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Simple Summary: It has been known for decades that the immune system plays an important role in
the etiology of breast cancer. Also, lymph node spread is the most important prognostic factor in breast
cancer, and the presence of tumor-infiltrating lymphocytes (TILs) predicts a beneficial anti-HER2
therapeutic response. The latest translational clinical research aims to strengthen a patient’s immune
system to tackle and kill cancer cells more effectively. However, immune system cells can either
establish a protective antitumor response or, conversely, induce chronic inflammation that promotes
disease progression. This ambivalence depends, to a large extent, on the immune cell infiltrate present
in the tumor and the communication that these cells establish with the tumor cells. This review aims
to summarize the current knowledge of the immune system–breast cancer relationship, emphasizing
TILs and their importance as biomarkers of clinical progression of the disease.

Abstract: Human epidermal growth factor receptor 2–positive (HER2-positive) breast cancer accounts
for 15 to 25% of breast cancer cases. Although therapies based on the use of monoclonal anti-HER2
antibodies present clinical benefit for a subtype of patients with HER2-positive breast cancer, more
than 50% of them are unresponsive to targeted therapies or they eventually relapse. In recent
years, reactivation of the adaptive immune system in patients with solid tumors has emerged as a
therapeutic option with great potential for clinical benefit. Since the approval of the first treatment
directed against HER2 as a therapeutic target, the range of clinical options has expanded greatly,
and, in this sense, cellular immunotherapy with T cells relies on the cytotoxicity generated by these
cells, which ultimately leads to antitumor activity. Lymphocytic infiltration of tumors encompasses a
heterogeneous population of immune cells within the tumor microenvironment that exhibits distinct
patterns of immune activation and exhaustion. The prevalence and prognostic value of tumor-
infiltrating lymphocyte (TIL) counts are associated with a favorable prognosis in HER2-positive
breast cancers. This review discusses emerging findings that contribute to a better understanding of
the role of immune infiltrates in HER2-positive breast cancer. In addition, it summarizes the most
recent results in HER2-positive breast cancer immunotherapy and anticipates which therapeutic
strategies could be applied in the immediate future.
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1. The Importance of Immune Surveillance in HER2-Positive Breast Cancer

Breast cancer represents about 30% of all cancer cases among women, being the most
commonly diagnosed cancer type and one of the leading causes of cancer death [1]. Breast
cancer is a highly heterogeneous disease that encompasses multiple subtypes, with diverse
morphological and clinical features [2]. Amplification and/or overexpression of HER2
confers high aggressiveness and the HER2-positive molecular subtype represents around
20% of all breast cancers patients [3]. Thus, HER2-blocking antibodies, such as trastuzumab
and pertuzumab, in combination with chemotherapy represent the standard therapy for
HER2-positive patients [4]. The antibody drug trastuzumab-emtansine (T-DM1) has also
been approved for the treatment of advanced HER2-positive patients with progressive dis-
ease after the treatment with the first-line therapy mentioned [5]. Trastuzumab-deruxtecan
(T-DXd), another antibody–drug conjugate, has recently been demonstrated to improve
progression-free survival (PFS) rates compared with T-DM1 in metastatic HER2-positive
patients, and it is currently evaluated to be positioned as a second-line therapy in those
patients [6,7]. However, about 25–30% of HER2-positive tumors finally relapse, as a result
of primary and secondary resistance [8–10]. Thus, the development of new therapeutic
approaches to overcome therapy resistance still remains a high-priority issue.

As compared with other carcinomas, breast tumors have a low mutation burden,
therefore being traditionally considered a poorly immunogenic cancer [11]. However, a
great body of evidence has shown the existence of remarkable heterogeneity, with triple
negative (TN) and HER2-positive having the highest immunogenic potentials within the
molecular subtypes of breast cancer [12,13].

