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Simple Summary: Malignant pleural mesothelioma (MPM) is an aggressive disease affecting the
pleura, and its incidence is increasing worldwide. Currently, the recommended systemic therapy for
MPM is cisplatin/pemetrexed or immunotherapy with nivolumab and ipilimumab. Unfortunately,
the prognosis remains poor, and there is an urgent need for new and effective treatments. In this
study we investigated the potential antitumoral effects of combining abemaciclib with the standard
chemotherapy drugs cisplatin and pemetrexed.

Abstract: Background: The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative
reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with
an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present
study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used
for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib.
Methods: Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM
cell lines and in a primary MPM cell culture. Results: The simultaneous treatment of abemaciclib
with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone,
both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence
or autophagic cell death, depending on the cell type. More in detail, the induction of cellular
senescence was related to the increased expression of p21, whereas autophagy induction was due to
the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible
and no resumption in tumor cell proliferation was observed after drug withdrawal. Conclusion:
Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with
chemotherapy for the treatment of MPM and are consistent with the recent positive results in the
MiST2 arm in abemaciclib-treated patients.

Keywords: malignant pleural mesothelioma; CDK4/6 inhibitors; abemaciclib; chemotherapy;
senescence

1. Introduction

Malignant pleural mesothelioma (MPM) is a malignant tumor of the pleura, pre-
dominantly asbestos-related and supported by a chronic inflammatory process. This rare
and aggressive malignancy is characterized by poor prognosis, with a steadily increasing
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incidence in recent years mainly due to the latency time, estimated up to 50 years after
exposure. Although processing of asbestos has been banned, at least in many Western
countries, a peak of incidence is predicted in the next decade [1].

The current therapeutic actions in the first-line setting are limited to chemotherapy
with cisplatin/pemetrexed (regimen that in some conditions may be improved by the addi-
tion of bevacizumab). Following the results of the CheckMate 743 study, the combination of
the immune checkpoint inhibitors nivolumab and ipilimumab has been recently approved
as first-line treatment in patients with unresectable MPM [2]. However, the prognosis
remains poor, with a mean overall survival of about 12–14 months for patients treated with
chemotherapy and around 18 months for those treated with immunotherapy.

Furthermore, there is no approved second-line treatment option and novel therapeutic
strategies are urgently needed [3].

Investigating the genomic background of MPM is important for the identification
of molecular targets that can be exploited for designing new therapeutic approaches in
the context of precision medicine [4,5]. MPM is currently considered a heterogeneous
tumor with a variety of genomic and molecular alterations, including the loss of tumor
suppressor genes such as CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative
reading frame), BAP1 (BRCA1 Associated Protein 1), and NF2 (neurofibromatosis type 2),
single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair mechanisms [6],
and epigenetic and non-coding RNAs mutations [5,7].

In particular, the CDKN2A/ARF tumor suppressor gene is frequently inactivated in
MPM, with a percentage of incidence varying from 50% in the epithelioid subtype to
nearly 100% in the sarcomatoid histotype [4,5]. CDKN2A/ARF codes for p16INK4a and its
alternate reading frame p14ARF, two cell cycle proteins that negatively regulate the cell
cycle progression.

p16INK4a binds to and inhibits cyclin-dependent kinase (CDK) 4 or 6, preventing their
association with cyclin D1 (CycD1) and the subsequent phosphorylation of retinoblastoma
(Rb) protein. By maintaining Rb in a hypo-phosphorylated state, it promotes Rb binding to
E2F transcriptional factor and leads to G1 cell-cycle arrest. On the other hand, p14ARF binds
to MDM2 (Mouse double minute 2 homolog) and inhibits MDM2-induced degradation of
p53, enhancing p53-dependent transactivation, cell-cycle arrest, and/or apoptosis. Since the
loss of CDKN2A/ARF occurs with high frequency in MPM patients [4,5], the use of CDK4/6
inhibitors might represent a new therapeutic option for the treatment of MPM patients.

In our previous studies, we demonstrated the efficacy of the treatment with the CDK4/6
inhibitor palbociclib alone or in combination with PI3K (Phosphoinositide 3-kinases) in-
hibitors in a panel of MPM cell lines [8,9], and recently these findings have been corrob-
orated by other studies [10]. More importantly, the phase 2 clinical trial Mist2 showed
encouraging results in MPM tumors, demonstrating the clinical activity of abemaciclib
treatment in these patients [11].

Thus, the present work was addressed to evaluate the antitumor potential of combin-
ing the standard chemotherapeutic agents (cisplatin plus pemetrexed) used for treatment
of unresectable MPM with CDK4/6 inhibitors and, in particular, with the new promis-
ing drug abemaciclib. Abemaciclib differs from other CDK inhibitors because it exerts
some inhibitory effects on CDK9 in addition to targeting CDK4/6 [12]. Moreover, it is
the only inhibitor in this class with activity as a single agent in breast cancer and other
solid tumors [13], probably because of its peculiar characteristics. Indeed, abemaciclib
has the highest affinity towards its targets [14] and a low myelotoxicity [15], and it is
administered on a continuous dosing schedule, while palbociclib and ribociclib need a
period of interruption [16].

