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Simple Summary: Our study investigates the well-known observation/quandary that cancer occurs
more frequently in men while autoimmune diseases (AIDs) occur more frequently in women. This
has motivated us to explore whether these sex biases may have a common basis. To study that, we
assembled and analyzed a large collection of cancer and AID incidence datasets, including matched
data from 29 countries. We first, quite strikingly, find that the sex biases observed in the incidence of
AIDs and cancers that occur in the same tissue are positively correlated across human tissues. To our
knowledge, this is the first time this across-tissue relationship has been quantitatively demonstrated.
Second, we find by analyzing healthy human tissue gene expression data that the sex bias in the
expression of mitochondrial-encoded genes stands out as the common key factor whose levels across
human tissues are most strongly and positively associated with both cancer and AID incidence rate
sex biases, pointing to the key potential role of these genes in determining sex bias in both disorders.
These findings may further prompt researchers to explore how pertaining findings in cancer studies
could cross fertilize AID studies and vice versa, potentially enhancing our ability to prevent and treat
these diseases.

Abstract: Cancer occurs more frequently in men while autoimmune diseases (AIDs) occur more
frequently in women. To explore whether these sex biases have a common basis, we collected 167 AID
incidence studies from many countries for tissues that have both a cancer type and an AID that arise
from that tissue. Analyzing a total of 182 country-specific, tissue-matched cancer-AID incidence rate
sex bias data pairs, we find that, indeed, the sex biases observed in the incidence of AIDs and cancers
that occur in the same tissue are positively correlated across human tissues. The common key factor
whose levels across human tissues are most strongly associated with these incidence rate sex biases is
the sex bias in the expression of the 37 genes encoded in the mitochondrial genome.
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1. Introduction

Both autoimmune diseases (AIDs) and cancers have notably sex-biased incidence
rates. Most AIDs occur more often in women [1,2], and most cancers occur more often in
men [3–5]. While sex differences in several key biological factors have been implicated in
the biased incidence rates observed for both AIDs and cancer, including inflammation and
immunity, metabolism and sex hormones, their mechanistic underpinnings remain largely
unexplained [2,6,7].

Given these observations, we asked whether the sex biases observed in the incidence
of AIDs and cancers that occur in the same tissue are correlated across human tissues. This
question is of fundamental interest, since an affirmative answer may suggest that there
are common factors underlying their incidence. Establishing such a link between AIDs
and cancers could further prompt researchers to explore how pertaining findings in AIDs
could cross fertilize cancer risk studies and vice versa, potentially enhancing our ability to
prevent and treat these diseases.

To explore whether these sex biases are correlated across human tissues, we collected
population-based AID incidence studies for tissues that have both a cancer type and an
AID that arise from that tissue. For countries for which we collected AID incidence data,
we gathered incidence data for corresponding cancer types from national cancer registries.
Analyzing a total of 182 country-specific, tissue-matched cancer-AID incidence rate sex
bias data pairs, we find that the incidence rate sex biases observed for AIDs and cancers
that occur in the same tissue are positively correlated across human tissues. In addition, we
analyzed gene expression data from non-diseased tissue samples to determine if sex biases
in gene set expression in these tissues are correlated with AID and cancer incidence rate sex
biases in the same tissues. We find that the top positively enriched gene set across human
tissues whose expression sex bias is most strongly associated with the incidence rate sex
biases for AIDs, cancers, and AIDs and cancers considered jointly, is the set of 37 genes
encoded in the mitochondrial genome.

2. Materials and Methods
2.1. Overview

Our analysis is divided into two main parts: curation and analysis of disease incidence
rate data; and investigation of associations between incidence rates and gene expression in
corresponding non-diseased human tissue samples. First, we studied the association of
incidence rates for AIDs and cancers occurring in the same tissue. We collected incidence
data for AIDs from published studies, and for each country for which we found incidence
data for a given AID, we collected incidence data from that country’s national cancer
registry for cancers occurring in the same tissue as the AID. We matched AID and cancer
incidence data by tissue and by country to produce country-specific tissue-matched AID-
cancer incidence rate data pairs. We then computed across-tissue correlations between
AIDs and cancers for male incidence rates, female incidence rates, overall incidence rates,
and incidence rate sex biases, at both the individual country level and the across-country
global level.