In the context of cancer immunology research, the understanding of the crosstalk
between tumor and the host’s immune cells remains one of the most challenging issues.
It is necessary to delve deeper into the mechanisms involved in the regulation of disease
progression by the immune system in order to design more effective immunotherapies that
improve clinical outcomes. In this regard, lymphocytes (including T, B, and Natural Killer
(NK) cells), as well as macrophages, are the key players of the immune response triggered
against tumor cells [14]. Some tumor cells manage to evade the organism’s intrinsic tumor-
suppressive mechanisms. However, they can be destroyed by the host immune system
before they can establish malignancy and progress. Through the production of interferon-γ
(INF-γ), a cascade of responses is originated by NK cells, such as the recruitment of more
NK cells and macrophages (innate immunity). This killing process also involves CD4+
and CD8+ effector T cells, which are capable of recognizing and eliminating transformed
cells [15–17]. Even so, cancer cells can survive immune destruction and may enter a state
of tumor dormancy or an equilibrium phase. In this process, INF-γ and lymphocytes exert
a selection pressure that stimulates the appearance of mutations in some tumor cells that
allow them to acquire abilities to resist immune attack. It remains to be determined which
factors contribute to tip the balance either in the direction of cellular elimination or immune
escape. In this regard, in a clinical context, some studies seem to indicate that tumors can
stay in patients in a state of dormancy for years [16,18]. In the process of escape, surviving
tumor variants begin to progressively expand, establishing an immunosuppressive tumor
microenvironment and eventually generating clinically detectable cancer entities [15,19].

2. Tumor-Infiltrating Lymphocytes in HER2-Positive Breast Cancer

Tumor-infiltrating lymphocytes (TILs) are mononuclear immune cells that infiltrate
tumor tissue and have been described in most types of solid tumors, such as breast cancer,
colon cancer, melanoma, and lung cancer [20–22]. TILs comprise CD8+ and CD4+ effector
T cells, regulatory T cells (Treg), B cells, NK cells, and macrophages, and not only the
amount of lymphocytic infiltration, but also the different immune populations determine
the clinical outcome. TILs are responsible for the local immune response directed against
cancer cells to prevent tumor growth and metastasis. In recent years, the evaluation of TILs
has progressively gained a great deal of attention, as a large body of evidence has accumu-
lated supporting their clinical validity as a tumor biomarker in cancer, including breast
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cancer [23]. In particular, those cases with at least 50–60% lymphocytic infiltration have
been defined as lymphocyte-predominant breast cancer (LPBC) and have been reported to
have better outcomes compared to those with less lymphocytic infiltration, highlighting
that it has the potential to serve as an alternative therapeutic target in this disease [24].

In response to the increasing clinical significance of TILs in breast cancer, an inter-
national working group on immuno-oncology biomarkers was developed to set up and
define a common methodology for a homogeneous evaluation of TILs in breast cancer
samples. Commonly, the presence of TILs is studied using slides stained with hematoxylin
and eosin (H&E) and analyzed by light microscopy, where they can be identified by their
morphological characteristics or additional lymphocytic markers [25,26]. TILs have an
intratumoral or stromal location. Thus, lymphocytes having direct contact with tumor
cells are defined as intratumoral TILs, whereas those lymphocytes located throughout the
stroma without direct contact with carcinoma cells are defined as stromal TILs. As both are
located in the tumor tissue region, they are considered “true” TILs. Intratumoral TILs were
initially considered more relevant and, therefore, more useful for diagnosis, but most recent
studies point to stromal TILs as a more valuable and reproducible parameter. It is usually
difficult to observe intratumoral TILs on H&E-stained slides due to their heterogeneity,
low numbers, and fewer cases. Therefore, the current recommendation of the TIL working
group is to assess mainly stromal TILs [25].

Breast cancer TILs primarily contain CD8+ and CD4+ T cells, with smaller amounts
of regulatory T cells (Treg), B cells, NK cells, and macrophages [27,28]. Different subtypes
of breast cancer exhibit different levels of TIL infiltration, with TN and HER2-positive
subgroups typically showing greater infiltration than luminal subtypes [26]. TN tumors
have been found to show a prevalence of cases with LPBC up to 20%, followed by the
HER2-positive subtype with 16% of LPBCs, whereas the luminal subgroup has the lowest
prevalence (6%) [24].

