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Simple Summary: Lung cancer is the most common cause of cancer-related deaths worldwide.
Circulating tumor cells (CTC) are cancer cells that are disseminated in the bloodstream and may be
responsible for early recurrence and poor rates of survival. We conducted a systematic review and
meta-analysis of 18 prospective studies comprising 1321 patients that reported CTC in resectable
non-small cell lung cancer. Our analysis revealed that the presence of CTC in both the baseline and
postoperative period was associated with an increased risk of recurrence and death compared to an
absence of CTC in lung cancer patients. The results were independent of sources of CTC (peripheral,
pulmonary vein), detection methods, and follow-up duration. CTCs hold a significant prognostic
and predictive potential, as evident in our meta-analysis; however, heterogeneity of data, publication
bias, and variable cut-off values limit its clinical utility.

Abstract: Background: In breast, prostate, and other epithelial tumors, circulating tumor cells (CTC)
in peripheral blood may predict survival. Our study evaluated the prognostic significance of baseline
and postoperative CTC in patients with early non-small cell lung cancer (NSCLC) through a meta-
analytic approach. Methods: Prospective studies comparing survival outcomes between positive
(CTC+) and negative CTC (CTC−) patients were systematically searched. Primary outcomes were
overall (OS) and disease-free survival (DFS) with hazard ratio (HR) and 95% confidence interval (CI)
as the effect measure. Pooled HR determined the prognostic role under a fixed-effect or random-effect
model depending on heterogeneity. Results: Eighteen studies with 1321 patients were eligible. CTC+
patients were associated with an increased risk of death (HR 3.53, 95% CI 2.51–4.95; p < 0.00001)
and relapse (HR 2.97, 95% CI 2.08–4.22; p < 0.00001). Subgroup analysis results were consistent in
different subsets, including time points (baseline and postoperative) and sources (peripheral and
pulmonary vein) of blood collection, detection methods (label-free, label-dependent, and RT-PCR),
and follow-up duration. Conclusion: Our meta-analysis revealed that CTC is a promising predictive
biomarker for stratifying survival outcomes in patients with early-stage NSCLC. However, future
studies are required to validate these findings and standardize detection methods.

Keywords: lung cancer; non-small cell lung cancer; NSCLC; surgery; circulating tumor cells; prognosis

1. Introduction

According to Global Cancer Statistics 2020, lung cancer accounts for one in ten new
cases (11.4%) and one in five cancer-related mortalities (18.0%), making it the deadliest
and the second most frequently diagnosed cancer [1]. Non-small cell lung cancer (NSCLC)
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represents 85% of new lung cancer cases and comprises adenocarcinoma (LUAD), squa-
mous cell carcinoma (LSCC), and large-cell carcinoma (LCC) [2,3]. Early-stage NSCLC
is seen in 40% of new cases and carries a 30–60% overall survival (OS) rate [4]. Despite
curative treatment, around 30–55% of patients relapse, primarily at distant sites, and 50%
succumb to lung cancer, suggesting the early dissemination of malignant cells [5]. Hence, it
is imperative to explore effective strategies for evaluating the mortality and relapse risk in
early-stage NSCLC.

Circulating tumor cells (CTC) get dislodged from the primary tumor or metastatic
sites and circulate in the bloodstream [6]. However, most CTCs are cleared from the
circulation, with only a small proportion achieving the potential to seed active metastatic
tumors or remain dormant [disseminated tumor cells, (DTC)] to be activated later to
form overt metastasis [7,8]. The dissemination of CTC may precede the formation of
metastases and even primary tumors [9]. The entire genomic landscape of a patient’s tumor
burden is etched in CTC, making it a commodity of great clinical significance [10]. Prompt
identification of features of dissemination, such as CTC, provides an excellent opportunity
for prognostic stratification and attuning of therapeutic modalities.