Our findings demonstrate that the simultaneous treatment of abemaciclib combined
with cisplatin and pemetrexed has greater antiproliferative effects than the chemotherapy
in MPM cell lines. Moreover, this simultaneous treatment shows cytostatic effects in
MSTO-211H and ZS-LP cells, causing senescence, while induction of autophagic cell death
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is observed in H28 cells. Interestingly, after drug withdrawal, tumor cell proliferation was
not restored, indicating that the effects of this drug combination are irreversible.

2. Materials and Methods
2.1. Cell Culture

Human MPM cell lines MSTO-211H (biphasic histotype) and H28 (epithelioid histotype)
cells were purchased by the American Type Culture Collection ATCC (Manassas, VA, USA),
which authenticates the phenotypes of these cell lines on a regular basis. ZS-LP primary
cell line was obtained from one patient (male, 66 years for ZS-LP) affected by mesothelioma
biphasic histotype of stage T4 N0, as previously reported [8].

Cells were cultured in RPMI supplemented with 2 mM glutamine, 10% fetal bovine
serum (FBS), and 100 U/mL penicillin/100 µg/mL streptomycin (Sigma Aldrich, St. Louis,
MO, USA) and maintained at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.2. Drug Treatment

Abemaciclib was provided by Selleckchem (Houston, TX, USA). Pemetrexed and
cisplatin were from inpatient pharmacy of University Hospital of Parma. Abemaciclib was
dissolved in sterile water, while pemetrexed and cisplatin were dissolved in 0.9% sodium
chloride solution and diluted in fresh medium before use.

2.3. Analysis of Cell Proliferation

Cell viability/proliferation was assessed by cell counting in a Burker hemocytometer
with trypan blue (Sigma Aldrich, St. Louis, MO, USA) exclusion method and by Crystal
Violet (CV) or MTT assay, as previously described [17].

Cell death was assessed by Hoechst 33,342 and propidium iodide (PI) dual staining
and fluorescence microscopy analysis [18] or by Annexin V-FITC/PI staining (eBioscience™
Annexin V Apoptosis Detection Kit, Invitrogen™, Waltham, MA, USA) and flow cytometry
analysis; analysis of distribution of the cells in the cell cycle (performed by PI staining and
flow cytometry) was described elsewhere [18].

2.4. Colony Formation Assay

Cells were seeded in 6-well culture plates at a density of 1.5 × 103 cells/well for
MSTO-211H cell lines and 2 × 103 cells/well for H28 and ZS-LP cell lines. Cells were
incubated at 37 ◦C in 5% CO2 incubator and the medium was changed every 3 days; at the
end of the experiment, the cells were fixed with ice-cold methanol and stained with 0.1% CV
(Sigma Aldrich, St. Louis, MO, USA). The unbound dye was removed by washing with
water. The bound CV was solubilized with 0.2% TritonX-100 in PBS and the absorbance of
the solution was measured at a wavelength of 570 nm.

2.5. Drug Combination Studies

To study the combined effects of cisplatin + pemetrexed with abemaciclib we used the
Bliss criterion [19,20]. The Bliss criterion is expressed by the following equation: E(Bliss) =
E(A) + E(B) − E(A) * E(B), where EA and EB are the percent of inhibition versus control
obtained by ciplatin + pemetrexed (A) and abemaciclib (B) treatment, respectively, and the
E Bliss is the theoretical dose–response curve that would be expected if the combination
was exactly additive. If the combination effect (“exp” curve) is higher than the expected
Bliss equation value (“Bliss” curve), the interaction is synergistic, while if the effect is lower,
the interaction is antagonistic. Otherwise, the effect is additive and there is no interaction
between the drugs.

The type of drug interaction was also determined by combination index (CI). CIs
were calculated with Calcusyn software version 2.0 (Biosoft, Cambridge, UK) based on the
method of Chou and Talalay: CI < 0.8 is considered as synergistic, 0.8 < CI < 1.2 additive
and CI > 1.2 antagonistic [21].
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2.6. Senescence Evaluation

The evaluation of senescence-associated β-galactosidase (SA-β-Gal) expression was
performed using the Senescence β-Galactoside Staining kit (Cell Signaling Technology Inc.,
Beverly, MA, USA) as previously described [14]. The number of SA-β-Gal positive cells
(blue stained) was evaluated by cell counting in four randomly chosen microscope fields
(100×magnification).

2.7. Western Blotting

Protein extraction, solubilization, and protein analysis by Western blotting were
performed as described [17]. A detailed list of the primary selected antibodies is re-
ported in Supplementary Materials (Table S2). Horseradish peroxidase–conjugated sec-
ondary antibodies and chemiluminescence system were from Millipore (Burlington, MA,
USA). Reagents for electrophoresis and blotting analysis were from BIO-RAD Laboratories
(Hercules, CA, USA). The chemiluminescent signal was acquired by C-DiGit®. Blot Scan-
ner and the spots were quantified by Image StudioTM Software, LI-COR Biotechnology
(Lincoln, NE, USA).