In the last decade, several studies—including clinical trials—have evaluated the rele-
vance of TILs in early breast cancer (Table 1). A systematic review by Mao and colleagues
evaluated TIL levels in biopsies obtained before neoadjuvant chemotherapy. They reported
a significant association between high TIL numbers and increased pathological complete
response (pCR) after treatment. Furthermore, TILs showed predicted values of pCR only in
TN and HER2-positive breast cancer patients [29]. In the GeparSixto trial, the correlations
among pCR rates, high TILs, and LPBC were examined in breast cancer patients who
received neoadjuvant chemotherapy (Table 1). Stromal TILs, as well as LPBC, were signif-
icantly associated with pCR in univariable and multivariable analyses in HER2-positive
tumors. In HER2-positive patients, the addition of carboplatin produced an increase in
pCR rates in LPBC tumors relative to patients receiving anthracycline plus taxane treat-
ment alone [30]. Interestingly, Denkter and colleagues performed an analysis including
3771 breast cancer patients treated with neoadjuvant chemotherapy. As expected, they
observed higher prevalence of TILs in both the TN (30%) and HER2-positive (20%) subtypes
compared with the luminal subtype (13%). Across all molecular subtypes, high TIL levels
were associated with responses to neoadjuvant chemotherapy. However, an association
between longer overall survival and higher levels of TILs in the HER2-positive subtype
was not identified [31].
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Table 1. Summary of main clinical trials with TIL evaluation in HER2-positive breast cancer.

Trial
Reference
(Clinical

Trial)
Setting

Number
of

Patients
Treatment Arms Parameters Results p-Value

Reference
(TILs

Evaluation)

GeparSixto [32] Neoadjuvant 580

Paclitaxel/
doxorubicin/trastuzumab

Paclitaxel/
doxorubicin/trastuzumab/carboplatin

Association between
TILs (as a continuous
parameter) or LPBC

(>60%) and pCR rates

10% increase in TILs was
significantly associated with pCR.

sTILs and LPBC were independent
predictor factors for pCR.

LPBC tumors treated with PMCb
showed high-response pCR rates.

0.001
0.001; 0.001

0.006
[30]

FinHER [33] Early 232

Docetaxel/
FEC

Docetaxel/
FEC/

Trastuzumab

Association between
TILs (as a continuous

variable) and
trastuzumab benefit

10% increase in TILs was
significantly associated with

reduction in DDFS.
0.025 [34]

APHINITY [35] Early 4804

Chemotherapy/
trastuzumab

Chemotherapy/
trastuzumab/
pertuzumab

Association between
TILs (as a continuous
variable) and 6-year

IDFS after addition of
Pertuzumab

TILs percentage appeared to be
more predictive of pertuzumab

treatment effect than clinical
composite risk score.

n.s. [36]

N9831 [37] Early 945

Doxorubicin/
cyclophosphamide/
paclitaxel (Arm A)

Doxorubicin/
cyclophosphamide/

paclitaxel/
trastuzumab

(Arm C)

Association between
sTILs (>60%) and RFS

after addition of
trastuzumab

Patients with high and low sTILs
did not show differences in

10-year RFS.
0.63 [38]

NRG/NSABP
B-31 [37] Early 1581

Chemotherapy
Chemotherapy/

Trastuzumab

Association of sTILs (as
a semi-continuous

variable) and
trastuzumab benefit

in DFS

Increase in sTILs was significantly
associated with improved DFS.

There was not association between
sTILs and trastuzumab benefit.

0.001
0.65 [39]
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Table 1. Cont.

Trial
Reference
(Clinical

Trial)
Setting

Number
of

Patients
Treatment Arms Parameters Results p-Value

Reference
(TILs

Evaluation)

NeoALTTO [40] Early 387

Chemotherapy/
trastuzumab

Chemotherapy/
lapatinib

Chemotherapy/
trastuzumab/

lapatinib

Associations among
presence of TILs (>5%),

pCR, and EFS

Levels of TILs greater than 5% were
associated with higher pCR rates.

Every 1% increase in TILs was
associated with a decrease in EFS.

0.01
0.002 [41]

ShortHER [42] Early 866

Anthracycline/
taxane/

trastuzumab 1 year
(Arm A)

Anthracycline/
taxane/

trastuzumab
9 weeks (Arm B)

Association between
TILs (as a

semicontinuous and
binary variable)

with DDFS

10% increase in TILs was an
independent prognostic factor

for DDFS.
10% increase in TILs was a

significant prognostic factor in
arm B

Arm A patients with <20% TILs
showed better DDFS compared

with arm B patients.

