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Simple Summary: Osteosarcoma is one of the aggressive bone tumors with numerous histologic
patterns. Histopathological inspection is a crucial criterion in the medical diagnosis of osteosarcoma.
Due to the advancement of computing power and hardware technology, pathological image analysis
system based on artificial intelligence were more commonly used. Manual examination of the
histopathological images is a difficult and laborious task. The lack of labeling data makes the
system difficult to build and costly. Therefore, this study aims to develop an automated computer-
aided diagnosis model for osteosarcoma classification. The proposed model uses deep learning,
hyperparameter optimizer, and fuzzy logic for the classification process.

Abstract: Osteosarcoma is one of the aggressive bone tumors with numerous histologic patterns.
Histopathological inspection is a crucial criterion in the medical diagnosis of Osteosarcoma. Due to
the advancement of computing power and hardware technology, pathological image analysis system
based on artificial intelligence (AI) were more commonly used. But classifying many intricate pathol-
ogy images by hand will be challenging for pathologists. The lack of labeling data makes the system
difficult to build and costly. This article designs a Honey Badger Optimization with Deep Learning
based Automated Osteosarcoma Classification (HBODL-AOC) model. The HBODL-AOC technique’s
goal is to identify osteosarcoma’s existence using medical images. In the presented HBODL-AOC
technique, image preprocessing is initially performed by contrast enhancement technique. For feature
extraction, the HBODL-AOC technique employs a deep convolutional neural network-based Mobile
networks (MobileNet) model with an Adam optimizer for hyperparameter tuning. Finally, the adap-
tive neuro-fuzzy inference system (ANFIS) approach is implemented for the HBO (Honey Badger
Optimization) algorithm can tune osteosarcoma classification and the membership function (MF). To
demonstrate the enhanced classification performance of the HBODL-AOC approach, a sequence of
simulations was performed. The extensive simulation analysis portrayed the improved performance
of the HBODL-AOC technique over existing DL models.

Keywords: deep learning; metaheuristics; honey badger algorithm; osteosarcoma classification;
medical imaging
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1. Introduction

Osteosarcoma is a cancer that originates from the bone and grows quickly to form
cancerous bone-like tissue and is an orthopedics disease. Commonly, osteosarcoma arises
at the upper end of the humerus, the lower end of the femur, and the upper end of the
tibia, particularly around the knee joint [1]. Osteosarcoma mostly occurs in children
and adolescents, and its indications consist of fever, mild bone pain, and redness at the
cancer site. Constant pain caused by osteogenic sarcoma affects the movement of the
patient, and therefore it is a significant cancer that extremely affects labor efficiency and
threatens life [2]. Thus, initial treatment and diagnosis have specific importance. Current
diagnostic approaches, which include computer tomography (CT), magnetic resonance
imaging (MRI), positron emission tomography (PET), and ultrasound, play a vital role in
cancer identification [3]. But if such methods cannot earn a precise judgment, clinicians
desire to derive tissue samples from cancer for further investigation. Concretely, the
derived examples are transformed into smears or slides, and after stained to display some
details regarding cells, which is generally time-consuming and leads to great pain in
patients [4]. Hence, the growth of automated recognition technology for osteosarcoma has
a higher value. Owing to the rise of patient-specific treatment options and cancer incidence,
medication and the diagnosis of cancer have become very complex [5]. Diagnosticians
should spend a long time analyzing more slides. Identifying the nuances of histologic
images was tough. Misdiagnosis frequently happens because of extensive work that
declines the precision of diagnosis [6]. The osteoblasts’ morphologies have minute variance
in distinguished cells, which makes the image hardly distinguishable. Similarly, a biopsy
will be a dynamic and time taking step for determining the existence of malignant tissue [7].
In the meantime, to automatically identify malignancies.

Computer-Aided Detection (CAD) technology renders a solution for radiotherapists.
Extraction of features will be the next step in the automatic identification mechanism, and
it is executed by deep learning (DL) or manually [8]. Handcrafted (HC) features were
picture-specific properties decided by hand depending on targeted features of spaces, and
such techniques were broadly used for extraction. The authors made widespread usage of
HC characteristics since they were easy to derive, specifically in modest databases. The
features are determined with professionals’ help in the appropriate sector [9]. Owing
to their difficulty, such characteristics are problematic in deciding if they are associated
with complicated images. In this case, DL methods were employed as a feature extraction
algorithm. Because of recent advancements in the area of processing, such as the advent of
quick and compact processors, the DL model has received significant attention in recent
years, enabling experts to quickly and easily train deeper networks [10].