The isolation and enrichment of CTC involve leveraging their biophysical proper-
ties (label independent), differential gene expression (label dependent), or a combination
of both [11]. The CellSearch® system (Veridex) was the first Food and Drug Adminis-
tration (FDA)-approved device for enumerating epithelial-origin CTC. It incorporates
EpCAM-coated magnetic nanoparticles for positive selection of EpCAM+ CTC, followed
by immunofluorescence staining of Cytokeratin 8, 18, and 19 and an absence of CD45.
CellSearch-detected CTC showed a prognostic association with metastatic breast, colorectal,
and prostate cancer [12–14]. However, tumor cells exhibit phenotypic heterogeneity with
differential expression of EpCAM according to tumor origin and stage [epithelial to mes-
enchymal (EMT) phenotype] and may even be absent during EMT and in non-epithelial
tumors [15,16]. Despite the high CTC detection rates in NSCLC across all stages, not all
studies have found a profound prognostic and/or predictive potential [17,18].

Prior meta-analysis on NSCLC showed that CTC positivity (CTC+) was associated
with poor overall survival (OS) (RR = 2.19; 95% CI: 1.53–3.12; p < 0.0001) and disease-free
survival (DFS) (RR = 2.14; 95% CI: 1.36–3.38; p < 0.0001) [19]. The preponderance of studies
(15 of 20) with advanced stages in this meta-analysis left numerous questions unanswered.
Firstly, CTC counts significantly increase in the pulmonary vein after surgical manipulation
of the tumor or even endoscopic biopsy [20–22]. However, the prognostic implication
of CTC+ in the pulmonary vein is variable, with some studies having shown a correla-
tion between CTC and OS and progression-free survival (PFS) [23–25], while others have
not [20–22,26]. Similarly, data on the predictive value of postoperative CTC are discor-
dant [26,27]. Variable follow-up periods, numerous detection methods, inconsistent CTC
cut-off values, and a relatively small patient cohort may influence the outcome. Resolution
of these issues will aid in the bench-to-bedside transition of CTC in resectable NSCLCs.
Therefore, we performed a meta-analysis of prospective studies to evaluate the prognostic
role of baseline and postoperative CTC in resectable NSCLC.

2. Methods

The revised guidelines laid down by the statement protocol of Preferred Reporting
Items for Systematic Review and Meta-analyses (PRISMA) were utilized to conduct this
review (Tables S1 and S2) [28]. This review was not recorded on prospective registers; thus,
a review protocol was not prospectively available.

2.1. Data Sources and Search Strategy

A comprehensive and systematic literature search was conducted in PubMed, Embase,
and Cochrane database. The following combinations of keywords and Medical Subject
Headings (MeSH)/Emtree terms were used: “circulating tumor cells”, “circulating can-
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cer cells”, “disseminated tumor cells”, “lung cancer”, and “non-small cell lung cancer”
(Supplemental File).

2.2. Study Selection

Two independent reviewers (DW and SG) screened the titles and abstracts according
to the subject’s relevance to determine full-text review eligibility. Full-text articles were
scrutinized according to the inclusion and exclusion criteria. The publication that provided
the most recent or informative data for studies with multiple publications was selected.
Any difference in opinion regarding the final study eligibility was managed through
mutual discussion.

The inclusion criteria were as follows: (1) studies assessing circulating tumor cells at
baseline and/or postoperative period; (2) studies reporting time-to-event data, including OS
and disease-free survival (DFS) for the individual groups of interest, i.e., CTC+ and absence
of CTC (CTC−); (3) prospective studies including randomized and non-randomized clinical
trials, and prospective observational studies; (4) studies published in English in a peer-
reviewed journal from inception until June 2022.

Exclusion criteria were as follows: (1) retrospective studies, case reports, case series,
abstracts, narrative and systematic reviews, and editorials; (2) advanced clinical stage
(cIIIb-IV) or small-cell lung cancer (SCLC); and (3) utilization of ct-DNA or circulating
exosomes for prognostic analysis. The PICO (population, intervention, comparison, and
outcome) criteria for this study are presented in Table 1.

Table 1. PICO framework.