Next, we used non-diseased human tissue transcriptomic data from GTEx version 8 [8]
to investigate possible factors across human tissues that might be associated with incidence
rate sex biases. We computed correlations between incidence rate sex biases and either
expression of individual genes or enrichment of human functional gene sets across tissues.
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2.2. Autoimmune Disease Incidence Data Curation

We first performed an extensive literature search for sex-specific incidence data for
AIDs. For each AID, we searched for original studies mentioning the disease and epidemiol-
ogy, prevalence, incidence, incidence rate, or sex bias using Google Scholar. We considered
only population-based studies that use clinical inclusion criteria and have at least 25 cases
for a given disease. We evaluated whether or not a study was population-based using
either (a) the characteristics of the existing data source used in the study (e.g., a manda-
tory country-wide reporting registry) or (b) estimates showing that the data collected in
the study were likely representative of the overall population. We evaluated whether or
not a study used clinical diagnostic criteria by looking for use of a disease-specific blood
test, a histological assay, or other evidence used to confirm diagnosis and rule out similar
non-autoimmune conditions. Additionally, we considered only AIDs with a focal primary
tissue (e.g., we included ulcerative colitis but excluded Crohn’s disease), for which we
could find incidence data for at least three countries. We excluded sex-specific tissues.

We collected 188 AID-country incidence rate datasets from 167 studies. For each
dataset, we calculated the incidence rate sex bias (IRSB) as

IRSB = log2(IRMALE/IRFEMALE)
(A)

so that a value of zero indicates no bias, a positive value indicates a higher incidence rate
in males (termed a “male bias”) and a negative value indicates a higher incidence rate in
females (similarly termed a “female bias”). A majority of the studies provided sex-specific
(123 of 188 datasets, 65%) and total (143 of 188, 76%) incidence rates (IR):

IRPOP = casesPOP/populationPOP
(B)

where: “POP” stands for either the “MALE”, “FEMALE”, or “TOTAL” population; casesTOTAL =
casesMALE + casesFEMALE; and populationTOTAL = populationMALE + populationFEMALE).
Most studies reported IR as cases per year per 105 persons; those using a different scale
were converted to this scale. We used “crude” incidence rates (as defined above) when
available; some studies provided only age-adjusted incidence rates.

Estimating Incidence Rates

For each of the four incidence rate measures we consider (IRSB, IRF, IRM, and RTOTAL)
the majority of studies provided a value, while other studies gave values for other measures
(i.e., different incidence rates or case counts) that can be used to estimate the value of that
measure. For a given measure we can divide our AID-country datasets into four groups
(Table 1): (1) those with the measure’s value but not the values of other measures we
can use to estimate that value; (2) those with the measure’s value and the values of other
measures we can use to estimate that value; (3) those without the measure’s value but with
the values of other measures we can use to estimate that value; and (4) those with neither
the measure’s value nor the values of measures we can use to estimate that value. For each
measure, we assessed the accuracy of our estimator by comparing the actual and estimated
values for datasets in group (2), and then used that same estimator to estimate values for
datasets in group (3).
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Table 1. Measures to estimate, measures needed for estimators, and numbers of datasets with values
for these measures. Numbers indicate dataset count and percentage (out of 188 total datasets) for
each group of datasets (1–4) described in the text.