0.002
0.009;
0.021

[43]

CLEOPATRA [44] Advanced 678

Docetaxel/
trastuzumab
Docetaxel/

trastuzumab/
pertuzumab

Association between
sTILs (as a

semicontinuous
variable) and PFS, OS

and pertuzumab benefit

There was not significant
association between TILs and PFS.

10% increase in sTILs was
significantly associated with

better OS.
There were not significant

differences by sTILs for PFS or OS
after pertuzumab addition.

0.063
0.0014
0.23;
0.21

[45]

MA.31 [46] Advanced 427
Taxane/

trastuzumab
Taxane/lapatinib

Association between
TILs (>5%) and PFS

after addition of
lapatinib

Low CD8+ cytotoxic sTILs were
associated with worse PFS in

patients treated with lapatinib.
0.03 [47]

TILs: tumor-infiltrating lymphocytes; LPBC: lymphocyte-predominant breast cancer; pCR: pathological complete response; sTILs: stromal TILs; PMCb: Paclitaxel plus no pegylated
liposomal doxorubicin (Myocet®) plus Carboplatin; FEC: fluorouracil, epirubicin, and cyclophosphamide; DDFS: distant disease-free survival; IDFS: invasive disease-free survival; n.s.:
no significance; RFS: relapse-free survival; DFS: disease-free survival; EFS: event-free survival; PFS: progression-free survival; OS: overall survival.
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The FinHER trial compared 9 weeks of trastuzumab plus chemotherapy versus
chemotherapy alone in HER2-positive patients [33]. They reported a significant correlation
between high TIL numbers and greater clinical benefits with the trastuzumab addition
(Table 1). They also determined a reduction in distant recurrence risk for each 10% in-
crease in TILs only among patients treated with trastuzumab [34]. Furthermore, in the
APHINITY trial, 4805 HER2-positive breast cancer patients were randomly assigned to
either pertuzumab or placebo with adjuvant chemotherapy plus trastuzumab [35] (Table 1).
Adding pertuzumab to the regimen was found to improve prognosis for patients with
higher TIL levels [36]. In the N9831 trial, patients treated with chemotherapy alone, but not
with trastuzumab, showed significant improvement in relapse-free survival (RFS) when
higher stromal TIL levels were identified [38] (Table 1). In the same way, the NRG/NSABP
B-31 trial evaluated early HER2-positive breast cancer patients who received regimens of
chemotherapy with or without trastuzumab. The results did not show differences in either
therapeutic arm in terms of improved disease-free survival (DFS) [39]. In the NeoALTTO
trial, TIL levels were identified as a prognostic factor for both pCR and event-free survival
(EFS) in early HER2-positive patients treated with lapatinib plus trastuzumab [41] (Table 1).
Additionally, in the ShortHER trial authors compared 9 weeks versus 1 year of trastuzumab
treatment in addition to chemotherapy. Interestingly, it was observed that 10% TIL incre-
ments were positively and independently associated with a 27% reduction in the risk of
distant DFS (Table 1). Patients with low levels of TILs were also found to benefit more from
long-term trastuzumab treatment [43].

Despite the well-established prognostic implications of TILs in early disease, their
role in advanced disease is less clear. In the Cleopatra trial, TIL values were evaluated
in advanced HER2-positive patients who received pertuzumab or placebo in addition
to trastuzumab and docetaxel. They observed a significant association between higher
TIL infiltration and improved OS [45] (Table 1). A total of 652 patients with metastatic
HER2-positive breast cancer were enrolled in the MA.31 trial. Patients had not been previ-
ously treated with chemotherapy or anti-HER2 agents in the metastatic setting and were
randomized to receive taxane-based chemotherapy in combination with trastuzumab or
lapatinib [46] (Table 1). Patients treated with lapatinib showed worse prognoses when they
had low CD8+ TIL levels compared to patients treated with trastuzumab [47]. Altogether,
the results of these two studies performed in advanced HER2-positive disease indicate that
TIL counts could apparently have a smaller prognostic significance in the metastatic setting
compared to early disease.