Participants Adult patients with histologically confirmed, resectable NSCLC
(Clinical Stage I-IIIA)

Intervention
Curative lung resection (lobectomy/pneumonectomy/wedge

resection/segmentectomy with mediastinal lymph node
dissection/sampling)

Comparison Presence of CTC (CTC+) versus absence of CTC (CTC−)

Outcome Overall survival and disease-free survival

2.3. Data Abstraction

Two reviewers (DW and SG) independently extracted data from eligible studies. The
following information was extracted: study characteristics (author, country, and year of
publication), number of patients, demographics, histology, disease stage, treatment received
(neoadjuvant and/or adjuvant), number of CTC+ patients according to time (baseline and
postoperative), source (peripheral and pulmonary vein) of blood collection, and detection
methods. CTC+ patients were defined as per the defined cut-offs of the detection method
in the individual studies. In addition, HRs and associated confidence intervals (CIs) for OS
and DFS were extracted. The period between the time of surgery and death from any cause
was defined as OS, whereas the period between the time of surgery and cancer recurrence
or metastasis was considered as DFS. We assessed whether the survival outcomes were
adjusted for clinicopathological covariates through univariate or multivariate analysis. If
the author reported univariate and multivariate survival analysis results, we would utilize
the latter. In the absence of reported HR, Tierney’s or Parmar’s method was used to extract
time-to-event data [29,30].

The Newcastle–Ottawa Scale (NOS) was used to assess the methodological quality
of studies. It utilizes the star system in three categories: selection of the study population,
comparability, and research outcome. The highest possible score is 9, and the score defines
a study as low (7–9), moderate (4–6), or high risk (0–3) of bias [31].
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2.4. Statistical Analysis

Pooled HR was used to evaluate the prognostic role of CTC for OS and DFS using the
generic inverse variance method. The Cochran’s Q test was used to ascertain heterogeneity
and was measured using the I2 index (0–100%). Low heterogeneity was defined as I2 less
than 25%, moderate heterogeneity as I2 between 25% and 60%, and significant heterogeneity
as I2 greater than 60% [32]. When heterogeneity was significant, the random-effects model
was used; otherwise, the fixed-effects model was used. A p-value of less than 0.05 was
considered statistically significant. A sensitivity analysis was performed to assess the
validity of the results using the leave-one-out method. Begg’s funnel plots and Egger’s
regression test were utilized to detect publication bias. In the case of publication bias, Duval
and Tweedie’s trim-and-fill method was used to determine the adjusted summary effect
(adjusted HR, (HR)) [33].

Subgroup analysis was performed according to the source (peripheral and pulmonary
veins) of blood collection, detection methods (label-dependent, label-free, and RTPCR),
and follow-up duration (>24 months). A 99% CI was used for the study estimates and a
95% CI for the summary estimates to decrease the likelihood of chance differences arising
from multiple testing in the subgroup analyses. The association of clinical covariates
[male sex, adenocarcinoma, and stage I-III] with CTC was determined by calculating
pooled odds ratios (pORs) with 95% CIs for binary variables and differences in means
(with SDs) for continuous variables [34,35]. The meta-analysis was performed using
Review Manager version 5.4 (The Nordic Cochrane Center, The Cochrane Collaboration,
Copenhagen, Denmark), whereas publication bias was assessed in the JASP software
(JASP 0.15, the JASP team) [36].

3. Results

The PRISMA flow diagram of the study selection is shown in Figure 1. A preliminary
search of titles and abstracts yielded 2304 articles, of which 1897 were removed because
of irrelevance. The remaining articles underwent a full-text review and were scrutinized
according to the inclusion and exclusion criteria. Consequently, 18 (4.1%) [24–26,37–51]
studies were included in the analysis.
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3.1. Study Characteristics

Detailed study characteristics are summarized in Table 2. In the 18 eligible studies,
the total number of included patients was 1321, ranging from 23 to 208 patients per
study (median: 65). Most studies were published between 2010 and 2021. Eight studies
were conducted in Europe, nine in Asia, and one in North America. The median age
ranged from 59–68 years, and 63% and 83% of the patients were male and ever smokers,
respectively. Adenocarcinoma was the predominant histology. Pathologic stages I, II, and
III were observed in 44%, 23%, and 23% of the pooled study population. Two studies used
neoadjuvant therapy in their treatment protocol, and 37% of the pooled study population
received adjuvant therapy. The median follow-up range was 14–84 months.

