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Simple Summary: Portal vein infiltration (PVI) is a complication of HCC with critical impact on
further patient management as systemic therapies are recommended once PVI is diagnosed. In our
study, we matched 44 patients with HCC who developed PVI in the course of disease with no CT-
detectable PVI at initial diagnosis to the same number of patients who never developed PVI during
follow-up, but showed the same conventional tumor traits (size and number of lesions, growth type,
contrast enhancement pattern, etc.). Using LASSO regression, radiomics feature analysis showed a
sensitivity and specificity of 0.78 to detect the occurrence of PVI in the validation set. Therefore, an
additional radiomics evaluation at initial diagnosis could help to identify patients benefiting from a
closer surveillance.

Abstract: Portal vein infiltration (PVI) is a typical complication of HCC. Once diagnosed, it leads to
classification as BCLC C with an enormous impact on patient management, as systemic therapies are
henceforth recommended. Our aim was to investigate whether radiomics analysis using imaging
at initial diagnosis can predict the occurrence of PVI in the course of disease. Between 2008 and
2018, we retrospectively identified 44 patients with HCC and an in-house, multiphase CT scan at
initial diagnosis who presented without CT-detectable PVI but developed it in the course of disease.
Accounting for size and number of lesions, growth type, arterial enhancement pattern, Child–Pugh
stage, AFP levels, and subsequent therapy, we matched 44 patients with HCC who did not develop
PVI to those developing PVI in the course of disease (follow-up ended December 2021). After
segmentation of the tumor at initial diagnosis and texture analysis, we used LASSO regression to find
radiomics features suitable for PVI detection in this matched set. Using an 80:20 split between training
and holdout validation dataset, 17 radiomics features remained in the fitted model. Applying the
model to the holdout validation dataset, sensitivity to detect occurrence of PVI was 0.78 and specificity
was 0.78. Radiomics feature extraction had the ability to detect aggressive HCC morphology likely to
result in future PVI. An additional radiomics evaluation at initial diagnosis might be a useful tool to
identify patients with HCC at risk for PVI during follow-up benefiting from a closer surveillance.
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1. Introduction

Hepatocellular carcinoma (HCC) is the most frequent primary liver cancer and the
fourth most common cause of cancer-related death [1,2]. According to the Barcelona clinic
liver cancer (BCLC) classification, the prognosis of HCC is stage-dependent and patients
with an advanced HCC have only limited therapeutic options [3].

Macrovascular tumor infiltration of portal and/or liver veins is a common and severe
complication in patients with HCC. It occurs in up to 40% in patients with HCC and leads to
a significantly poorer overall survival [4–8]. This is especially true for portal vein infiltration
(PVI), accounting for about 90% of macrovascular tumor infiltration [9]. Plausibly, the
greater the extent of PVI, the worse the prognosis becomes. It is noteworthy, however, that
even segmental or subsegmental PVI leads to a dismal prognosis [7].

Although PVI has critical impact on the outcome and management of patients with
HCC, an accurate diagnosis in clinical routine is often difficult. In particular, segmen-
tal or sub-segmental invasion is often missed at first occurrence and only diagnosed in
retrospect [10,11]. As HCCs with PVI often show a fast progression, early diagnosis is
important in order to avoid missing the chance of a treatment change, especially in the
light of novel immunotherapeutic agents such as atezolizumab and bevacizumab [12–14].
If PVI is diagnosed, patients should be staged as BCLC C, and are usually not candidates
for curative treatment options [3,15].

Thus, a method to non-invasively identify patients with HCC at risk of developing
PVI more precisely, or at an earlier timepoint, would allow for better stratification of
patients to the appropriate therapy. On this issue, converting imaging information into
quantitative features and detecting disease-specific characteristic patterns is at the heart
of radiomics [16,17]. Moreover, comprehensive radiomics-based quantification of tumor
tissue has gained interest in oncologic imaging by providing an opportunity for improving
decision support [18,19].

Against this background, we aimed to (1) investigate if there are quantifiable radiomics
feature differences in HCC developing PVI vs. non-PVI, which would allow us (2) to
develop a radiomics-based prediction model for PVI development in patients with HCC.