(a) Measure to
Estimate

(b) Measures Needed
for Estimator

(1) Datasets
with (a)

(2) Datasets with
(a) & (b)

(3) Datasets with
(b) but Not (a)

(4) Datasets with
Neither (a) nor (a)

IRSB casesM/casesF 125 (66%) 105 (56%) 63 (34%) 0 (0%)
IRM, IRF IRTOTAL, casesM/casesF 123 (65%) 84 (45%) 41 (22%) 24 (13%)
IRTOTAL IRM, IRF 143 (76%) 101 (54%) 22 (12%) 23 (12%)

The estimators for all four measures require a value for the population’s sex ratio
(Formula (1))

SexRatio =
populationFEMALE

populationMALE
(C)

(1)

As only one study provided the background population sex ratio, we estimated
measures using either a sex ratio of 1:1 or the sex ratio for the corresponding population
(matching the specific country during the years the study was conducted) according to
United Nations estimates [9]. Based on (A), (B), and (C), we estimated IRSB, IRF, IRM, and
IRTOTAL as (Formulas (2)−(5)):

IRSB = log2

(
casesMALE

casesFEMALE
× SexRatio

)
(2)

IRFEMALE = IRTOTAL ×
casesFEMALE
casesTOTAL

× (1 + 1/SexRatio) (3)

IRMALE = IRTOTAL ×
casesMALE
casesTOTAL

× (1 + SexRatio) (4)

IRTOTAL = IRM ×
(

1
1 + SexRatio

)
+ IRF ×

(
SexRatio

1 + SexRatio

)
(5)

To assess the accuracy of our estimators we compared the actual and estimated values
for datasets in group (2) in two ways (Table 2). First, we computed the Pearson’s correlation
coefficient r between the two values. All estimators were accurate: for each the correlation
coefficient was close to 1 and the one-sided t-test was significant. Second, we computed a
simple linear model of the form xactual = β × xestimate + α. All estimators were accurate: for
each the coefficient β was close to 1 and the r2 close to 1 (where r is the Pearson’s correlation
coefficient). For all four measures the estimators performed well, but for each measure the
estimator using a sex ratio of 1:1 performed as good as or slightly better than the estimator
using the sex ratio based on the United Nations estimates. Accordingly, for our analyses
we used estimators with a sex ratio of 1:1. For all of our analyses, results computed using
only given values, and not estimates, were consistent with results computed using both
given and estimated values (the code for this paper includes scripts to reproduce all tests
and figures using data that either includes or excludes estimated values).

When multiple studies were available for an AID in a country, we used the across-
study arithmetic mean of each incidence rate measure as the measure value for that AID-
country pair (for IRMALE, IRFEMALE, IRTOTAL, or IRSB measures). Overall, surveying
167 published studies (Supplementary References), we calculated 133 country-specific AID
incidence rate sex bias data points for 17 AIDs in 33 countries (Table S1, e.g., the mean
incidence rate sex bias for Type 1 diabetes in Spain is one such data point).
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Table 2. Pearson’s correlation coefficient and simple linear model results for estimators. For each
measure, each of two estimators (with sex ratio as 1:1 or from the United Nations estimates) is shown
with its simple linear model coefficient β, intercept α, and r2, and its Pearson’s correlation coefficient
r and one-sided t-test p-value.

Measure Estimator β α r2 r p

IRSB
IRSB1:1 0.922 −0.0254 0.966 0.983 6.04 × 10−78
IRSBUN 0.923 −0.0585 0.963 0.981 5.54 × 10−76

IRFEMALE
IRFEMALE,1:1 1.020 −0.303 0.997 0.998 1.15 × 10−107
IRFEMALE,UN 1.035 −0.307 0.997 0.999 5.04 ×10−105

IRMALE
IRMALE,1:1 0.975 0.228 0.997 0.999 6.10 × 10−108
IRMALE,UN 0.959 0.236 0.997 0.999 2.26 × 10−105

IRTOTAL
IRTOTAL;1:1 1.013 −0.123 1.000 1.000 1.09 × 10−182
IRTOTAL;UN 1.013 −0.136 1.000 1.000 1.39 × 10−182

Combining data for each country.