3. Clinical Relevance of Different Phenotypes of Immune Infiltrates

Besides the mere count of lymphocytic infiltration, the phenotype of the lymphocytes
may also dictate the clinical outcome of HER2-positive breast cancer patients, as every
specific subset has a specific role in cancer development. Cumulative data from human
studies have associated the different immune populations with a predominant contribution
to either pro- or antitumor activities (Figure 1).

3.1. CD4+ and CD8+ T Cells

T cells, including CD4+ and CD8+ cells, function as immune effectors to induce
adaptive immunity. After activation, CD8+ T lymphocytes differentiate into cytotoxic cells,
and CD4+ T cells originate three subpopulations of T helper (Th) cells: type 1 Th (Th1), type
2 Th (Th2), and type 17 Th (Th17) cells. CD8 lymphocytes destroy tumor cells and CD4+
subpopulations can produce pro- or antitumor responses [48,49]. CD4+ Th-1 cells release
proinflammatory cytokines, such as TNF-α, IL-2, and INF-γ, inducing a potent antitumor
response. Further, they promote the antitumor activity of macrophages, including NK and
T cells [49,50]. CD4+ Th-2 cells secrete cytokines that have been reported to play a role in
tumor growth and metastasis, such as IL-4, IL-5, and IL-13 [51]. However, they also release
IL-10, which has both pro- and antitumor properties [52]. Additionally, CD4+ Th-17 cells
can induce tumor growth after being activated by TGF-β, IL-6, or IL-23 [53].
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Figure 1. The predominant contribution of the different lymphocytic infiltrates to either tumor sup-
pression or progression, including NK cells, cytotoxic T cells, T helper (Th) cell subsets, regulatory T
(Treg) cells, B cells, and tumor-associated macrophages, comprising those with antitumorigenic (M1)
or protumorigenic (M2) properties. Through the secretion of different factors, these immune popula-
tions play key roles in shaping the microenvironment, thereby driving either immune-mediated anti-
or protumor activity. (Created with BioRender.com, accessed on 17 January 2022).

In HER2-positive breast cancer, a variety of studies have evaluated the significance of T
cell subpopulations on the onset and progression of the disease. In a cohort of 1334 primary
invasive breast cancer patients with long-term follow-up, CD8+ T lymphocyte density
was assessed. The results showed a significant association between a higher number of
CD8+ lymphocytes and a better clinical outcome, regardless of other clinical parameters,
including HER2 status [54]. Moreover, elevated CD8+ and low Forkhead box protein
3 positive (FOXP3+) T-cell infiltrates have been identified to serve as an independent
predictor of improved OS and RFS after treatment with neoadjuvant chemotherapy in
patients with HER2-positive and HER2-negative breast cancer [55]. In addition, breast
carcinomas with a higher number of CD8+ T cells have shown a greater benefit from
treatment with trastuzumab [56]. Recently, prognostic subsets of T cells have been identified
in breast tumors by an automated tool to determine optimal cluster numbers in single-cell
RNA sequencing data. Consistent with previous results, CD8+ subsets and Tregs were
associated with improved survival in breast cancer patients, and a significant correlation
between CD4+ naive T cell expression and OS was identified in breast cancer subtypes
HER2-positive and TN [57]. Lately, patients with early HER2-positive breast cancer treated
with anti-HER2 therapies, lapatinib plus trastuzumab, in the absence of chemotherapy,
have shown a correlation between TIL subsets and pCR rate. The results showed higher
pCR rates in patients with CD4+, CD8+, high CD20+ stromal TILs, and high CD20+
intratumoral TILs who had been treated with anti-HER2 therapies [58]. In addition, Datta
and colleagues evaluated the CD4+ Th1 immune response in patients with primary invasive
HER2-positive breast cancer treated with trastuzumab plus chemotherapy. The results
showed that patients who achieved pCR after receiving neoadjuvant therapy had a greater
Th1 CD4+ response [59].

3.2. Treg Cells

Treg cells were described in 1995 and comprise a distinct group of CD4+ T lympho-
cytes with immunosuppressive properties [60]. Treg cell activity has been related to poor
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immunological response, and it has been proposed that they could represent a critical mech-
anism for immune evasion by tumors, including breast cancers. Treg cells are characterized
by the expression of FOXP3, a transcription factor that participates in the differentiation,
development, maintenance, and function of the Treg cell population [61]. The suppression
of the immune response by Treg cells is produced by different mechanisms. These include
the inhibition of activated T cells through interaction with the CTLA-4 protein that inhibits
the costimulatory molecule of CD28 T cells, as well as the release of cytokines that promote
the death of tumor T cells, such as TGF-β, IL-10, and IL-35 [62].

