of ctDNA level, monitoring the development of resistance mutations before
observing clinical progression, and screening for cancer in asymptomatic patients. The
ctDNA assay, however, may be used to identify actionable mutations (e.g., testing for
single nucleotide and small insertion and deletion variants) to direct targeted therapy if the
limitations of the assay are considered.

All circulome biomarkers and their combinations will be integrated in routine oncology
care if their use is justified by improved clinical outcomes. Moreover, there is a lack of
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evidence that integration of liquid biopsy data can improve not only the outcome of therapy
such as the overall survival, but also the quality of life of the patients.
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Abbreviations

5fC 5-formylcytosine
ALK anaplastic lymphoma kinase gene
BRAF human gene that encodes a protein called B-Raf
CA-125 cancer/ carcinoma antigen 125, or carbohydrate antigen 125
CEA carcinoembryonic antigen
cfDNA cell-free DNA
cfRNA cell-free RNA
CHIP clonal hematopoiesis of indeterminate potential
CI confidence interval

CpG
dinucleotide DNA where a cytosine (C) nucleotide is followed by a
guanine (G) nucleotide

CRC colorectal cancer
CRPC castrate-resistant prostate cancer
CSC cancer stem cell
CSF cerebrospinal fluid
CTC circulating tumor cell
ctDNA circulating tumor-derived DNA
DELFI DNA evaluation of fragments for early interception
DFS disease-free survival
DNA deoxyribonucleic acid
EC endometrial cancer
EGFR epidermal growth factor receptor
ER estrogen receptor
ESMO European Society for Medical Oncology
ET end of treatment
EV extracellular vesicle
FDA Food and Drug Administration
FTV functional tumor volume
HER2 human epidermal growth factor receptor 2
HR hazard ratio
ICB immune checkpoint blockade

KRAS
“Kirsten rat sarcoma virus” is a gene that provides instructions for making
a protein called K-Ras

LB liquid biopsy
mAb monoclonal antibody
MRD minimal residual disease
mRNA messenger RNA
MSI microsatellite instability
MT middle of thetherapy
mtDNA mitochondrial DNA
NAT neoadjuvant therapy
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NCCN National Comprehensive Cancer Network
NCDB National Cancer Database
NGS next-generation sequencing
NSCLC non-small-cell lung cancer
OC ovarian cancer
OR odds ratio
OS overall survival
PCR polymerase chain reaction
PFS progression-free survival
PIK3CA phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
PSA prostate-specific antigen
RFS relapse-free survival
RNA ribonucleic acid
RT radiotherapy
SCLC small cell lung cancer
TEP tumor-educated platelets
TET ten-eleven translocation enzyme
TKI tyrosine kinase inhibitor
TMB tumor mutational burden
TNBC triple-negative breast cancer
TP53 tumor protein p53
VAF variant allele frequency
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