Table 2. Clinical characteristics.

Study Study Design Study
Period

Patients
(n)

Age
(Median,

Years)

Male
(n, %)

Smokers
(n, %)

Histology
(n)

Pathologic
Stage (n) Follow-Up

(Median,
Months)

CTC Present (n) Detection Method
NOS
Score

ADC SCC I/II/III Base
Line Postoperative Category Device

Bayarri-Lara
2016, Spain

Prospective
longitudinal

cohort

2012–
2014 56 67 50 (89) 53 (95) 25 29 26/22/8 16 29 18 Label-

dependent MACS 8

Chemi 2019,
UK

Multicenter,
prospective

cohort

2014–
2017 100 68 61 (61) 92 (92) 59 41 47/34/19 32.6 48 NI Label-

dependent CellSearch 9

Chudasama
2017, UK

Prospective
cohort

2014–
2014 23 66 9 (39) NA 13 10 18 */18 */5 31.8 18 NI Label-free ScreenCell 5

Crosbie
2016, UK

Prospective
cohort NA 30 67 16 (53) 30 (100) 8 21 12/11/7 22 13 NI Label-

dependent CellSearch 8

Dandachi
2017,

Austria

Prospective
cohort

2015–
2016 40 67 16 (40) 27 (67) 40 0 19/9/12 15.8 15 NI Label-free Microfilter 6

Dong 2019,
China

Prospective
cohort

2016–
2018 114 59 65 (57) NA 83 28 51/21/42 30 110 NI Label-free CanPatrol 7

Funaki 2012,
Japan

Prospective
cohort

2008–
2010 130 68 56 (43) NA 92 26 98/20/12 19 53 NI Label-free Ficoll-

Paque-Plus 3

Hashimoto
2017, Japan

Prospective
cohort

2009–
2010 30 68 18 (60) NA 22 6 17/13 */13 * 64.4 24 NI Label-

dependent CellSearch 7

Hofman
2010,France

Prospective
cohort

2006–
2009 208 63 141 (68) 189 (91) 115 54 86/51/58 24 102 NI Label-free ISET 6

Li Jian 2014,
China

Prospective
cohort

2007–
2009 68 63 47 (69) NA 44 22 16/36/16 39.5 40 22 RT-PCR

qRTPCR:
LUNX
mRNA

7

Li Yunsong
2017, China

Prospective
cohort

2010–
2010 23 61 8 (35) NA 11 12 8/7/8 60 10 6 Label-

dependent MACS 6

Li Hang
2021, China

Prospective
cohort

2012–
2012 54 61 30 (55) NA 38 11 26/26 */26 * 84 14 NI Label-

dependent
Cytoplo-

Rare 7

Manjunath
2019, USA

Prospective
clinical trial

2016–
2018 30 65 16 (53) 0 18 10 16/8/6 14.3 30 NI Label-free CellSieve 7

Miguel-
Perez 2019,

Spain

Prospective
longitudinal

cohort

2012–
2015 97 66 84 (86) 88 (91) 47 50 44/25/18 30.5 40 27 Label-

dependent MACS 8

Sienel 2003,
Germany

Prospective
cohort

1996–
2001 62 62 45 (72) NA 19 28 NA 25 11 NI Label-free Ficoll-Paque 3

Yamashita
2002, Japan

Prospective
cohort

1996–
1998 103 68 76(74) NA 66 37 57/19/27 35 29 27 RT-PCR RTPCR for

CEA mRNA 5

Yoon 2011,
South Korea

Prospective
longitudinal

cohort

2007–
2008 79 66 48 (60) NA 45 27 45/19/15 60 26 12 RT-PCR RTPCR for

CK19, TTF-1 7

Zhu 2013,
China

Prospective
cohort

2008–
2012 74 63 49 (66) NA 41 25 15/28/22 32 4 16 RT-PCR

qRTPCR of
EpCAM and

MUC1
8

*: not reported separately. ADC: adenocarcinoma, SCC: squamous cell carcinoma, CTC: circulating tumor cells,
MACS: magnetic-activated cell sorting, NA: not available, NI: not included, UK: United Kingdom, ISET: isolation
by size of tumor cells, RT-PCR: reverse transcriptase PCR, NOS: Newcastle–Ottawa Scale.