2.3. Cancer Incidence Data Curation

Cancer incidence rates were calculated from GLOBOCAN [10] data for all but three
countries. For each country for which we had AID data, we computed each cancer type’s
incidence rate measure for each year and then averaged the yearly measure values to
produce a single measure value for each country-cancer pair (for IRMALE, IRFEMALE,
IRTOTAL, or IRSB measures). Cancer data for Finland [11], Sweden [12], and Taiwan [13]
were collected from country-specific databases. For Finland and Sweden we calculated
each incidence rate measure as the across-year average yearly measure for each cancer
type for the most recent 20 years (1999–2019) for each country. For Taiwan we calculated
each measure as the average of the measure for the two available time periods (1998–2002,
2003–2007). Overall, we calculated 165 country-specific cancer incidence rate sex bias data
points for 17 cancer subtypes in 29 countries (Table S2; for an additional four countries we
were unable to find population-level cancer incidence data).

2.4. Pairing AID and Cancer Incidence Data

Across 12 human tissues we paired 17 AIDs with 17 cancer types for a total of
24 cancer-AID data pairs. To compute the correlation between AIDs and cancer incidence
rate sex biases across tissues, we grouped AIDs with matched cancers occurring in the
same tissue in the same country (Table S3). For example, for the UK, we paired thyroid AID
data points for Hashimoto’s hypothyroidism and Graves’ hyperthyroidism with cancer
data points for thyroid carcinoma and thyroid sarcoma, resulting in 4 possible thyroid
cancer-AID pairs. The 133 country-specific AID incidence rate sex bias data points were
matched to the 165 country-specific cancer incidence rate sex bias data points, yielding a
total of 182 country-specific, tissue-matched cancer-AID incidence rate sex bias data pairs
that are jointly present in both the AID and cancer datasets (Table S2).

2.5. Gene Expression Analysis of Human Tissues

Gene expression was calculated from GTEx v8 data [8] provided in transcripts-per-
million (TPM). For gene i and tissue k with m samples we calculated the within-tissue gene
expression (GE) as the arithmetic mean TPM across samples as (where “POP” stands for
either the “MALE”, “FEMALE”, or “TOTAL” population, Formulas (6) and (7)):

GEPOP,i,k =
1
m

m

∑
j=1

TPMPOP,i,j,k (6)

and the gene expression sex bias (ESB) as:

ESBi,k = log2(GEMALE,i,k/GEFEMALE,i,k) (7)
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where both GEMALE,i,k and GEFEMALE,i,k are positive.
For a set of n genes N and tissue k with m samples, we calculated the within-tissue gene

set activity (GSA) as the geometric mean of gene expression across genes (Formulas (8) and (9)):

GSAPOP,N,k =

(
n

∏
i=1

GEPOP,i,k

)1/n

(8)

and the gene set activity sex bias (ASB) as:

ASBN,k = log2(GSAMALE,N,k/GSAFEMALE,N,k) (9)

where both GSAMALE,N,k and GSAFEMALE,N,k are positive.

2.6. Gene Set Enrichment Analysis across Human Functional Pathways

We performed gene set enrichment analysis (GSEA) in three steps. First, for each gene
in each tissue we calculated the gene expression sex bias (ESB). Second, we computed the
across-tissue Spearman correlation of the ESB of each gene with AID or cancer IRSBs (we
abbreviate these correlations as corrESB/IRSB). We also computed aggregated or “joint”
corrESB/IRSB values as the average for each gene of its corrESB/IRSB value for AID IRSBs
and its corrESB/IRSB value for cancer IRSBs. Finally, for each of these three phenotypes,
we ordered all the genes from greatest to least by the corrESB/IRSB values and performed
a GSEA [14] to identify gene sets and pathways that were either significantly positively
or negatively associated with IRSB (for gene sets used see Results). We considered GSEA
results significant if the adjusted p ≤ 10−3 (we used the Benjamini-Hochberg method to
adjust p-values for multiple tests) and ranked the results by normalized enrichment score
(NES) [14].