This article designs a Honey Badger Optimization with Deep Learning based Au-
tomated Osteosarcoma Classification (HBODL-AOC) model. The goal of the presented
HBODL-AOC technique is to identify the existence of osteosarcoma using medical images.
In the presented HBODL-AOC technique, image preprocessing is initially performed by
contrast enhancement technique. For feature extraction, the HBODL-AOC technique em-
ploys deep convolutional neural network-based mobile networks (MobileNet) model with
an Adam optimizer for hyperparameter tuning. Finally, the adaptive neuro-fuzzy inference
system (ANFIS) approach is implemented for the HBO algorithm can tune osteosarcoma
classification and the membership function (MF). To demonstrate the enhanced classifica-
tion performance of the HBODL-AOC technique, a sequence of simulations was performed.
In short, the key contributions of the paper are given as follows.

• An intelligent HBODL-AOC technique comprising pre-processing, MobileNet feature
extraction, an Adam optimizer, ANFIS classifier, and HBO-based parameter tuning
is presented. To the best of our knowledge, the HBODL-AOC model has never been
presented in the literature;

• Employ the MobileNet model with an Adam optimizer to generate a useful set of
feature vectors;



Cancers 2022, 14, 6066 3 of 17

• Present an ANFIS model for osteosarcoma classification with HBO algorithm as a
parameter optimization technique. Parameter optimization of the ANFIS model using
the HBO algorithm using cross-validation helps to boost the predictive outcome of the
HBODL-AOC model for unseen data.

2. Related Works

Pan et al. [11] propose a classical transformer image classification architecture with the
integration of feature cross fusion learning (FCFL) and noise reduction convolutional au-
toencoder (NRCA) for classifying osteosarcoma histological images. NRCA could denoise
histological images of osteosarcoma, which leads to more pure images for osteosarcoma
segmentation. Furthermore, the research workers presented feature cross fusion learning
that incorporates two scale image patches to considerably explore their interaction with
other classification tokens. Ling et al. [12] developed an intellectually assisted diagnosis
technique for osteosarcoma that could decrease the workload of clinicians in identifying
osteosarcoma from three features. Firstly, the research workers constructed a classification-
image enhancement method comprising resnet18 and DeepUPE to enhance image clarity
and eliminate redundant images that could facilitate doctor observation. Next, the research
workers empirically compare the performances of hybrid, serial, and parallel fusion convo-
lution and transformer and present a double U-shaped visual transformer with convolution
(DUconViT) for automated classification of osteosarcoma to help doctor diagnoses.

In [13], a robust detection technique has been introduced based on Fractional-Harris
Hawks Optimization (F-HHO) related generative adversarial network (GAN) to detect
osteosarcoma at an earlier phase. Now, the presented method was intended by the incorpo-
ration of HHO and Fractional Calculus, correspondingly. GAN is utilized for performing
osteosarcoma recognition on the basis of features derived from the images by using the cell
classification method. In [14], proposed a new method for the calculation of tumor stages
and grade in long bones relevant to X-ray image analysis. Usually, cancer-affected bone im-
ages appear with the variation in bone texture in the affected area. In this work, the author
extracts specific feature from bone X-ray image and utilize a support vector machine (SVM)
to discriminate between cancerous and healthy bones. Abdelaal and Tobely [15] developed
particle swarm-optimized extreme learning neural networks for efficiently forecasting bone
cancers. At first, an X-ray image was collected from the oral cancer dataset that should
be inspected for noise to remove by means of a non-local median filter. The extracted
feature was categorized as a particle swarm optimization-based Extreme Learning Neural
Networks Classifier.