Label-dependent detection was used in seven studies, of which CellSearch® and MACS
systems were used in three studies each, whereas one used the CytoploRare® platform. The
label-free method was utilized in seven studies using the following platforms: ScreenCell®

(n = 1), CanPatrol® (n = 1), Ficoll-PlaqueTM (n = 2), ISET® (n = 1), CellSieve ® (n = 1), and
microfilter technique (n = 1). The remaining studies utilized RT-PCR. The collected blood
volume ranged between 1–20 mL, and the most frequently drawn volume was 7.5 mL
(n = 3), while two studies did not report the volume.
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3.2. Quality of the Included Studies

The Newcastle–Ottawa quality assessment scale for cohort studies was used to assess
the methodological quality of studies. The study quality scores from the NOS system are
summarized in Supplementary Table S3. Eleven (64.7%) of eighteen studies were identified
as having a low risk of bias, five as moderate, and two as high-risk. The median score was
7, while the mean score was 6.5, indicating moderate-to-high methodological quality.

3.3. Meta-Analysis
3.3.1. Primary Analysis

Eleven (preoperative = 7, postoperative = 4) and fourteen (preoperative = 9, postoper-
ative = 5) studies were included in OS and DFS analyses, respectively. The meta-analysis
revealed that CTC+ was associated with an increased risk of death (Overall HR 2.95,
95% CI 2.37–3.66; p < 0.00001), regardless of baseline (HR 3.03, 95% CI 2.32–3.98; p < 0.00001,
I2 = 54%) and postoperative period (HR 2.80, 95% CI 1.95–4.02; p < 0.00001, I2 = 39%). There
was no subgroup difference (p = 0.62, I2 = 0%), and this was associated with moderate
heterogeneity (phet = 0.02, I2 = 47%) (Figure 2). Sensitivity analysis showed a stable result.

Similarly, the risk of relapse was significantly higher in the CTC+ group (over-
all HR 2.97, 95% CI 2.08–4.22; p < 0.00001), regardless of baseline (HR 2.95, 95% CI
1.90–4.59; p < 0.00001, I2 = 77%) or postoperative blood collection (HR 2.73, 95% CI
1.94–3.85; p < 0.00001, I2 = 0%). The result showed significant heterogeneity (phet < 0.00001,
I2 = 74%) (Figure 3). Sensitivity analysis revealed that Chemi et al. (baseline CTC subgroup)
contributed significantly to the heterogeneity, which, when removed, led to an increased
pooled HR for baseline CTC (HR 3.09, 95% CI 2.25–4.25; p < 0.00001, I2 = 25%, phet = 0.19)
(Supplemental Figure S1).
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3.3.2. Subgroup Analyses

The results of subgroup analysis were consistent for both peripheral sources (OS: HR
2.99, 95% CI 1.78–5.03; p < 0.0001, I2 = 51%; DFS: HR 2.77, 95% CI 1.88–4.08; p < 0.00001,
I2 = 32%) and pulmonary venous source (OS: HR 2.68, 95% CI 1.24–5.77; p = 0.01, I2 = 72%;
DFS: HR 2.16, 95% CI 1.82–3.66; p = 0.002, I2 = 85%) of blood collection (Supplemental
Figure S2).