3. Results

We surveyed 167 published AID studies and the cancer registries for 29 countries
to assemble 182 country-specific, tissue-matched cancer-AID incidence rate sex bias data
pairs (Methods; Table S2). For each study, we calculated the incidence rate sex bias (IRSB) as
IRSB = log2(IRMALE/IRFEMALE), where IRMALE and IRFEMALE are the male and female
incidence rates, so that a value of zero indicates no bias, a positive value indicates a higher in-
cidence rate in males (termed a “male bias”) and a negative value indicates a higher incidence
rate in females (similarly termed a “female bias”). Having assembled these data, we computed
the mean IRSBs to get a view of tissue-matched cancer and AID incidence rate sex bias across
tissues, yielding global IRSB values for 17 AIDs and 17 cancer types across 12 human tissues,
comprising a total of 24 cancer-AID data pairs. As expected, most AID incidence rates are
female-biased (a negative sex-bias score), while most cancer incidence rates are male-biased
(a positive sex-bias score) (Figure 1A, Table S4). Figure 1B presents the correlation of the IRSB
of these disorders across human tissues, summed up across all countries surveyed. Notably,
we find an overall positive correlation (Pearson correlation r = 0.48 with two-sided t-test
p = 0.017, Spearman correlation r = 0.43 with two-sided t-test, p = 0.034). Repeating this analy-
sis using various levels of cancer type classification shows a consistent and robust correlation
(Figures S1 and S2, Table S5). (We used Pearson’s product-moment correlation coefficient to
measure correlation because it takes effect size into account. We also provide correlation test
results based on Spearman’s rank correlation coefficient as this assesses correlation differently
and may be of interest to the reader. We considered a correlation test result significant when
the t-test adjusted p ≤ 0.05. We used the Benjamini-Hochberg method to adjust p-values
for multiple tests). Second, studying this correlation in a country-specific manner for the
four countries with at least 18 AID-cancer data pairs, we find a country-specific significant
correlation for Sweden, while the correlations for Denmark, the UK and the USA have q-values
(p-values corrected for multiple hypotheses testing) > 0.05 but are quite close to this threshold,
showing a consistent trend for each country (Figure 1C).
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Figure 1. Incidence rate sex biases for cancers and AIDs are positively correlated across tissues of
origin. (A) Distribution across countries of incidence rate sex bias (x-axis) for 17 AIDs and 17 cancer
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types (y-axis). All data points are shown. Box shows interquartile range (IQR, first quartile to third
quartile), with center bar representing the median (second quartile). Lefthand whisker extends from
first quartile (Q1) to Q1−1.5×IQR or to the lowest value point, whichever is greater. Righthand
whisker extends from third quartile (Q3) to Q3 + 1.5×IQR or to the highest value point, whichever
is smaller. Positive median sex bias (red) indicates median with higher incidence rate in men;
negative median sex bias (blue) indicates median with higher incidence rate in women. To fit the data
compactly, the x-axes for the left and right panels differ in two unconventional ways: First, the center
point for (A) is close to −2 because most AID IRSB values are negative whereas the center point for
(B) is just above 0 because most cancer IRSB values are positive; Second, the range of the x-axis is
greater in (A) than it is in (B) (and thus the numbering is also different) because the range of AID
IRSB values is greater than that of the cancer IRSB values. (B,C) Tissue-matched incidence rate sex
biases for cancers (x-axis) and for autoimmune diseases (y-axis) are displayed across different tissues
of origin (circle color indicates the tissue). Positive values in each of the axes indicate male bias;
negative values indicate female bias. The dashed line is the simple linear regression line. Statistics in
the top left corner include the Pearson’s product-moment correlation r-value (Rp) and t-test p-value;
and the Spearman’s rank correlation coefficient value (Rs) and a t-test p-value (t-tests were two-sided
for the global-level tests and one-sided for the country-level tests). For country-level tests, p-values
were corrected for multiple testing using the Benjamini-Hochberg method to produce q-values.
(B) Across-population averages, with the cancer-AID pairs labeled. To fit the data compactly, the
plot is centered close to (0, −1) as opposed to the more conventional center of (0,0) because the
majority of the AID IRSB values are negative. (C) Population-level data for the four countries with
the largest numbers of data pairs (at least 18 out of 24 cancer-AID pairs), maintaining the tissue
color labels used in the top panel (USA, 20 pairs; Denmark, Sweden, & UK, each 18 pairs). AIDs:
AD, Addison’s disease; aGBM, anti-glomerular basement membrane nephritis; AHA, Autoimmune
hemolytic anemia; AIG, Autoimmune gastritis; AIH, Autoimmune hepatitis; CD, Celiac disease; DLE,
Discoid lupus erythematosus; GH, Graves’ hyperthyroidism; HH, Hashimoto’s hypothyroidism;
ITP, Immune thrombocytopenic purpura; LS, Localized scleroderma; MN, primary autoimmune
membranous nephritis; MS, Multiple sclerosis; PBC, Primary biliary cholangitis; Pso, Psoriasis; T1D,
Type 1 diabetes; UC, Ulcerative colitis. Cancers: ADGL, adrenal gland cancer; BCS, liver (biliary)
cholangiosarcoma; COLON, colon cancer; CNS, central nervous system cancer; GBBT, gallbladder
& biliary tract cancer; KDNY, kidney cancer; LIC, liver carcinoma; LIHB, liver hepatoblastoma; LIS,
liver sarcoma; ML, myeloid leukemia (acute and chronic); MM, multiple myeloma; PANC, pancreatic
cancer; SKM, skin melanoma; SMINT, small intestine cancer; STOM, stomach cancer; THC, thyroid
carcinoma; THS, thyroid sarcoma.