Wu et al. [16] developed a boundary-aware grid contextual attention net (BA-GCA
Net) to resolve the problems of inadequate performance in osteosarcoma MRI image
classification. Firstly, a grid contextual attention (GCA) was intended for capturing texture
details of the tumor region. Next, the spatial transformer block (STB) and statistical texture
learning block (STLB) are incorporated with the networks to enhance the capability for
extracting statistical texture features and locating tumor regions. The author [17] developed
an automated bone cancer diagnosis technique to predict cancer at an earlier stage. Firstly,
the bone image was gathered from the patients, and noise in the image was removed by
means of a median filter. Afterward removing the noise, the affected tumor region can
be diagnosed by employing the intuitionistic fuzzy rank correlation. Distinct statistical
features were extracted from the diagnosed intuitionistic fuzzy-based clustered images.
The obtained feature was processed with the help of a deep neural network (DNN) layer
that effectively investigates every feature using the Levenberg–Marquardt learning model.

In spite of the several DL models that existed in the earlier studies, it is still needed
to enhance the osteosarcoma classification performance. Due to the incessant deepening
of the model, the number of parameters of DL models gets increased, and it leads to
model overfitting. Besides, various hyperparameters have a substantial influence on
the performance of the CNN model. Principally, hyperparameters such as epoch count,
batch size, and learning rate selection are essential to attain effectual outcomes. Since the
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trial and error method for hyperparameter tuning is a tiresome and inaccurate process,
hyperparameter optimizers can be applied. On the other hand, the choice and shape of MFs
affect the performance of the fuzzy system irrespective of the significance. Therefore, in this
work, an Adam optimizer and HBO algorithm are applied for the parameter optimization
of the MobileNet and ANFIS models, respectively.

3. The Proposed Model

In this article, we have introduced an Automated Osteosarcoma Classification model
named the HBODL-AOC model. The goal of the presented HBODL-AOC technique is to
identify the existence of osteosarcoma using medical images. In the presented HBODL-
AOC technique, different sub-processes are involved, namely contrast enhancement, deep
convolutional neural network (DCNN) based MobileNet feature extraction, Adam op-
timizer, ANFIS classification, and HBO-based parameter tuning. Figure 1 depicts the
working procedure of the HBODL-AOC approach.

Figure 1. Working process of HBODL-AOC algorithm. DCNN: deep convolutional neural network;
MCC: Mathew Correlation Coefficient.

3.1. Image Pre-Processing

In the presented HBODL-AOC technique, image pre-processing is initially performed
by contrast enhancement technique. Contrast enhancement approaches have progressed in
the past few decades to address the requirements of its objectives. There were 2 key goals in
improving an image’s contrast. One is facilitating or increasing the efficiency of subsequent
tasks (for example, image segmentation, image analysis, and object detection), and another
one is improving appearance for visual interpretation. Many contrast enhancement meth-
ods depend on histogram modifications, which are implemented locally or globally. The
method that overcomes the limitations of global techniques by enhancing local contrast
is called the Contrast Limited Adaptive Histogram Equalization (CLAHE) technique [18].
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CLAHE was a variation of Adaptive histogram equalization (AHE) that thwarts contrast
over-amplification. CLAHE operates on smaller areas of an image known as tiles instead of
the complete image. The surrounding tiles can be combined through bilinear interpolation
to remove the false boundaries. This method is employed for enhancing image contrast.

3.2. Feature Extraction

At this stage, the MobileNet model is applied for feature extraction. CNN is mostly
collected from fully connected (FC) input, pooling, output, and convolution layers [18].
As compared to the typical neural network, it features local connection, down-sampling,
and weighted sharing. It could efficiently decrease the network parameter, avoid over-
fitting, and enhance the efficacy of removing local features. The convolutional layer was a
basic element of the convolutional neural network (CNN), and the local extracting feature
was recognized by linking the input of all the neurons to the local sensing area of the
preceding layer. The convolutional function is classified as convolution and activation, and
the computation procedure is demonstrated as:

T = fk

(
r

∑
x,y,z=1

Cx,y,zws
x,y,z + bs

)
(1)

where C and T signify the input and resultant of the convolutional layer correspondingly;
r and s represent the serial number of convolutional kernels, and the channel counts
correspondingly; w and b denote the weight as well as the bias of the convolutional kernel;
fk implies the activation function of kth layers; and x, y, and z represent the dimensional of
input datasets.