2.8. Analysis of Autophagy

The induction of autophagy was determined using the CYTO-ID® autophagy de-
tection kit 2.0 (Enzo Life Sciences, Farmingdale, NY, USA), according to the producer’s
procedures. For microscopic analysis, cells were seeded and cultured on microscopy slides
to approximately 70% confluence before treatment with drugs at indicated concentrations.
Untreated cells were used as negative controls. After 48 h, the cells were carefully washed
and the fluorescent dyes (CYTO-ID® Green Detection Reagent and Hoechst 33,342 Nuclear
Stain) were applied to the slides for 30 min at 37 ◦C. Then, the cells were washed twice and
fixed with 4% paraformaldehyde for 20 min. The sample were observed using a confocal
system (Leica Stellaris 5/DMi8 platform (Leica Microsystems, Wetzlar, Germany) with
LAS X software version 3.0 (Leica Microsystems, Wetzlar, Germany) with a 43/1.30 oil
immersion objective. Image acquisition was carried out in the multitrack mode, namely
through consecutive and independent optical pathways.

For the plate reader measurement, the CYTO-ID® Green Detection Reagent and
Hoechst 33,342 were added to cells growing in 96-well plates, and fluorescence mea-
surements were recorded at λex = 480 nm and λem = 530 nm and at λex = 360 nm and
λem = 460 nm, respectively, using the M200 Tecan plate reader. Increases in the green
autophagy signal after normalization with blue signal indicate the accumulation of the
probe within the cells arising from an increase in autophagic vesicles. Data are expressed as
fold increase in the green autophagy signal versus control and are reported as autophagy
induction.

2.9. Statistical Analysis

Statistical analyses were carried out using GraphPad Prism version 6.0 software
(GraphPad Software, San Diego, CA, USA). Statistical significance of differences among data
was estimated by Student’s t-test or by analysis of variance (one-way ANOVA) followed by
Bonferroni’s post-test, and p-values are indicated where appropriate in the figures and in
their legends. p-Values less than 0.05 were considered significant.

3. Results
3.1. The Association of Abemaciclib with Chemotherapy Agents Strongly Inhibited MPM Cell
Proliferation

As we previously reported, MPM cell lines, as well as ZS-LP primary cells obtained
from the pleural effusion of an MPM patient, displayed the molecular features associated
with sensitivity to CDK4/6 inhibitors (Rb expression and p16INK4a loss) and were sensitive
to palbociclib, with IC50 ranging from 0.1–1 µM [8]. Recently, the MiST2 trial proved the
efficacy of the CDK4/6 inhibitor abemaciclib in MPM p16INK4a-negative patients [11].
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Based on these findings, we investigated the effects of abemaciclib in combination
with chemotherapy drugs currently used for the treatment of MPM patients (cisplatin plus
pemetrexed) by evaluating different schedules of combination: a simultaneous treatment
with abemaciclib and chemotherapy for 72 h, a sequential treatment (24 h of abemaci-
clib followed by chemotherapy for 48 h), and a sequential combined treatment (24 h of
abemaciclib, followed by the combination of abemaciclib and chemotherapy for 48 h).

To explore the drug interaction mechanisms, with the perspective to reduce treatment
toxicity, all the chemotherapy drugs were used at sub-IC50 concentrations (IC50 values for
abemaciclib, cisplatin, and pemetrexed are shown in Table S1).

As shown in Figure 1A–C, in all cell models analyzed, the simultaneous treatment gave
rise to a stronger inhibition of cell proliferation compared to abemaciclib or chemotherapy
alone or to the sequential treatments. The association of chemotherapy with palbociclib
produced comparable results, as shown in MSTO-211H cells (Figure S1A).
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Figure 1. Effects of abemaciclib combined with cisplatin and pemetrexed on cell growth in MPM cell
lines. (A) MSTO-211H cells were treated with abemaciclib alone (ABE, 0.5 µM), with the combination
of cisplatin (0.3 µM) and pemetrexed (0.02 µM) (CIS + PEM), or with abemaciclib and chemotherapy
following different schedules of treatment: simultaneous drug treatment for 72 h (ABE + CIS +
PEM), sequential treatment with abemaciclib for 24 h followed by chemotherapy for 48 h (ABE→
CIS + PEM), and sequential combined treatment (abemaciclib for 24 h followed by the combined
treatment for 48 h, ABE → ABE + CIS + PEM). (B) H28 and (C) ZS-LP cells were exposed to the
above-described treatments, using abemaciclib 1 µM, cisplatin 1 µM, and pemetrexed 0.05 µM. Cell
viability was assessed by MTT assay and data, expressed as a percentage of cell proliferation versus
control, were representative of three independent experiments. Comparison among groups was made
by using analysis of variance (one-way ANOVA), followed by Bonferroni’s post-test. **** p < 0.0001
vs. control cells; §§ p < 0.01, §§§§ p < 0.0001 vs. cisplatin + pemetrexed-treated cells; # p < 0.05,
#### p < 0.0001 vs. abemaciclib-treated cells. For the evaluation of the cell distribution in the cell
cycle phases, (D) MSTO-211H, (E) H28, and (F) ZS-LP cells were treated with abemaciclib, cisplatin,
and pemetrexed alone or simultaneously combined. After 24 h MPM cell lines were stained with PI
and cell distribution in the cell-cycle phases was evaluated by flow cytometry. Data are expressed as
a percentage of distribution in each cell-cycle phase and are the media of three separate experiments.
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The type of interaction (synergistic, additive, antagonistic) was evaluated through Bliss analysis, as
described in Section 2. (G) MSTO-211H, (H) H28, and (I) ZS-LP cells were simultaneously treated with
abemaciclib and with increasing concentrations of cisplatin and pemetrexed for 72 h. Then, cell viability
was assessed by MTT assay. Data are expressed as percentage of inhibition versus control and are
representative of three independent experiments. Student’s t-test ** p < 0.01, *** p < 0.001, **** p < 0.0001.