Observing this fundamental correlation, we next asked if we could identify factors
that might jointly modulate both the incidence rate sex bias observed in cancer and in
AID across human tissues. We conducted both an unbiased general investigation and a
hypothesis-driven one. We specifically examined four major factors that have been pre-
viously associated in the literature with the incidence rates of cancers and AIDs and/or
their incidence rate sex biases. Those include (1) inflammatory or immune activity in
the tissue [15,16]; (2) expression of immune checkpoint genes [17,18]; (3) the extent of
X-chromosome inactivation [6,19]; and finally, (4) mitochondrial activity [20,21] and mito-
chondrial DNA copy number [22,23].

Having these literature-driven specific hypotheses in mind, we still have chosen to
begin by systematically charting the landscape of gene sets whose sex-biased enrichment
in normal tissues is associated with IRSB in cancers and AIDs in an unbiased manner (see
Section 2.5). We analyzed gene expression data from non-diseased tissue samples from
GTEx v8 [8], for tissues in which both cancer and AID arise; GTEx data were available
for 10 of the 12 tissues we studied above (Table S3). First, (1) for each gene in each tissue
we calculated the expression sex bias (ESB) as ESB = log2(GEMALE/GEFEMALE), where
GEMALE or GEFEMALE denote the average gene expression in TPM (transcripts-per-million)
for male or female samples of the tissue. (2) Second, we computed the correlation of the
expression sex bias of each gene with AID or cancer IRSBs (we abbreviate these corre-
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lations as corrESB/IRSB). We also computed aggregated or “joint” corrESB/IRSB values as
the average for each gene of its corrESB/IRSB value for AID IRSBs and its corrESB/IRSB
value for cancer IRSBs. (3) Finally, for each of these three phenotypes, we ranked all the
genes from top to bottom by the corrESB/IRSB values and performed a gene set enrichment
analysis (GSEA) [14,24] to identify gene sets and pathways that were either significantly
positively or negatively associated with IRSB. In total, this analysis covered 7763 gene
sets, including gene ontology biological process sets and chromosome-location based sets
from MSigDB [25], three X-chromosome gene sets (fully escape X-inactivation, variably
escape X-inactivation, and pseudoautosomal region) [26], and finally, the two separate sets
of nuclear-encoded genes whose protein products localize to the mitochondria and the
37 mitochondrial-genome-encoded genes [27]. In this study, we consider the 37 mitochon-
drial genes as a set; all the genes are listed individually and some previously identified
associations between individual genes and either AIDs or cancer are shown in Table S6.