2. Materials and Methods
2.1. Study Design and Patient Recruitment

This retrospective cohort study conforms to the ethical guidelines of the 1975 Declara-
tion of Helsinki and was approved by the responsible ethics committee (permit number
2018-13619). Patient data were collected from a clinical database installed in 1998 at our
university medical center [20]. Inclusion criteria were as follows: (1) age > 18 years, (2) HCC
diagnosis between 2008 and 2018, (3) no prior treatment, (4) in-house, multiphase contrast-
enhanced CT scan at initial diagnosis, and (5) PVI observed during follow-up. We used the
same database to select a control group of treatment-naïve HCC patients at random who
met criteria (1)–(4) but never developed PVI. Follow-up ended 31 December 2021.

2.2. CT Examinations and Imaging Analysis

CT scans were performed using a Philips iCT or Philips Brilliance scanner (Philips
Healthcare, Best, The Netherlands) in late arterial, portal venous, and delayed phase.
Reconstruction mode was iDose level 3 with a Standard (B) filter and a 512 × 512 matrix.
CT X-ray tube voltages were 80 kV for late arterial imaging and 120 kV for portal venous and
delayed phase imaging. Extraction and subsequent analysis of imaging data was performed
using our picture archive and communication system (PACS) (Sectra, Linköping, Sweden).
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CT images were retrospectively analyzed by three board-certified radiologists with
longstanding experience in liver imaging (RK, SS, FH). If necessary, differentiation between
bland and tumor thrombus was performed by using established imaging criteria [11].
Doubtful imaging studies were analyzed in a second review by two of the radiologists until
a consensus view was built.

2.3. Segmentation and Texture Analysis

ROI segmentation and texture analysis was performed using LifeX software (www.
lifexsoft.org, Orsay, France) [21]. For data extraction and feature analysis, three-dimensional
ROIs were drawn for the whole tumor volume. In case of multifocal hepatic tumors at
initial diagnosis, the leading tumor was selected for segmentation. Segmentation was
manually performed in both arterial and portal venous phase by two readers (FS and MS)
after a consensus briefing on tumor margins (Figure 1). Regarding settings for radiomics
analysis, a priori parameters included voxel normalization to 2 mm in all axes as well as
focusing on the Hounsfield range between −64 and 448 Hounsfield units with 128 bins.
Overall, 52 texture features were computed in each of the two CT phases for a total of
104 texture features.
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Figure 1. ROI segmentation of a tumor in the late arterial phase. (a,c) Exemplary axial and coronal
slices of a sample tumor without PVI before segmentation; (b,d) exemplary axial and coronal slices of
a sample tumor without PVI after segmentation.

2.4. Statistical Analysis

Statistical analyses were performed using R 4.0.3 (A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing, https://www.R-project.org;
last accessed on 31 October 2022). Using propensity score matching accounting for size
and number of intrahepatic lesions, growth type, non-rim arterial enhancement pattern,
Child–Pugh stage, alpha-fetoprotein (AFP) levels, and subsequent therapy, we matched
an equal number of patients with HCC who did not develop PVI to those with PVI in

www.lifexsoft.org
www.lifexsoft.org
https://www.R-project.org
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the course of disease. The R package “matchIt” was used for propensity score matching.
LASSO regression was performed using the R package “glmnet” with binomial logistic
regression (https://CRAN.R-project.org/package=MatchIt, https://CRAN.R-project.org/
package=glmnet, last accessed on 31 October 2022). Pearson’s correlation was computed to
identify redundant features; in case of highly correlated features (r > 0.9), one feature was
dropped. For the prediction model, the patients were randomly split up in an 80%/20%
ratio into a training and a holdout validation set. The LASSO regression was built using a
cross-validation approach upon the training set, testing of the model was performed on the
independent validation set. p values less than 0.05 were considered statistically significant.

3. Results
3.1. Baseline Characteristics

Employing the inclusion criteria set forth in the previous section, 44 patients were in-
cluded in this study who initially showed no signs of portal vein infiltration but developed
PVI later in the course of disease. As a control group, 213 patients with no signs of PVI,
neither in initial nor in follow-up imaging, were randomly selected. Median follow-up
time of patients without PVI was 680 days (IQR: 270–1240 days). In the cohort of HCC
patients developing PVI only in the course of disease, median time to PVI was 209 days
(IQR: 84–419 days). Using propensity score matching, the 44 tumors of the patients who de-
veloped PVI in the course of the disease were matched to 44 patients who never developed
PVI. Detailed baseline characteristics of the matched groups are provided in Table 1.