The analysis of the cell-cycle phase distribution revealed, as expected, an increase in
cells in the S or G2/M phases after chemotherapy exposure, whereas the treatment with
abemaciclib, by inhibiting the CDK4/6-Cyc D complexes, induced a cell-cycle blockade in
the G0/G1 phase of the cell cycle, similarly to that observed after palbociclib treatment [8].
Interestingly, the simultaneous treatment with abemaciclib and chemotherapy promoted a
cell-cycle blockade in the G0/G1 phase in all cell models analyzed (Figure 1D–F).

Comparing the sequential treatments, the one maintaining abemaciclib in the presence
of chemotherapy gave the best results in term of inhibition of cell viability, indicating that
maintaining CDK4/6 inhibition is required to potentiate the efficacy of chemotherapy.

Interestingly, in the simultaneous treatment, the presence of abemaciclib enhanced
the efficacy of cisplatin or pemetrexed with effects comparable to those observed when
both the chemotherapeutic drugs were administered together with abemaciclib (Figure S2).
Similar results were observed when the cells were treated with palbociclib (Figure S1B).

Since the simultaneous combination produced the strongest inhibition of cell prolifera-
tion, we focused on this schedule. We evaluated the nature of the interaction between the
treatments by using the Bliss experimental model [19,20] and demonstrated a synergistic
inhibitory effect on cell proliferation in MSTO and H28 cells and an additive inhibitory
effect in ZS-LP cells (Figure 1G–I). Moreover, we confirmed this type of interaction also by
calculating the combination index (CI), as shown in Figure S3.

To obtain insight into the molecular mechanisms underlying the inhibition of cell
proliferation promoted by the simultaneous treatment with chemotherapy and abemaciclib,
we evaluated the expression level and the activation status of proteins involved in the
regulation of the cell cycle and in signal transduction.

As shown in Figure 2, the treatment with abemaciclib, alone or combined with
chemotherapy, reduced CDK6 phosphorylation at Y24 in all cell lines analyzed. Con-
sidering that Y24-phosphorylation is inhibitory, this is a peculiar result, emerged also in
other cell models [22,23]. Nevertheless, abemaciclib treatment resulted in the inhibition of
CDK4/6-cyclin D complex activity.

Indeed, Rb phosphorylation was significantly downregulated and, as previously
reported for palbociclib, the total levels of Rb were also reduced after treatment with abe-
maciclib. Because of Rb hypophosphorylation, the transcription factor E2F was inactivated
and the expression of myc, one of its target genes, was markedly reduced. This effect was
more evident when the cells were exposed to the simultaneous treatment with abemaciclib
and cisplatin plus pemetrexed.

Interestingly, the treatment with abemaciclib, alone or combined with chemotherapy,
reduced AKT activation and downregulated the downstream mTOR signaling, as indicated
by the reduced phosphorylation of p70S6K.

We then explored whether the greater inhibition of cell proliferation observed in MPM
cells treated with abemaciclib and chemotherapy was associated with the induction of cell
death. As shown in Figure 3, in the MSTO-211H and ZS-LP cell lines, the simultaneous
treatment with abemaciclib and chemotherapy gave rise only to a slight increase (ranging
from 10 to 15%) in the percentage of cell death, thus suggesting the predominance of the
cytostatic effect of abemaciclib (Figure 3A–C).
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Figure 3. Effects of abemaciclib in association with cisplatin and pemetrexed on cell death in MPM
cell lines. (A) MSTO-211H cells were treated with abemaciclib (0.5 µM), cisplatin (0.3 µM), and
pemetrexed (0.02 µM), or with the simultaneous combination of abemaciclib and chemotherapy for
72 h. (B) H28, and (C) ZS-LP cells were exposed to the above-described treatments, using abemaciclib
1 µM, cisplatin 1 µM, and pemetrexed 0.05 µM. The percentage of dead cells stained with Hoechst
33,342 and Propidium Iodide is shown. Data are expressed as a percentage of cell death and are the
medians of three separate experiments. Comparison among groups was made by using analysis of
variance (one-way ANOVA), followed by Bonferroni’s post-test. * p < 0.05, ** p < 0.01, **** p < 0.0001
vs. control cells; §§ p < 0.01, vs. cisplatin + pemetrexed-treated cells; ## p < 0.01, #### p < 0.0001 vs.
abemaciclib-treated cells.