The role of Treg cells in HER2-positive breast cancer has been evaluated in several
studies. In a cohort of 3992 breast cancer patients, Treg TILs were assessed by immuno-
histochemistry. They identified an improved survival in HER2-positive/ER (estrogen
receptor)-negative patients with high Treg TIL infiltrates and coexistent CD8+ T-cells. Nev-
ertheless, high Treg TIL quantities without CD8+ T cells were not associated with better
survival in ER-positive breast cancer patients [63]. Based on the studies to date, further
research is needed to clarify the role of Treg cells in tumoral immune response and their
interaction with other cell populations present in the tumor [64]. Thus, future studies
on their prognostic role in patient samples are necessary to finally determine the clinical
importance of Treg cell assessment.

3.3. B Cells

In contrast to the high attention given to T lymphocytes in tumor progression, the
role of B lymphocytes within the tumor microenvironment remains underexplored. In
addition to their function of secretion of antibodies and cytokines, which trigger a humoral
antitumor response, B cells are able to recognize antigens, regulate antigen processing and
presentation, and promote and modulate innate and T cell immunity [65]. This contributes
to a plethora of functions in the tumor microenvironment, sometimes contradictory between
promotion and regression [66]. Finally, increasing evidence has revealed that high B cell
levels are a positive prognostic factor in breast cancer. In fact, tumor-infiltrating B cell
densities have been shown to increase in breast tumor tissue compared with normal breast
tissue. Moreover, tumor-infiltrating B cells have also been associated with global TILs,
CD4+ and CD8+ T cells, higher tumor grade and proliferation, and HR negativity [67].
In a cohort of biopsies from invasive breast cancer patients obtained before neoadjuvant
chemotherapy treatment, the expression of CD3, CD8, and CD20 markers in stromal
TIL infiltrates was evaluated. Interestingly, they identified CD20 as the most sensitive
and specific marker predicting pCR after chemotherapy treatment. Specifically, high
CD20 expression was also described to predict pCR in those cases with the HER2-positive
subtype [68]. In HER2-positive breast cancer, high levels of B lymphocytes has been
correlated with a higher proportion of patients achieving pCR, following lapatinib and
trastuzumab treatment without chemotherapy [58]. In contrast, another study showed
higher levels of tumor-infiltrating B cells in the pretreatment biopsies of breast cancer
patients. Following neoadjuvant treatment with anthracycline plus taxane-based therapy or
with trastuzumab, a statistically significant decrease in B cell counts in tumor samples was
reported [69]. Therefore, additional research is required to determine the clinical relevance
of this immune population in breast cancer due to considerable controversy regarding the
prognostic impact of this subpopulation of immune cells.

3.4. NK Cells

NK cells are the main players of innate immunity. Although they are cytotoxic effector
cells, they also are involved in the modulation of immune reactions through the secretion
of cytokines and chemokines. They are identified by their surface markers CD56 and CD16
and can be subdivided into different populations according to their relative expression [70].
Since many studies have demonstrated their cytotoxicity against tumoral cells, NK cells are
recognized as crucial agents of immunosurveillance and elimination phases during cancer
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immunoediting [71]. However, their specific role in breast tumor development, as well as
in therapy response, remains still unclear.

A study performed with early breast cancer patients showed the association between
the increased expression of molecules involved in the activation of NK cells (such as NK
cell receptors) and the increase in RFS [72]. In patients with locally advanced disease, high
levels of NK cells were found to be significantly related with an increase in pCR rates.
Further, the reduction in NK-mediated cytotoxicity was significantly associated with a
poorer response to neoadjuvant chemotherapy [73]. Particularly in patients with HER2-
positive breast cancer that had been treated with anti-HER2 agents, an association between
increased NK cell levels and pCR was observed [74]. Moreover, in vivo studies using
HER2-positive breast cancer mouse models have shown that NK cell depletion abolished
the activity of anti-HER2 monoclonal antibodies [75,76]. In patients with early breast
cancer, HER2-specific antibodies have been shown to trigger NK cell-mediated antibody-
dependent cellular cytotoxicity (ADCC) [77,78]. New therapeutic approaches aiming
to enhance NK cell activation by anti-HER2 agents are currently being evaluated [79],
including the systemic treatment with recombinant cytokines [80], ADAM inhibitors [81],
and the delivering of Toll-like receptor (TLR) ligands to the tumor site [82].