Table 1. Baseline characteristics of the patient groups without and with future PVI [IQR interquartile
range, AFP = alpha-fetoprotein, NASH = nonalcoholic steatohepatitis].

Parameter Non-PVI Group (n = 44) PVI Group (n = 44) p-Value

Age, years [IQR] 65 [59–72] 71 [63–74] 0.05

Number of lesions, n [IQR] 3 [1–6] 4 [2–9] 0.59

Size of lesions, mm, median [IQR] 39 [28–56] 44 [32–68] 0.62

Growth type
nodular, n 36 34
diffuse, n 8 10 0.71

Non-rim arterial enhancement
pattern

hypervascular, n 23 25
hypovascular, n 4 4

mixed, n 27 15 0.90

Child–Pugh stage
A, n 22 26
B, n 22 17
C, n 0 1 0.37

AFP levels, ng/mL, mean [IQR] 11,946 [16–22,316] 15,193 [38–43,866] 0.45

Etiology
C2, n 18 21

chronic hepatitis B, n 8 6
chronic hepatitis C, n 12 10

NASH, n 4 3
unknown, n 2 4 0.83

Initial treatment *
curative, n 10 8

intra-arterial, n 33 35
systemic, n 1 1 0.87

* Curative includes surgery and ablation, intra-arterial includes trans-arterial chemo-embolization and selective
internal radiation therapy.

https://CRAN.R-project.org/package=MatchIt
https://CRAN.R-project.org/package=glmnet
https://CRAN.R-project.org/package=glmnet
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3.2. Feature Selection and Prediction Model Using LASSO Regression

After dropping redundant features with high correlation, a total of 47 radiomics
features out of 104 initial features remained (Supplementary Table S1). Among first order
features, the most significant features were shape compacity and kurtosis, indicating more
extreme outliers and a less sphere-like volume of tumors with future PVI. Boxplots of the
two features are depicted in Figure 2.
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Figure 2. Boxplots of first order radiomics features compacity and kurtosis in portal venous phase in
patients without and with PVI development. (a) Compacity; (b) kurtosis.

After a random 80:20 split of the dataset in a training and a validation set, and using
LASSO regression analysis on the training set, a 10-fold cross-validation approach yielded
a minimum lambda of 0.019 (Figure 3). Applying the fitted model to the independent
validation dataset, sensitivity was 0.78 and specificity was 0.78. The radiomics model with
its coefficients is provided in the supplement (Supplementary List S1, the contingency
tables of the regression on the training and validation set are depicted in Table 2.

Table 2. Contingency tables of the radiomics model against the ground truth in the training and
holdout validation set.

Training Set No PVI Occurred PVI Occurred

No PVI predicted 25 (71%) 6 (17%)
PVI predicted 10 (29%) 29 (83%)

Holdout validation set No PVI occurred PVI occurred

No PVI predicted 7 (78%) 2 (22%)
PVI predicted 2 (22%) 7 (78%)
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4. Discussion

Our results indicate an added value of radiomics analysis at initial diagnosis in the
detection of future portal vein infiltration in patients with HCC. While differences in tumor
contrast enhancement, tumor shape, and tumor size have been previously proposed as risk
factors for PVI development, quantitative tissue characteristics helped predict infiltration
when matching for those conventional tumor traits.

Ideally, nodular HCCs show a strong arterial phase hyper-enhancement, followed
by early washout in the portal venous and delayed phase [22]. Compared to nodular
HCCs, HCCs with PVI are often ill-defined and show diffuse, infiltrative growth patterns,
making it sometimes challenging to detect them against the cirrhotic liver parenchyma [23].
Regarding their contrast enhancement, HCCs with PVI often show inhomogeneous contrast
enhancement on arterial phase and portal venous/delayed phase [23,24]. These conven-
tional tumor traits have been associated with portal vein infiltration; however, they rely on
qualitative assessments by the reader.

Moreover, HCCs with PVI have been associated with a larger tumor size regarding
both tumor volume and number of lesions [12,13]. Together with the above-mentioned
infiltrative growth patterns, HCCs with PVI often display a large intrahepatic tumor burden
affecting major parts of the liver, not allowing for curative treatment [3].