During the activation function, non-linear function like rectified linear unit (ReLU),
Sigmoid, Leaky ReLU, and Tanh is implemented for mapping the input later linear trans-
formation for enhancing the non-linear expression capability of networks. Especially, ReLU
removes the gradient vanishing outcome of the sigmoid purpose, and the gradient com-
putation speed was very quick; thus, it can be extremely utilized. Thus, the ReLU was
executed to the convolutional layer under this work. The pooling layer has a feature map-
ping layer that decreases the resultant dimensional of the convolutional layer for realizing
the down-sampling of local data and efficiently avoiding over-fitting. Overlapping pooling,
max pooling, and average pooling can be general pooling approaches. During this case,
max pooling was implemented for expressing local features, and several convolutional and
pooling layers can be utilized for realizing extracting features.

During the fully connected (FC) layer, all the neurons are FC to every neuron from the
front layer, and the predictive value was computed by weight summation of inter-layer
weighted co-efficient. To regression procedures, the non-linear activation functions like
Sigmoid, ReLU, and Tanh could not be appropriate to the final FC layer. While it maps the
outcome in the range of (0, ∞), (−1, 1), and (0, 1), correspondingly. So, for improving the
expression capability of the method, ReLU and linear activation functions can be executed
to FC and output layers correspondingly.

MobileNetV2 is a mobile-enhanced FC network and relies on the inverted residual
architecture, which has a bottleneck level interconnected to residual connection [19]. A first
FC layer with 32 filters is employed in the MobileNetV2 that can be followed by 19 residual
bottleneck layers. Six stages were followed in the model progression, which generates the
amplification image generator, fundamental method with MobileNetV2, training the model,
building up the model, storing model for forthcoming approximation, and process adding
model parameters. A loss of 0.25 assured a random exclusion of 25% of the weight during
training. This method significantly reduces overfitting. The major aim is to retain from
utilizing too many weights models and from gaining a widespread knowledge of the input.
For these datasets, a batch size of 32 images was exploited. Accordingly, 32 images were
learned in one cycle. Commonly, the model grows large once the batch size is enhanced.
However, this reduces the module’s ability to classify uncommon classes. Over an extensive
size of the model, MobileNetV2 enhances efficacy. The MobileNetV2 is encompassed of n
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times as numerous recurrent layers. In this work, depthwise separable convolutions are
used, which consist of depthwise and pointwise convolutions after one another.

The hyperparameter tuning process is performed by the Adam optimizer. It is a kind
of typical stochastic gradient descent (SGD) method for upgrading network weighted in
trained data [20]. It can be utilized for performing optimization and is the most optimum
optimizer at the moment. Adam proceeds in adagrad, and it can be a further adaptable
manner. Adagrad and momentum combined are called Adam.

Parameters w(t) and L(t), whereas index t signifies the present trained iteration, Pa-
rameter upgrade in Adam can provide as:

m(t+1)
w ← β1m(t)

w + (1− β1)∇wL(t) (2)

v(t+1)
w ← β2v(t)w + (1− β2)(∇wL(t))

2
(3)

m̂w =
m(t+1)

w

1− (β1)
(t+1)

(4)

Vw =
v(t+1)

w

1− (β2)
(t+1)

(5)

wt+1 ← wt − η
m̂√

v̂w+ ∈
(6)

In Equations (2) and (3), β1 and β2 denotes the gradient forgetting features and the
second moment of gradients. In Equation (6), ∈ implies the smaller scalar utilized for
preventing division by 0.

3.3. Osteosarcoma Classification Using Optimal ANFIS Model

For the identification and classification of osteosarcoma, the ANFIS model is exploited.
Soft computing techniques like neural networks and fuzzy set concepts are instances
of instruments that might be exploited for establishing smart systems [21]. This theory
provides a new methodology to resolve the problems that probability theory was incapable
of shedding light on. Furthermore, knowledge given by humans was essential for these
systems. The fuzzy rule is frequently involved in fuzzy deduction architecture, the most
common type of fuzzy examination and fuzzy structure. Mostly, rules might be seen as
follows: They comprise fuzzy recommendations and phonetic factors.

I f < Premise Proposition (p) > Then < Consequent Proposition (q) > (7)

Sometimes if the rules are imposed by the regulator in the FIS, but in the ANFIS, such
rules establish appropriate conditions. Once the rule cannot be followed for some reason, it
should be eliminated. Likewise, the neural network accomplishes its optimum state. Note
that the initial stage is represented as training, and the method displays an ideal system
with the minimum error that can be remotely possible. Figure 2 showcases the framework
of ANFIS.