Figure 2 shows the top positively and negatively corrESB/IRSB enriched sets with
p ≤ 10−3 after multiple hypotheses test correction for AID incidence (positive, Panel A;
negative Panel B), for cancer incidence (positive, Panel C; negative Panel D), and their
joint aggregate enrichment for both AID and cancer incidence (positive, Panel E, negative,
Panel F). Strikingly, the top enriched gene set (highest normalized enrichment score (NES))
in all three phenotypes is the set of 37 genes encoded on the mitochondrial genome,
including many genes with high corrESB/IRSB values. In contrast, while the (much larger)
set of all genes encoding proteins that localize to the mitochondria is significantly enriched
for cancer IRSB, it is not significantly enriched for AID IRSB, where it is only ranked
3842 out of 6420 (negatively) enriched gene sets. Several immune-related gene sets also
show high and significant corrESB/IRSB positive enrichments in accordance with one of
our initial hypotheses (Figure 2). However, the three different X chromosome gene sets
studied in light of another one of our original hypotheses are not significantly enriched
in corrESB/IRSB values. Finally, several mRNA processing gene sets show strong negative
significant correlations and high negative NES scores with AID and cancer incidence.

To obtain a clearer visualization of the key positively enriched gene sets described
above, we summarized the expression of the genes composing a given gene set in a normal
GTEx tissue by computing their geometric mean, giving us a single activity summary value
(see Section 2.5). We then computed the correlation across tissues between these summary
values of the gene sets in each normal tissue and the IRSBs of cancers or AIDs (Figure 3). In
concordance with the results of the unbiased analysis presented above, we do not observe
a significant correlation between cancer or AID incidence rate sex bias and the expression
of key immune checkpoint genes (CTLA-4, PD-1, or PD-L1, Figure S3), or the extent of
X-chromosome inactivation (quantified by the expression of XIST lncRNA [28], Figure S4).
We also do not find such significant consistent correlations for the top immune gene sets
found via the unbiased analysis (previously shown in Figure 2). However, we do find
strong correlations between these summary values for the mitochondrial gene set, which
was ranked highest in Figure 2 (gene set “MT”): Remarkably, we find that the sex bias of
mtRNA expression in GTEx tissues is positively correlated both with AID incidence rate
sex bias (Pearson r = 0.56, one-sided t-test p = 0.018) and with cancer incidence rate sex
bias (Pearson r = 0.67, one-sided t-test p = 0.0058) (Figure 3A,B; the correlations between
mtRNA expression and cancer and AID incidence rates for each of the sexes individually
are provided in Figure S5). The significance of these two associations is further supported
by observing that the basic correlation between cancer and AID IRSBs becomes insignificant
when we compute the partial correlation between these two variables while controlling
for the mtRNA expression bias (Pearson r = 0.21, two-sided t-test p = 0.42). Overall, these
findings are in line with previous reports linking mitochondrial activity [20,21] and mtDNA
copy number [22,23] with higher AID and cancer incidence.
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4. Discussion

The correlative findings between the expression of mitochondrially encoded genes and
cancer and AID IRSBs across human tissues are quite surprising, giving rise to two further
fundamental questions. First, what biological mechanisms may be associated with sex
differences in overall mitochondrial functioning? One potential candidate may be estrogen
signaling, which has been shown to regulate at least four mitochondrial functions relevant
to health and disease [29], including, (1) biogenesis of mitochondria, whose levels differ
across sexes and tissues [30], (2) T-cell metabolism (including mitochondrial activity mea-
sured by Seahorse assays) and T-cell survival (estimated by retention of inner membrane
potential) [31], (3) unfolded protein response [32] (mediated partly via mitochondrial su-
peroxide dismutase) [33], and (4) generation of reactive oxygen species (ROS) [34]. Second,
how might sex differences in mitochondria functioning modulate the sex-biased incidence
observed in cancers and AIDs? One possible mechanism is through differences in ROS
production, which notably involves quite a few mitochondrially encoded genes: Increased
mitochondrial ROS generation has been associated with both the initiation and intensifica-
tion of autoimmunity in several organ-specific AIDs [20] and with cancer initiation and
progression [21]. More generally, alterations in mtDNA copy number have been associated
with increased risk of lymphoma and breast cancer, [22] and somatic mtDNA mutations
producing mutated peptides may trigger autoimmunity [23].