On the other hand, in H28 cells, the cytotoxic effect exerted by chemotherapy was fur-
ther increased when the cells were simultaneously treated with abemaciclib and reached the
highest level (more than 30%) in the presence of both cisplatin and pemetrexed (Figure 3B).
The fluorescence microscopy analysis of Hoechst 3332/PI-stained cells suggested that the
triple drug treatment induced cell death by non-apoptotic mechanisms. This result was
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confirmed by flow cytometry analysis, which showed a small increase in the percentage of
Annexin V-FITC positive, PI negative cells in triple drug-treated cells in comparison with
control cells (Figure S4).

3.2. The Combined Treatment with Abemaciclib and Chemotherapy Induced Cellular Senescence or
Autophagy Depending on the Cell Model

It is well documented that the exposure to CDK4/6 inhibitors induces cellular senes-
cence in a variety of cancer cell models and the acquisition of a senescent phenotype has
been described also in MPM cell lines [8,10].

Therefore, we evaluated the impact of the simultaneous drug treatment on senescence
induction in MSTO-211H, H28, and ZS-LP MPM cells. As shown in Figure 4, a significant
increase in senescent cells was induced by abemaciclib treatment with a percentage of
senescent cells ranging around 40% in MSTO-211H cells and 30% in ZS-LP. The percentage
of senescent cells was further increased after abemaciclib/chemotherapy simultaneous
treatment, with stronger senescence induction after abemaciclib/cisplatin/pemetrexed
treatment (70% of senescent cells in MSTO-211H and 60% in ZS-LP cells). Interestingly,
in ZS-LP cells a significant induction of cellular senescence was also observed in cells
treated with cisplatin (alone or in association with pemetrexed). By contrast, no senescence
induction was observed in H28 cells, either after abemaciclib treatment alone or after the
combined treatment with abemaciclib and chemotherapy, differently to what we previously
observed with palbociclib treatment (not shown and [8]).
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Figure 4. Effects of abemaciclib in association with cisplatin and pemetrexed on senescence induction
in MPM cell lines. (A) MSTO-211H cells were treated with abemaciclib (0.5 µM), cisplatin (0.3 µM),
and pemetrexed (0.02 µM), or with the simultaneous combination of abemaciclib and chemotherapy
for 72 h. (B) ZS-LP and (C) H28 cells were exposed to the above-described treatments, using
abemaciclib 1 µM, cisplatin 1 µM, and pemetrexed 0.05 µM. Data are expressed as a percentage of
senescent cells positive for SA-β-Gal expression and are the media of three separate experiments.
Comparison among groups was made by using analysis of variance (one-way ANOVA), followed
by Bonferroni’s post-test. *** p < 0.001, **** p < 0.0001 vs. control cells; § p < 0.05, §§§§ p < 0.0001 vs.
cisplatin + pemetrexed-treated cells; #### p < 0.0001 vs. abemaciclib-treated cells. (D) MSTO-211H,
(E) ZS-LP, and (F) H28 cells were treated as described above and Western blotting analysis of proteins
involved in cell cycle regulation and senescence induction was performed. The immunoreactive
spots were quantified by densitometric analysis; the results are represented by the ratio between
phosphorylated and total protein levels or between the total protein and actin levels. The dash (-)
represents a non-detectable signal. Data are representative of two independent experiments. Figure S6:
Whole Western blots of Figure 4.
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Then, the expression level of proteins involved in cell-cycle control and senescence
induction was evaluated in MSTO-211H and ZS-LP cells (Figure 4D–E). In both the cell
lines, abemaciclib alone and its combination with chemotherapy caused a strong decrease
in MDM2 phosphorylation, thus inducing the accumulation of the cell-cycle negative
regulators p53 and/or p21 and driving the cells into the senescence process.

In contrast with MSTO-211H and ZS-LP cells, H28 cells did not show any sign of
cellular senescence and neither p53 nor p21 expression levels were induced by abemaciclib
alone or in combination with chemotherapy (Figure 4C–F). However, after these drug
treatments, H28 cells displayed peculiar morphology changes, such as increased cell size
and formation of several cytoplasmic vacuoles.