It has been suggested that the efficacy of HER2-blocking agents could be affected
by NK cell differentiation [83]. Interestingly, circulating CD57+ NK cell numbers have
been found to be associated with the acquisition of resistance to anti-HER2 therapies [83].
Therefore, CD57+ NK cell determination could emerge as a useful biomarker for improving
clinical management of these sets of patients.

3.5. Tumor-Associated Macrophages

Many immune cells are key players in the tumor microenvironment. However, tumor-
associated macrophages (TAMs) have gained special attention in the last decade. In addition
to their ability to phagocytize cancer cells [84], they can also recruit other immune cells, as
well as present antigens to T cells [85]. Macrophages are commonly grouped into M1 and
M2 macrophages, which are two polarized groups discriminated by different functions
and cell surface markers. However, both M1 and M2 tumor-infiltrating macrophages are
generally identified by the CD68 marker [84,85]. Over the years, several mechanisms
by which TAMs can modulate tumor microenvironment have been described, including
immunosuppressive actions through programmed death-ligand 1 (PD-L1) expression and
the promotion of tumor growth, invasion, and angiogenesis [86–88]. M1 macrophages
undergo classical macrophage activation, which means they are stimulated by INF-γ and
TLR ligands. The M1 phenotype is characterized by expression of CD80 and CD86 (costim-
ulatory molecules) and the secretion of cytokines with proinflammatory properties (such as
IL-12 and IL-23). They are commonly associated with Th1 cytotoxic responses that promote
tumor destruction [89,90]. M2 macrophages have an alternative activation, stimulated by
IL-4/IL-13. They are characterized by CD163, CD204, and CD206 markers, the secretion
of IL-10, and the expression of EGF and VEGF. They have been typically associated with
immunosuppressive and protumorigenic effects because of their contribution to the activa-
tion of Th2 immune responses [90–92]. As a result of the accumulating evidence enhancing
their role in tumor development, TAMs have emerged as a promising therapeutic target
in breast cancer research [93,94]. However, their role is not fully understood, and their
relationship with therapy efficacy and patient outcome remains unclear.

Since elevated TAM (CD68+) infiltration in breast stroma has been negatively corre-
lated with clinic-pathological features, such as tumor size, HR status, histologic grade, and
age [95,96], it has been disclosed as a prognosis factor in breast cancer patients [97]. Of
note, it could be difficult to deepen the interpretation of these results because of the fact
that CD68, despite being a pan-macrophage marker, may be expressed in other immune
populations [98].

Studies in early breast cancer patients have shown that high numbers of CD163+
M2-macrophages significantly correlate with short RFS and OS rates [99,100]. In this set
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of patients, high CD163+ infiltration was strongly associated with unfavorable prognosis
factors, such as proliferation, poor tumor differentiation, and ER negativity, supporting the
importance of TAM polarization into M1 and M2 phenotypes in breast cancer disease [99].
In human invasive breast cancer samples, a high density of TAMs was found to be signifi-
cantly correlated with the reduction of RFS and OS. Further, TAM infiltration was reported
as an independent prognostic factor [101]. T-cell immunoglobulin and mucin domain-3
(TIM-3) is an immune checkpoint molecule that may be expressed in T cells. Interestingly,
TIM-3 may represent a potential target to overcome resistance to programmed cell death
protein 1 (PD-1) blockade therapies [102]. In HER2-positive patients with metastatic disease
(with brain metastases), high densities of TIM-3+ CD163+ macrophages have recently been
associated with worse OS of patients [103]. Interestingly, TAM polarization and recruit-
ment into the tumor microenvironment have been associated, not only with poor clinical
outcomes in patients with breast tumors [100,104,105], but also with the hampering of anti-
HER2-specific agents’ activity [106]. As mentioned previously, M2 macrophage phenotypes
have been highly associated with tumoral progression. Importantly, in mouse models, TAM
depletion has been shown to improve the therapeutic effects of the anti-HER2 antibody
trastuzumab [107]. In addition, the study also highlights the relevance of the repolarization
of M2 TAMs into M1 phenotypes after treatment with IL-21, as it has also been reported
to enhance the therapeutic effect of trastuzumab [107]. Although these findings present
a promising approach to address resistance, further research will be needed to clarify the
potential value of TAM repolarization in clinical practice.