Our analyses have a few limitations and we list three main ones. First, the majority of
our AID-cancer data pairs are from European countries (113 of 182 [62%]), which might
introduce geographic, ethnic, or social biases. This geographic bias in our AID-cancer
data pairs is largely due to a paucity of suitable AID epidemiological studies based on
populations outside of North America and Europe, particularly on populations in low-
and middle-income countries [35,36]. For example, despite the geographically widespread
study of common AIDs such as multiple sclerosis and type 1 diabetes, for other common
AIDs such as Hashimoto’s hypothyroidism, Graves’ hyperthyroidism, and ulcerative
colitis, data from regions outside North America and Europe are sparse [37]. Second,
factors beyond biological drivers, such as sex differences in the propensity to seek medical
care or reporting of specific diseases, are not characterized in the datasets studied. However,
putative disease-specific effects may be somewhat mitigated given the opposite tendency of
sex biases for AIDs and cancers in a study of tissue-specific correlations like ours. Although
there is evidence for the role of environmental exposures in the development of some
AIDs [38], there is little evidence for sex-specific exposures contributing to sex biases in AID
incidence [39]. Likewise, a recent study of the contribution of risk factors to sex disparities
in the incidence of solid tumor cancers at 21 anatomical sites found that differences between
male and female incidence rates are largely unexplained by factors outside of sex-related
biological factors [40]. Third, although much of the incidence rate data is age-standardized,
we could not take additional steps to account for age-related incidence rate differences as
the sample sizes available are too small to enable doing such an analysis in a robust manner.

It has been hypothesized that chronic inflammation leads to cancer [41,42]. Indeed, a
recent study analyzing UK Biobank data found positive associations between several tissue-
specific immune-mediated diseases (i.e., diseases such as asthma and myositis in addition
to AIDs) and subsequent cancer risk in the same individual [43]; they did not however
consider sex-bias. Both this study and our study seek statistical evidence of shared risks
between immune diseases and cancer. However, in contrast to this individual-level study
design assessing within-subject risk of sequential disease appearance in the UK population,
we chose a population-level study design assessing within-population correlations between
IRSBs for AIDs and cancers affecting the same tissues across populations. A strength of
our study is that when AID studies reported whether individuals developing AIDs had
previous immune-related diseases or cancers we excluded individuals with such previous
diseases from our study.

As in humans, sex differences have been reported in animal studies of diseases, which
has prompted us to search the literature and survey previous studies of sex bias in disease
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incidence in rodent models of cancers and AIDs. We focused on studies of sex difference
in spontaneous and/or autochthonous carcinogenesis by either carcinogen treatment or
genetic engineering, excluding transplantation of syngeneic animals because these animals
do not model disease development (representative examples are listed in Tables S7 and S8
for cancer and AIDs, respectively). Table S7 lists our cancer incidence findings, where the
sex bias was male skewed in colon, liver, kidney, pancreas, and stomach, and higher in
females in the thyroid, consistent with the human reports. Interestingly, for colon, liver,
kidney, pancreas, and thyroid, the sex bias disappeared or was reduced when the animals
were subjected to castration/ovariectomy or hormone treatment, supporting the notion
that the differences in these organs are likely to be driven by sex hormones. Table S8 lists
AID rodent models that allow for direct comparisons to the human data. The AID sex
bias reported is however generally higher in males than in females, in difference from the
human findings, but the higher male bias observed in kidney, colon, pancreas, and skin
compared to the thyroid is maintained.

5. Conclusions

In summary, we find a surprising overall positive correlation between cancer and
AID incidence rate sex biases across many different human tissues. Among key factors
that have been previously associated with sex bias in either AID or cancer incidence, we
find that the sex bias in the expression of mitochondrially encoded genes (and possibly
in the expression of a few immune pathways) stands out as a key factor whose aggregate
level across human tissues is quite strongly associated with these incidence rate sex biases.
Our findings thus call for further mechanistic studies on the role of mitochondrial gene
expression in determining cancer and AID incidence and their incidence rate sex biases.
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