Interestingly, the activation of lipidated microtubule-associated protein light-chain
3 (LC3B), considered as a marker of autophagy, was observed in H28 cells treated with
abemaciclib alone or in combination with chemotherapy (Figure 5A), whereas no significant
changes in the level of LC3B were observed in MSTO-211H and ZS-LP cells.
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Figure 5. Effects of abemaciclib in association with cisplatin and pemetrexed on autophagy induction
in MPM cell lines. (A) MSTO-211H cells were treated with abemaciclib (0.5 µM), cisplatin (0.3 µM),
and pemetrexed (0.02 µM), or with the simultaneous combination of abemaciclib and chemotherapy
for 72 h. ZS-LP and H28 cells were exposed to the above-described treatments, using abemaciclib
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1 µM, cisplatin 1 µM, and pemetrexed 0.05 µM. Western blotting analysis of proteins involved in
autophagy induction. Data are representative of two independent experiments. (B) H28 cells were
treated as described above, and after 48 h autophagy was assessed by the CYTO-IDR Autophagy
detection Kit 2.0. Data are expressed as fold increase versus control (autophagy induction) and
are the medians of two separate experiments. Comparison among groups was made by using
analysis of variance (one-way ANOVA), followed by Bonferroni’s post-test. ** p < 0.01, *** p < 0.001,
**** p < 0.0001 vs. control cells; §§§ p < 0.001, §§§§ p < 0.0001 vs. cisplatin + pemetrexed-treated cells;
### p < 0.001 vs. abemaciclib-treated cells. (C) Representative images by confocal microscopy of H28
cells, treated as described above, stained with CYTO-IDR Autophagy detection Kit 2.0. (D) H28
cells were treated as described above, then cellular proteins were extracted and analyzed by Western
blotting using the indicated antibodies. Data are representative of two independent experiments. (E)
H28 cells were treated with the simultaneous combination of abemaciclib (1 µM), cisplatin (1 µM),
and pemetrexed (0.05 µM), with or without the autophagic inhibitor 3-metyl adenine (2.5 mM). After
48 h, autophagy was assessed by the CYTO-IDR Autophagy detection Kit 2.0. Data are expressed as
fold increase versus control (autophagy induction) and are the media of two separate experiments.
Comparison among groups was made by using analysis of variance (one-way ANOVA), followed by
Bonferroni’s post-test **** p < 0.0001 vs. control cells; #### p < 0.0001 vs. abemaciclib + cisplatin +
pemetrexed-treated cells. (F) H28 cells were treated as described in (E), then cells were lysed and cell
protein extracts were analyzed by Western blotting for the indicated proteins. Data are representative
of two independent experiments. Figure S7: Whole Western blots of Figure 5.

The induction of autophagy in H28 cell line was confirmed using the CYTO-ID® Au-
tophagy Detection Kit, which provides a selective marker of autolysosomes and earlier
autophagic compartments. As shown in Figure 5B,C, abemaciclib treatment clearly aug-
mented the number of autophagic cells, and a small but significant further increase was
observed after the combined treatment with chemotherapy. The increase in autophagy was
related to the decreased activation of mTOR, already detectable after 24 h of combined treat-
ment (Figure 5D). After 48 h, the decrease in mTOR activity was evident also in cells treated
with abemaciclib alone. The autophagy process was associated with poly (ADP-ribose)
polymerase (PARP) cleavage, whereas we failed to detect caspase activation. A pattern of
cell death characterized by PARP-1 cleavage without caspase activation has been recently
described by Hino and co-workers in lung cancer cell lines exposed to abemaciclib [24].

To give strength to these results, we investigated the effect of 3-methyladenine (3MA),
a class III phosphatidylinositol 3-kinase (PI3K)-blocking autophagy inhibitor [25], in asso-
ciation with the simultaneous treatment of abemaciclib and chemotherapy. As shown in
Figure 5E,F, 3MA significantly hampered the induction of autophagy, reducing both the
PARP-1 cleavage and the activation of LC3B. These results confirmed that in H28 cells the
simultaneous drug treatment induces the autophagic process.

3.3. The AntiProliferative Effects of Abemaciclib Combined with Chemotherapy Were Maintained
after Drug Removal

Finally, to assess whether the effects of the simultaneous treatment of abemaciclib
and chemotherapy on cell proliferation were reversible, we performed long-term colony
formation experiments. MPM cells were treated with the drugs alone or in combination for
6 days; then, the medium was replaced with drug-free medium and the cells were cultured
for additional 6 days (Figure 6). After the recovery period, the colony formation capability
was evaluated, demonstrating that the cells treated with cisplatin and pemetrexed, alone or
in combination, restored their proliferation after drug withdrawal.
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Figure 6. Effects of removal of abemaciclib, cisplatin, and pemetrexed on cell proliferation in MSTO-
211H and H28 cells. (A,B) MSTO-211H cells were treated with abemaciclib (0.5 µM), cisplatin
(0.3 µM), and pemetrexed (0.02 µM), or with the simultaneous combination of abemaciclib and
chemotherapy for 6 days. (C,D) H28 cells were exposed to the above-described treatments, using
abemaciclib 1 µM, cisplatin 1 µM, and pemetrexed 0.05 µM. After drug treatment, cells were cultured
for additional 6 days in drug-free medium (recovery time). Cell proliferation was evaluated by crystal
violet staining. Data are the medians of three separate experiments. Comparison among groups
was made by using analysis of variance (one-way ANOVA), followed by Bonferroni’s post-test.
*** p < 0.001, **** p < 0.0001 vs. control cells; § p < 0.05, §§§ p < 0.001, §§§§ p < 0.0001 vs. cisplatin +
pemetrexed-treated cells; # p < 0.05, #### p < 0.0001 vs. abemaciclib-treated cells.