The aim is to enhance the performance while concurrently decreasing the mistake rate
and describing related error indices and functions. Fuzzy if-then rules with one output and
two inputs might be formulated by:

The first rule, if x = A1 and y = B1 then f1 = p1x + q1y + r1.
The second rule, if x = A2 and y = B2 then f2 = p2x + q2y + r2.
Where x and y denote the input; A1, A2, B1, and B2 designates the phonological labels;

p and q represent the resulting factor, and f denotes the output in fuzzy.
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Figure 2. Architecture of ANFIS.

Now x and y characterize the input or passive layer, and membership function, rule,
norm, output, and last output layers characterize the first, second, third, fourth, and fifth
layers, correspondingly. Finally, the HBO algorithm is used to select the MFs optimally. In
HBO, the honey badger’s (HB) dynamic searching performance with digging and honey-
search tactics was separate from the exploration and exploitation phases [22]. The HB
desires to live apart from the self-dug tunnel and only meets others for mating. But, because
of its brave approach, it can be hunted by much greater animals once it is ineffectual to flee.
However, an HB climbs a tree to access bird nests and beehives for food. An HB determines
its meals by searching for mouse nests and digging, or subsequently, the honeyguide
bird that realizes hives then cannot attain honey. The HBO’s mathematical structure was
demonstrated as:

• The proposed HBO starts with initialized of the count of HBs dependent upon the
population number (Ns) and the subsequent position:

Yj = 1bj + r1 ×
(
ubj − 1bj

)
(8)

whereas Yj refers to the HB position, lbj and ubj signifies the lower as well as upper
limits of all the positions from the searching space, and r1 denotes the arbitrary number
betwixt zero and one.

• The intensity (Int) has stated that it will be proportional to concentrates, prey strength,
and the length betwixt the jth HB, as well as prey. The prey moves fast if the smell
strength is stronger and different. The subsequent equation was utilized for computing
the determining intensity:

Intj = r2 ×
SS

4πd2
j

(9)

SS = (Yj −Yj+1)
2 (10)

dj = Yprey −Yj (11)

In which SS signifies the source strength, r2 denotes the arbitrary number, and dj repre-
sents the distance betwixt Yprey and the jth badger place. The strength in Equation (10) has
assumed that the squared variance betwixt the HB’s present and next position as strength
is continuously positive as it refers to intensity. The density factor (ϕ) was definite and up-
graded the time-varying randomized controls to ensure a smooth transition from exploration
to exploitation. This feature reduces with iterations for decreasing randomized with time as:
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ϕ = Cc× exp
(
−iter

iter max

)
(12)

In which itermax refers to the maximal iterations number, and Cc stands for constant
equivalent to two.

• To enhance the get-away from the local to the optimum area, a flag (Fg) was created
that changes the searching directions. Therefore, agents take availing higher chances
of scanning the search space rigorously. It can be defined as:

Fg =

{
1 i f r3 ≤ 0.5
−1 otherwise

(13)

whereas r3 implies the arbitrary number betwixt zero and one. Afterward, the agent
positions can be upgraded whereas Ynew was upgraded based on 2 stages digging and
honey stages, as follows: during the digging stage, an HB carries out activities related to
cardioid shape that is simulated as:

Ynew = Yprey + Fg× β× I ×Yprey + Fg× r4 × ϕ× dj
×|cos(2πr5).[1− cos(2πr6)]|

(14)

In which β implies the capability of HB for obtaining food that is superior to or
equivalent to 1 (default = 6) and r4, r5, and r6 are 3 distinct arbitrary numbers betwixt zero
and one. During the honey stage, an HB monitors a honeyguide bird for reaching a beehive
that can be inspired as:

Ynew = Yprey + Pg× r7 × ϕ× dj (15)

whereas r7 denotes the arbitrary number betwixt zero and one.