Furthermore, the subgroup analysis based on detection methods revealed that CTC+
detected by all (label dependent: HR 3.95 95% CI 2.06–7.60; p < 0.0001, I2 = 0%; label-free:
3.91 (95% CI 2.01–7.62; p < 0.0001, I2 = 52%) except RTPCR (HR 3.36, 95% CI 0.60–18.88;
p = 0.17) showed a negative correlation with OS. On the other hand, all three subgroups
showed that CTC+ detected by any method is associated with an increased risk of relapse
(label dependent: HR 2.62, 95% CI 1.28–5.34; p = 0.004, I2 = 71%; label-free: HR 3.71, 95% CI
2.55–5.38; p < 0.00001, I2 = 0%; and RTPCR: HR 2.11, 95% CI 1.08–4.12; p = 0.03, I2 = 40%)
(Supplemental Figure S3). Similarly, the results were congruous regardless of the duration
of follow-up (<24 months (OS: HR 2.37, 95% CI 1.57–3.59; p < 0.0001, I2 = 0%; DFS: HR
3.06, 95% CI 1.95–4.79; p < 0.00001, I2 = 11%; >24 months (OS: HR 3.64, 95% CI 2.55–5.20;
p < 0.00001, I2 = 59%; DFS: HR 2.75, 95% CI 1.54–4.93; p = 0.0007, I2 = 80%) (Supplemental
Figure S4).
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3.3.3. Publication Bias

The regression tests for funnel plot asymmetry (“Egger’s test”) for the primary analyses
(OS and DFS) were statistically significant (p < 0.001) (Supplemental Figure S5). The trim-
and-fill analysis for the OS outcome led to adding seven studies, with an adjusted summary
estimate (HR) of 2.48 (95% CI 1.66–3.70). Similarly, seven studies were filled for the DFS
outcome, which led to an adjusted pooled HR of 2.24 (95% CI 1.71–2.97) (Supplemental
Figure S6). The outcome estimate remained statistically significant after adjusting for
publication bias, suggesting robustness of our results.

3.3.4. Association of CTC with Clinicopathologic Factors

Male patients (OR 1.02, 95% CI 0.78–1.35 p = 0.87) and adenocarcinoma (OR 1.30, 95%
CI 0.76–2.23 p = 0.33) were not associated with CTC+ status. Pathologic stage showed a
stage-wise progression of association with CTC, with stage I (OR 0.62, 95% CI 0.42–0.93;
p = 0.02) having the least likelihood to greatest chance in stage III (OR 2.65, 95% CI 1.51–4.64;
p = 0.0007). Stage II showed no association with CTC+ status (OR 1.30, 95% CI 0.83–2.04
p = 0.24) (Supplemental Figure S7).

4. Discussion

In the present study, a systematic review and meta-analysis of eighteen prospective
studies was conducted, evaluating the prognostic significance of CTC in baseline and
postoperative samples from patients with early-stage NSCLC. Meta-analytic data showed
that CTC status was highly predictive of the survival outcomes of patients with early-stage
NSCLC. Specifically, CTC+ status had a negative impact on OS and DFS, regardless of time
and source of blood collection, detection methods, and follow-up duration. In addition, we
found that the pathological stage was associated with CTC status, with stage III patients
more likely to be CTC+, whereas stage I was at a lower risk. Significant heterogeneity was
observed among the included studies; however, sensitivity analyses revealed stable results.
Our findings are consistent with the growing body of evidence that demonstrates that
CTCs are promising prognostic markers for resectable cancers and resolve various issues
revolving around the bench-to-bedside transition of CTC in early-stage NSCLC [52–55].

Prior meta-analyses have reported on the prognostic significance of CTC in lung
cancer patients and suggested that CTC+ status was associated with adverse survival
outcomes, which is consistent with our results [19,56–58]. However, their methodology
differed significantly from the present study, and some of their results required further
improvement. Firstly, the selection criteria were not precise. Some meta-analyses included
studies with varying histopathological subtypes, such as lung cancer (NSCLC and SCLC)
or only SCLC, whereas others included both early and advanced-stage NSCLC [19,56,58].
A common thread among these studies was the presence of heterogenous populations,
including a significant proportion of advanced or metastatic lung cancer patients who
underwent treatment modalities that were non-curative in intent. Thus, the data on the
role of CTC on OS and PFS were available; however, its association with DFS remained
unknown. Secondly, until now, CTCs were not utilized to monitor treatment response
following surgical therapy for lung cancer. Five of the eight studies used in an earlier
meta-analysis to determine whether post-treatment CTCs were predictive had chemoradio-
therapy as the primary therapy [56]. Therefore, we exclusively incorporated patients under-
going curative resection and succeeded in showing the pooled prognostic effect of CTC in
early-stage NSCLC.