In our study, we showed that a radiomics model measuring quantitative intralesional
tissue characteristics might help to distinguish PVI development in patients with HCC. This
refers to the so-called tumor heterogeneity, and has recently gained interest in oncologic
imaging [18,25]. The term heterogeneity covers a broad range of histological features,
including tumor grading, angiogenesis, necrosis, cellularity, etc., which can be quantified
by radiomics measurements [18,26]. Most importantly, as recent studies could show,
heterogeneity is a relevant attribute associated with poorer prognosis or clinically relevant
mutations [18,19,27]. Thus, it has been hypothesized that tumor heterogeneity might be an
expression of a more aggressive tumor biology [18].

Regarding our results, and considering that PVI was associated with tumor hetero-
geneity, PVI could be a phenotypical manifestation of adverse tumor biology. Thus, the
noninvasive assessment of tumor heterogeneity could further optimize treatment stratifica-
tion by selecting patients more individually [18,26]. Recent studies have shown positive
results in predicting microvascular invasion in HCC using radiomics approaches: Xu et al.
incorporated clinico-radiologic and radiomics parameters to achieve an area under the
curve of 0.91 in their training and 0.89 in their test set for prediction of microvascular infil-
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tration in a cohort of surgically resected HCC patients [28], while Shan et al. investigated
radiomics models of both tumoral and peritumoral tissue to predict early recurrence of
HCC [29]. Since microvascular invasion is a very strong predictor for tumor recurrence
after curative treatment [30], these studies might impact future patient selection. Moreover,
radiomics has shown the potential to predict HCC grading preoperatively [31].

As things stand today, there are plenty of staging systems rating patient survival
mainly based on clinical and imaging data, most notably the BCLC classification [32,33].
The BCLC classification recommends transarterial treatment for intermediate stage (BCLC
B) and systemic therapy for advanced stage HCC with PVI (BCLC C) [3,34]. However, since
these subgroups are partly overlapping, it is very difficult to predict which patient might
profit and which one might not profit from a particular therapy [35]. Moreover, HCCs with
PVI display high interindividual genetic tumor heterogeneity with different prognoses,
and there is increasing evidence that a more aggressive treatment might be beneficial for
selected patients [12,26]. Thus, current staging systems could profit by taking individual
tumor behavior more into account [26,36]. By incorporating radiomics features, this would
allow for a more precise stratification of patients to the optimal treatment [37].

Limitations

As a preliminary study, it has several inherent limitations. Most importantly, the study
was conducted retrospectively at a single center. As the images were acquired and recon-
structed using two CT scanner types by one vendor, the reproducibility of our model under
different imaging settings has not been tested. Therefore, our results may not necessarily
be transferrable to other care centers and their patient collectives. In radiomics analyses,
reproducibility is related to various factors including imaging acquisition protocols, recon-
struction algorithms used, methods of segmentation, and methods for extracting imaging
features—due to the lack of standardization among institutions, generalizability has been
a problem [17,26,37,38]. Thus, although we used a holdout patient cohort not used for
training as validation, external validation of the model has to be performed in order to
prove its stability and reproducibility.

Furthermore, segmentation of tumor ROIs was performed manually, making it a
highly time-consuming and potentially error-prone procedure. However, there are several
studies showing how semi-automatic and fully automatic ROI detection, especially using
deep learning methods, can be successfully used to improve expenditure of time as well as
accuracy [39–41]. Therefore, automatization is likely to not only simplify but also objectify
the segmentation procedure. However, these automated segmentations have not become
part of clinical routine in radiological tumor assessments.

In the period of patient inclusion between 2008 and 2018, diagnosis of HCC was
routinely made on cross-sectional imaging using established criteria; histological sampling
of the tumor was not necessarily performed [42]. Moreover, patients in this study were
treated with different types of therapies after initial diagnosis. Thus, it cannot be ruled out
that treatment-related side effects affected the tumor biology in an adverse way, e.g., in the
case of incomplete ablation, which might have favored subsequent PVI [43,44].

5. Conclusions

Our study successfully demonstrates a proof-of-concept radiomics model predicting
future PVI in patients with HCC at initial diagnosis. As PVI leads to a dismal prognosis
and is often missed in the clinical routine at first occurrence, an additional radiomics
evaluation recognizing red flags for patients at risk for PVI during follow-up will help to
identify those benefiting from a closer surveillance. Thus, the ability of radiomics to detect
aggressive HCC morphology might provide one additional aspect in patient evaluation
and stratification.



Cancers 2022, 14, 6036 8 of 10

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14246036/s1, Table S1: Radiomics features included in
the analysis after dropping highly correlated features; List S1: Radiomics LASSO regression formula.
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