4. Performance Validation

The proposed model is simulated using Python 3.6.5 tool. The proposed model was
tested using PC i5-8600 k, GeForce 1050Ti 4 GB, 16 GB RAM, 250 GB SSD, and 1 TB HDD.
The parameter settings are given as follows: learning rate: 0.01, dropout: 0.5, batch size:
five, epoch count: 50, and activation: ReLU. The HBODL-AOC model is tested using
a benchmark database [23] containing 1144 images under three classes. It comprises
345 images of viable tumors (VT), 263 images of non-viable tumors (NVT), and 536 images
of the non-tumor (NT) class. Figure 3 illustrates the sample images.

Figure 3. Sample images.
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The confusion matrices of the HBODL-AOC model on OC performance are given
in Figure 4. The results implied that the HBODL-AOC model could effectively identify
different class labels.

Figure 4. Confusion matrices of HBODL-AOC approach (a,b) 60:40 of training/testing data and
(c,d) 70:30 of training/testing data.

In Table 1 and Figure 5, an overall OC performance of the HBODL-AOC model
under 60% of training and 40% of testing datasets is given. The results implied that the
HBODL-AOC model has properly identified VT, NVT, and NT classes under both data.
On 60% of the training database, the HBODL-AOC model has gained an average accuy of
98.93%, precn of 98.39%, recal of 98.25%, Fscore of 98.32%, AUCscore of 98.69%, and Mathew
Correlation Coefficient (MCC) of 97.48%. Meanwhile, on 40% of the testing database, the
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HBODL-AOC method has acquired an average accuy of 99.71%, precn of 99.57%, recal of
99.68%, Fscore of 99.62%, AUCscore of 99.73%, and MCC of 99.38%.

Table 1. OC analysis of HBODL-AOC approach on 60:40 of TR/TS databases.

Labels Accuracy Precision Recall F-Score AUC Score MCC

Training Phase (60%)

VT 98.54 97.88 96.86 97.37 98.03 96.36

NVT 99.42 98.80 98.80 98.80 99.21 98.42

NT 98.83 98.48 99.09 98.78 98.84 97.67

Average 98.93 98.39 98.25 98.32 98.69 97.48

Testing Phase (40%)

VT 99.56 98.72 100.00 99.35 99.67 99.03

NVT 100.00 100.00 100.00 100.00 100.00 100.00

NT 99.56 100.00 99.04 99.52 99.52 99.12

Average 99.71 99.57 99.68 99.62 99.73 99.38

Figure 5. Average outcome of HBODL-AOC approach on 60:40 of TR/TS databases.

Table 2 and Figure 6 portray the overall OC performance of the HBODL-AOC model
under 70% of training and 30% of the testing datasets given. The outcomes exhibited that
the HBODL-AOC approach has properly identified VT, NVT, and NT classes under both
data. On 70% of the training database, the HBODL-AOC technique has acquired an average
accuy of 99.08%, precn of 98.71%, recal of 98.42%, Fscore of 98.55%, AUCscore of 98.83%,
and MCC of 97.85%. In the meantime, on 30% of the testing database, the HBODL-AOC
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methodology has obtained an average accuy of 99.61%, precn of 99.29%, recal of 99.20%,
Fscore of 99.25%, AUCscore of 99.45%, and MCC of 98.96%.

Table 2. OC analysis of HBODL-AOC approach under 70:30 of TR/TS databases.

Labels Accuracy Precision Recall F-Score AUC Score MCC

Training Phase (70%)

VT 99.00 100.00 96.54 98.24 98.27 97.57

NVT 99.25 97.99 98.98 98.48 99.16 97.99

NT 99.00 98.15 99.73 98.93 99.05 98.00

Average 99.08 98.71 98.42 98.55 98.83 97.85

Testing Phase (30%)

VT 99.71 100.00 99.12 99.56 99.56 99.34

NVT 99.42 98.48 98.48 98.48 99.06 98.13

NT 99.71 99.39 100.00 99.70 99.72 99.42

Average 99.61 99.29 99.20 99.25 99.45 98.96

Figure 6. Average outcome of HBODL-AOC approach on 70:30 of TR/TS databases.

The training accuracy (TACC) and validation accuracy (VACC) of the HBODL-AOC
method is inspected on OC performance in Figure 7. The result implied that the HBODL-
AOC technique had displayed improved performance with increased values of TACC and
VACC. It is seen that the HBODL-AOC method has reached maximum TACC outcomes.
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Figure 7. TACC and VACC analysis of HBODL-AOC approach.