4. Immunotherapy in HER2-Positive Breast Cancer

In recent times, the ability of clinical agents to influence the body’s own ability to
recognize and attack cancer cells, orchestrating treatment through the immune system, has
been gaining traction in immunotherapy as an innovative antitumor strategy. Immunother-
apy comprises a broad variety of therapeutic strategies, including immune checkpoint
inhibitors, monoclonal and bispecific antibodies, vaccines, and antibody–drug conjugates.
As mentioned above, HER2-positive and TN breast cancer subtypes are sufficiently im-
munogenic to be considered potential candidates for immunotherapy [108–110].

The immune checkpoint inhibitors atezolizumab and pembrolizumab, both PD-1/PD-
L1 axis inhibitors, have been recently approved by the FDA for the treatment of unresectable,
locally advanced or metastatic TN breast cancer [111,112]. As a result, PD-L1 expression
assessment has emerged as a biomarker to guide immunotherapy treatment in breast cancer.
The PD-L1 antigen on tumor cells interacts with PD-1 on the surface of the cytotoxic CD8+
T cells to inhibit their activity and stimulate Treg cell development, thereby suppressing
the immune response [113]. Although the initial data have shown that the greatest benefit
is achieved in the TN breast cancer subtype, PD-L1 positivity is occasionally found in
all metastatic breast cancer subtypes, including the HER2-positive subgroup [114]. In
this respect, in the PANACEA trial, trastuzumab-resistant patients with advanced HER2-
positive breast cancer were randomized to receive pembrolizumab plus trastuzumab.
Combined treatment showed greater clinical benefit in patients with PD-L1+ tumors.
Moreover, they reported higher TIL levels in PD-L1+ tumors [115]. Additionally, HER2-
enriched breast cancer patients were randomized to receive trastuzumab plus pertuzumab
in combination with pembrolizumab in the absence of chemotherapy in the prospective
phase II KEYRICHED-1 trial. The results of this study showed comparable pCR rates
after immunotherapy alone or in combination with chemotherapy. This means that an
appropriate molecular selection of patients might achieve clinically meaningful pCR rates,
similar to those obtained with longer and more toxic chemotherapy regimens [114]. In the
KATE2 trial, patients with advanced HER2-positive breast cancer treated with atezolizumab
plus TDM-1 did not show an increase in PFS and showed more adverse events [116,117].
The phase III IMpassion050 trial evaluated the addition of atezolizumab to neoadjuvant
anti-HER2 therapy in early HER2-positive breast cancer patients. The results did not show
an improvement in pCR rates after addition of anti-PD-1 inhibitor [118]. To conclude,
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future studies will be necessary to determine the possible benefit of immunotherapies in
additional subgroups of patients with advanced breast cancer enriched for the expression
of PD-L1.

5. Conclusions

In recent years, a growing body of evidence has emerged highlighting the role of
immune infiltrates in breast tumors. In the HER2-positive subtype, the assessment of TILs in
general has become a predictive and prognostic biomarker of response to systemic and anti-
HER2 therapies. However, other components of breast cancer immune infiltrates, including
specific T-cell subsets, NK cells, and TAMs, need further investigation to determine their
specific roles and relevance in the clinical management of HER2-positive patients. Despite
this lack of robustness in biological knowledge, recent discoveries in immunotherapy have
progressively changed the landscape of cancer treatment. Although HER2-positive breast
cancer is identified as an immunogenic carcinoma, to date, immunotherapies have provided
mild therapeutic effects. Therefore, further research is needed to clarify the contribution
and clinical value of different immune subpopulations before these therapies provide
greater clinical benefit for HER2-positive breast cancer patients.
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