Interestingly, the combination of abemaciclib with chemotherapy yielded irreversible
effects on cell proliferation, even if to different extents depending on the cell model. Indeed,
in MSTO-211H cells, abemaciclib alone failed to demonstrate an irreversible effect, whereas
the combination of abemaciclib with chemotherapy significantly maintained the cell growth
inhibition even after drug removal. The inhibitory effect was markedly increased when abe-
maciclib was combined both with cisplatin and pemetrexed, indicating that this treatment
more efficaciously determined an irreversible inhibition of cell proliferation (Figure 6A,B).

In H28 cells, abemaciclib alone was sufficient to inhibit cell proliferation irreversibly,
an effect that was maintained even in combination with chemotherapy (Figure 6C,D).

4. Discussion

In the last few years, relevant progresses have been made in the treatment of MPM;
indeed, the results of the CheckMate 743 study brought to the introduction of immunother-
apy, based on the combination of nivolumab and ipilimumab, as first-line treatment in
patients with unresectable MPM [2]. However, the prognosis for MPM patients remains
poor with a mean overall survival around 18 months.

In addition, the lack of oncogene-driver mutations has limited the development of
targeted therapies for this type of tumor. Indeed, a number of genetic analyses revealed
that MPM is characterized mainly by the loss of function of oncosuppressor genes.

The high frequency of loss of function of the CDKN2A/ARF gene prompted us and
other groups to investigate the target approach in MPM cell lines using CDK4/6 inhibitors,
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and recently the efficacy of the CDK4/6 inhibitor abemaciclib has been proven in the MiST2
trial in MPM patients harboring p16INK4a loss [11].

These successful findings open a new possibility of treatment for MPM patients. How-
ever, CDK4/6 inhibitors, currently approved for the treatment of estrogen receptor- positive
breast cancer, displayed mainly a cytostatic effect when administered alone, whereas com-
bination therapies demonstrated an enhanced efficacy in different tumor types [26,27].

Focusing on the combination of CDK4/6 inhibitors with chemotherapy, some con-
troversial data have emerged in recent years; indeed, the association between CDK4/6
inhibitors and diverse chemotherapeutic agents frequently produced an antagonistic effect
due to the reduced sensitivity to chemotherapy of cell cycle-arrested cells [28,29]. However,
the timing, the drug concentration and the sequence of drug exposure might play a critical
role in drug activity, as recently demonstrated in different tumor types. In particular, the
sequential combination of CDK4/6 inhibitors and paclitaxel-based chemotherapy produced
antiproliferative and pro-apoptotic effects in TNBC (triple-negative breast cancer) cell lines
associated with an impairment of glucose metabolism [30], and recently, the efficacy of
the simultaneous combination of gemcitabine/cisplatin-based chemotherapy and CDK4/6
inhibitors has been demonstrated also in biliary tract cancers [31].

In the present study, we demonstrated the efficacy of the simultaneous combination of
CDK4/6 inhibitors with cisplatin and pemetrexed. In particular, our findings suggest that
the CDK4/6 inhibitor abemaciclib may be considered for the treatment of MPM selected
patients as a valuable tool to improve the efficacy of chemotherapy, which remains one of
the standards of care for this malignancy.

Indeed, the simultaneous treatment of different MPM cell lines (two commercial and
one obtained from pleural effusion of a MPM patient) with abemaciclib and the combination
cisplatin/pemetrexed showed a synergistic or additive inhibition of cell proliferation,
depending on the cell model.

It is worth noting that a limitation of the combined therapies is the increased risk of
toxicity; taking into account this aspect, we used the chemotherapy drugs at sub-IC50 con-
centrations, demonstrating the ability of abemaciclib to improve the efficacy of chemother-
apy even when administered at the lowest feasible doses. Interestingly, enhanced antitumor
effects were also obtained when abemaciclib was combined with each chemotherapy agents
alone, suggesting the potential of these dual-drug combinations in the light of reduced
toxicity.

The inhibition of cell proliferation observed with abemaciclib combined with cisplatin
and/or pemetrexed was associated with the downregulation of the AKT/mTOR signaling.
In contrast, we previously reported that palbociclib induced a strong upregulation of this
pathway in the same MPM cell models [8]. Of note, the opposite effects of abemaciclib and
palbociclib on the AKT/mTOR signaling pathway have been previously shown in other
cell models [23,27,32]. These discrepancies can be explained considering that abemaciclib
may exert modulatory activities that are distinct from those of the other CDK4/6 inhibitors.
In fact, it has been shown to inhibit various kinases, including CDK9 and non-CDK targets,
such as DYRK2 (Dual Specificity Tyrosine Phosphorylation Regulated Kinase 2), PIM1,
HIPK2 (Homeodomain Interacting Protein Kinase 2), and CK2 (casein kinase II) [12].
Therefore, we can speculate that these additional inhibitory activities may have an impact
on the regulation of the AKT/mTOR pathway, as demonstrated in other studies [33,34].