The most proximal venous channel to the primary tumor is likely to encounter the
highest burden of CTC, thereby making the pulmonary vein a promising area for CTC
catchment, considering the rarity of CTC in peripheral blood [59]. The pulmonary vein
CTC detection rate was higher (almost 100%) and had considerably higher CTC counts than
the peripheral blood source [20,21,23,24]. Moreover, intraoperative tumor manipulation
may initially release CTC in the pulmonary circulation; however, eventually, they are
cleared by shear stress or immune reaction [60,61]. According to recent studies, ligating
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the pulmonary vein before the artery and implementing a “no-touch technique” are two of
the most effective ways to prevent tumor cell dissemination [62,63]. However, the mere
presence of CTC does not equate to the subsequent risk of metastasis and reflects the
true tumor burden. Approximately 67% of pulmonary vein CTC are misidentified and
found to have no genomic aberrations and are, in fact, epithelial cells [64]. Xenograft
assays have shown that only 33% of CTC have the tumorigenic potential [21]. It can be
hypothesized that innumerable epithelial cells are released into the circulation from the
primary tumor, albeit only a small percentage develop the potential to be malignant and
affect survival outcomes [65]. Our results revealed that the pooled survival outcome for
CTC detected from the pulmonary vein to the peripheral source were similar, strengthening
this hypothesis.

In addition to phenotypic identification, tumor genomic profiling of CTC is another
promising avenue for prognostic exploration. Depending upon EMT markers, CTC are
classified into epithelial (E-CTC), expressing markers like EpCAM and CK, mesenchymal
(M-CTC), expressing vimentin and twist, and bi-phenotype/hybrid CTC [66]. Different
CTC subpopulations may exhibit differential tumor characteristics and survival outcomes
based on their phenotype. E-CTC+ is associated with localized disease, although it corre-
lates with a shorter OS [67]. Furthermore, patients with a preponderance of mesenchymal
CTC (M-CTC) and hybrid CTC were negatively correlated with postoperative DFS, OS, and
therapeutic response [9,68,69]. Detection methods come into play when label-dependent
devices such as CellSearch® show a divergent CTC profile. CellSearch® failed to detect
CTC in early-stage NSCLC, with only a 22–25% detection rate for metastatic disease [18,70].
Hofman et al. suggested that label-free and label-dependent methods are complementary
rather than competitive, with a more robust survival outcome using both methods than
just one [71]. Our subgroup analysis showed that CTC detected by any method corre-
lated with inferior OS and DFS; the label-free method showed a considerably worse DFS
(HR 3.71; p < 0.00001) than the other methods. Although it was not possible to comment on
the prognostic role of specific phenotypes, our data indicate that detection methods may
not influence survival outcomes. More studies are required to validate this finding.

Clinical predictors of the presence of CTC may allow for an indirect method of ascer-
taining prognosis. We found that sex and histology were not associated with CTC, contrary
to other studies [72,73]. An interesting pattern emerged during the stage assessment. As
the stage progressed from early to advanced, the likelihood of CTC+ increased accordingly.
Stage I disease was least likely to be associated with CTC resembling the classical view
of the impact of the stage on CTC. Moreover, CTC count correlated with the pathologic
stage in a similar way [74,75]. These findings hint towards the increased shedding of
CTC from the bulky tumor and multiple nodal metastases. Moreover, this result also
conforms to the current evidence on the association of CTC to tumor size and lymph
node metastasis [76,77].