The training loss (TLS) and validation loss (VLS) of the HBODL-AOC technique are
tested on OC performance in Figure 8. The figure inferred that the HBODL-AOC approach
had revealed better performance with the least values of TLS and VLS. It is noted that the
HBODL-AOC technique has resulted in reduced VLS outcomes.

Figure 8. TLS and VLS analysis of HBODL-AOC approach.
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A clear precision-recall study of the HBODL-AOC technique under the test database
is portrayed in Figure 9. The figure noted that the HBODL-AOC methodology has resulted
in enhanced values of precision-recall values under all classes.

Figure 9. Precision-recall analysis of HBODL-AOC approach.

In Table 3, an extensive comparative study of the HBODL-AOC model with other DL
models on OC classification is provided [24]. Figure 10 represents a comparative accuy
and Fscore inspection of the HBODL-AOC method with other existing methods. The results
show the HBODL-AOC model has attained higher values of accuy and Fscore. Based on
accuy, the presented HBODL-AOC model has obtained improved accuy of 99.71%, while
the wind-driven optimization with deep transfer learning enabled osteosarcoma detection
and classification (WDODTL-ODC), EfficientNet, Xception, ResNet-50, and MobileNet-
v2 models have reached reduced accuy of 99.22%, 97.70%, 96.85%, 97.85%, and 98.53%
respectively.

Table 3. Comparative analysis of HBODL-AOC technique with other methods.

Methods Accuy Precn Recal Fscore

HBODL-AOC 99.71 99.57 99.68 99.62

WDODTL-ODC Model 99.22 99.13 98.48 99.04

EfficientNet Model 97.70 97.94 98.02 95.03

Xception Model 96.85 95.00 96.88 96.80

ResNet-50 Model 97.85 98.80 94.94 97.42

MobileNet-V2 Model 98.53 98.10 98.33 97.97
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Figure 10. Accuy and Fscore analysis of the HBODL-AOC approach with other algorithms.

Moreover, depends on Fscore, the presented HBODL-AOC method has acquired im-
proved Fscore of 99.62%, while the WDODTL-ODC, EfficientNet, Xception, ResNet-50, and
MobileNet-v2 models have reached reduced Fscore of 99.04%, 95.03%, 96.80%, 97.42%, and
97.97% correspondingly.

Figure 11 represents a comparative precn and recal analysis of the HBODL-AOC tech-
nique with other existing methods. The figure exhibited that the HBODL-AOC approach
has attained higher values of precn and recal . Based on precn, the presented HBODL-AOC
model has obtained improved precn of 99.57%, while the WDODTL-ODC, EfficientNet,
Xception, ResNet-50, and MobileNet-v2 methodologies have reached reduced precn of
99.13%, 97.94%, 95%, 98.80%, and 98.10% respectively. But based on recal , the presented
HBODL-AOC model has obtained improved recal of 99.68%, while the WDODTL-ODC,
EfficientNet, Xception, ResNet-50, and MobileNet-v2 models have reached reduced recal of
98.48%, 98.02%, 96.88%, 94.94%, and 98.33%, correspondingly. These results assured the
better performance of the HBODL-AOC model over other DL models. The enhanced perfor-
mance of the proposed model is due to the effective parameter selection of the MobileNet
and ANFIS models.
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Figure 11. Precn and Recal analysis of the HBODL-AOC approach with other algorithms.

5. Conclusions

In this article, we have introduced an Automated Osteosarcoma Classification model
named the HBODL-AOC model. The goal of the presented HBODL-AOC technique is to
identify the existence of osteosarcoma using medical images. In the presented HBODL-
AOC technique, image pre-processing is initially performed by contrast enhancement
technique. For feature extraction, the HBODL-AOC technique employed the MobileNet
model with Adam optimizer for hyperparameter tuning. Finally, the HBO algorithm with
the ANFIS model is applied for the osteosarcoma detection and classification process.
To demonstrate the enhanced classification performance of the HBODL-AOC approach,
a series of simulations were performed. The extensive simulation analysis portrayed
the improved performance of the HBODL-AOC technique over existing DL models with
maximum accuracy of 99.71%. In the future, the performance of the HBODL-AOC technique
can be improved by hybrid DL classification models.
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