The combination of abemaciclib with chemotherapy-induced cell senescence or death,
depending on the cell model. In particular, in MSTO-211H and ZS-LP cells, the simul-
taneous triple drug treatment significantly increased the percentage of senescent cells in
comparison to abemaciclib alone or abemaciclib in association with either cisplatin or peme-
trexed. Mechanistically, the induction of senescence was sustained by the p53/p21 axis. It
is well documented that p21 plays a relevant role in the induction of cellular senescence
in both normal and tumor cells through p53-dependent or -independent mechanisms, as
we observed in MSTO-211H and ZS-LP cells, respectively [35]. In fact, the treatment with
abemaciclib produced a decrease in MDM2 activity in both cell models (probably due to the



Cancers 2022, 14, 5925 13 of 16

reduced activation of AKT). This resulted in the stabilization of both p53 and p21 proteins in
MSTO-211H cells, whereas in ZS-LP cells p21 accumulation occurred in a p53-independent
manner; indeed, MDM2 can directly control p21 stability, and MDM2 downregulation can
lead to increased p21 levels independently of p53 activity [36].

It is worth noting that in ZS-LP cells, cisplatin alone induced an accumulation of
senescent cells, which was further increased by the combination with abemaciclib. This
effect mediated by chemotherapy has already been described in different cancer types, such
as ovarian and melanoma, and could be attributed to the increase in p21 expression [37,38].

Differently, in H28 cells, we observed an increased cell death after the simultaneous
treatment with abemaciclib and cisplatin or pemetrexed alone compared to single agent
treatments; this effect was further enhanced after triple-drug combination treatment. It
is worth of note that in this cell model the treatment with abemaciclib alone or combined
with chemotherapy induced morphological changes, such as an enlarged cell shape and
accumulation of many large cytoplasmic vacuoles. A comparable phenomenon was de-
scribed in a different tumor cell model: in Rb-negative breast cancer cell lines, abemaciclib
induced a cytotoxic effect associated with a multivacuolar phenotype, showing an off-target
effect [39]. Recently, in A549 lung cancer cells, an atypical cell death induced by abemaciclib
treatment and characterized by the accumulation of autophagosomes has been described,
probably derived from lysosomes that expanded after acidification [24]. In the H28 cell
line, the morphological changes induced by abemaciclib treatment alone or combined with
chemotherapy, together with the increase in LC3B-II levels and the autolysosomes stain-
ing, indicate the induction of autophagy. It has been recently demonstrated that the Cyc
D/CDK4/6 complexes regulate both the activation and the cytoplasmatic localization of
mTORC1 [40,41]. Since mTOR plays a key role in controlling autophagy, we can infer that in
H28 cells, the inhibition of the AKT/mTOR/p70S6K pathway is involved in the activation
of autophagy mediated by the combined treatment with abemaciclib and chemotherapy.

The specific role of autophagy in cancer cells remains controversial and highly context-
dependent [42]; indeed the autophagic process has been described as a mechanism of
resistance to CDK4/6 inhibitors [43] as well as an inducer of cell death [44,45]. In our
study, the induction of autophagy by the combined treatments is associated with increased
non-apoptotic cell death in H28 cells and therefore ameliorates the drug efficacy.

One relevant aspect of our study is the demonstration that the growth inhibitory
effects observed in MPM cells treated with the simultaneous combination of abemaciclib
and chemotherapy are irreversible and are maintained even after drug withdrawal. In
contrast, the cells treated with chemotherapy alone reacquired the proliferative capability
after drug removal. Once again, the behavior of the different MPM cell lines showed some
peculiar aspects: indeed, in H28 cells, the treatment with abemaciclib alone resulted in
an irreversible inhibition of cell proliferation, whereas MSTO-211H cells reacquired the
proliferation capability after abemaciclib removal, even if to a lesser extent as compared to
chemotherapy agents. The translation of this result in the clinical setting reveals a potential
role of abemaciclib in preventing the acquisition of resistance to chemotherapy agents, a
phenomenon that inevitably occurs in MPM patients leading to therapy failure.

5. Conclusions

For patients with unresectable MPM, chemotherapy or immunotherapy remain the
standard of care as first-line treatment. Nevertheless, the prognosis remains poor and
novel therapeutic strategies are urgently needed. Our preclinical data strongly support
the ongoing clinical evaluation of abemaciclib in p16INK4a-negative patients, in particular
suggesting its combination with the standard chemotherapy regimen based on cisplatin
plus pemetrexed. Furthermore, considering the irreversible antitumor effects of the drug
combination, we might hypothesize that the maintenance of abemaciclib after the combined
treatment could be a promising therapeutic option for MPM patients.
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