The present study has a number of strengths. Due to the inclusion of prospective
clinical studies exclusively, the limitation and bias of retrospective studies were avoided,
thereby increasing the quality of evidence. Moreover, consistent results on sensitivity and
subgroup analyses and a moderate to high methodological quality of individual studies
further support the robustness of our results. For the first time, our study demonstrated
the pooled prognostic effect of CTC in terms of DFS in resectable NSCLC.

Despite resolving various contentions regarding the clinical utility of CTC, certain
limitations prevailed. Firstly, non-English language studies were excluded leading to lan-
guage bias that may influence the summary effects [78]. Secondly, the effects of unmatched
confounders could not be adjusted due to non-randomized baseline characteristics and the
derivation of effect estimates from extracted data or univariate analysis. Thirdly, summary
study-level data were used in this meta-analysis, which have lower statistical power than
individual patient-level data [79,80]. Fourthly, CTC detected by RT-PCR failed to correlate
with OS, possibly due to fewer studies (n = 2) and participants. In addition, the presence
of significant heterogeneity indicates that the validity of the treatment effect estimate in
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the RT-PCR subgroup is uncertain. Moreover, we could not comment on the effect of CTC
subpopulations on the prognosis. Cut-off values may exert a significant influence on the
pooled estimates and heterogeneity. However, we failed to assess the same because of
the lack of data. It may also contribute to data availability bias [81]. Lastly, an apparent
publication bias existed in our results, which, when adjusted, decreased the pooled estimate
for OS and DFS.

Currently, tumor genomic profiling through liquid biopsy is predominated by circu-
lating tumor DNA (ctDNA) analysis because of its relative ease of extraction and com-
paratively lower cost than CTC analysis. Studies have shown that ctDNA is predictive
of necrosis, lymphovascular invasion, a high proliferative index, tumor stage, and nodal
metastasis in surgically resected NSCLC [65,82]. There has been a significant development
in the use of CTCs and ctDNAs in the determination of minimal residual disease (MRD),
which is the post-treatment tumor burden that cannot be detected by conventional diag-
nostic methods [83]. Discordant mutation profiles between plasma and tissue samples,
between ctDNA sources, and potential false-positive findings limit the widespread clinical
utility of ctDNA in determining MRD [65,83,84].

On the other hand, CTC analysis provides several advantages over ctDNA analysis,
such as identifying protein biomarkers and tumor heterogeneity, detecting driver mutations
in subclonal neoplastic cells, and studying the evolution of tumor pathogenesis and dis-
semination [85]. A prospective study on CTC-based MRD detection in early-stage NSCLC
patients following curative surgery has shown that an increase in CTCs on postoperative
days 1 and 3 correlated with early relapse, opening doors for microscopic relapse surveil-
lance in the future [27]. In addition, CTCs are detected in all patients with lung cancer,
unlike ctDNA, which is detected in only 50% of stage I patients [86,87]. Ultimately, CTC,
but not DNA, has been proven to seed distant metastasis [88].

An inclusive approach in liquid biopsy by complementing CTC analysis with ct-
DNA or incorporating different detection methods simultaneously may augment our
understanding of the tumor status of the patient. Further validation of the clinical utility of
CTC requires standardizing detection methods and designing randomized intervention
trials to tailor therapeutic decisions to CTC analysis.

5. Conclusions

Our meta-analysis based on eighteen prospective clinical studies revealed that CTC+
status was associated with poor OS and DFS in surgically resected NSCLC patients, regard-
less of the time or source of blood collection, detection methods, or follow-up duration.
Although this meta-analysis was undermined by significant heterogeneity and publication
bias, our findings suggest that CTC status might be a promising predictive biomarker of
mortality and recurrence in early-stage NSCLC. This study takes us one step closer to CTC’s
bench-to-bedside transition and facilitates microscopic relapse surveillance in early-stage
lung cancer.
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of CTC with Disease-free survival (Chemi et al. excluded), Figure S2. Subgroup analysis: Source of
blood collection, Figure S3. Subgroup analysis: Detection methods, Figure S4. Subgroup analysis:
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