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Simple Summary: In the past few years, clinical as well as regular scientists have been paying
attention to medicinal applications of natural products. There are several investigations focusing
on the potential beneficial effects of natural compounds in the treatment of different cancers. In the
current comprehensive review paper, we first discuss three major mechanisms that control the effect
of cancer therapy agents on tumor cells. This includes autophagy, apoptosis and the unfolded protein
response. In the next step, we discuss how different natural compounds (more than 100 compounds)
target cancer cells via the autophagy pathway and how this regulates stress response and cell death
in cancer cells.

Abstract: Macroautophagy (autophagy) has been a highly conserved process throughout evolution
and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles
and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to
preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several
pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and
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inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein
response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the
UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce
or inhibit) the autophagy pathway. Natural products may target different regulatory components
of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated
~100 natural compounds and plant species and their impact on different types of cancers via the
autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via
the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in
regulating cell autophagy and its potential impact on cancer therapy; however, the number of related
clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted
to better clarify the utility of natural compounds and their modulatory effects on autophagy, as
fine-tuning of autophagy could be translated into therapeutic applications for several cancers.

Keywords: apoptosis; autophagy; autophagy-related diseases; cancer; natural compound; unfolded
protein response

1. Introduction

Autophagy, the unfolded protein response (UPR), and apoptosis are tightly intercon-
nected, typically affect each other and have been extensively investigated in many types of
cancer [1,2]; treatment protocols for different cancers may be improved by manipulating
these processes. Along these lines, the application of plant derivatives in cancer therapy
has a longstanding record [3]. Plants serve as an important root of powerful anti-cancer
factors. Greater than 60% of currently used antineoplastic factors are derivatives of natural
sources, such as plants, marine organisms and micro-organisms [4]. In this review, we
discuss over 100 natural compounds and highlight plant species that have been investi-
gated for their beneficial impact on different types of cancer. We specifically emphasize
the impacts of these compounds on the autophagy pathway and outline how the interplay
of autophagy with the UPR and apoptosis is therapeutically important. First, we briefly
discuss the concepts of autophagy, the UPR, apoptosis and their crosstalk, followed by
a detailed explanation of how these processes are involved in the potential anti-cancer
effects of natural compounds.

2. Autophagy

Over 50 years ago, a new term entered the scientific vocabulary—“autophagy” (self-
eating), a process in which intracellular and cytoplasmic constituents are delivered to the
lysosomes and degraded [5]. Autophagy is a multi-faceted and complicated molecular
and cellular process, extremely important for maintaining cellular homeostasis and pre-
serving cells during nutritional, metabolic and pathological stress [6–10]; however, too
much autophagy can be detrimental, and this process is therefore also deemed a type of
programmed cell death [11–13].

Three main types of autophagy, each modulated by specific autophagy-related (ATG)
genes and proteins have been identified in mammals: macroautophagy (herein referred to as
autophagy), chaperone-mediated autophagy (CMA) and microautophagy (Figure 1) [14–17].

Macroautophagy consists of several steps, including initiation, phagophore expan-
sion, autophagosome fusion with the lysosome, developing an autolysosome for prote-
olytic destruction of the cargo and discharge of the disintegrated products back into the
cytosol [18–21]. Although autophagy is usually not a selective process (e.g., autophagy
induced by starvation), it becomes selective under some conditions and has potential
importance in clinical diseases. Some of the various types of selective autophagy are
called aggrephagy (protein aggregates), mitophagy (mitochondria), xenophagy (invasive
microbes) and ciliophagy (cilia) based on the specific targets [22–24].
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Figure 1. Schematic illustration of the main distinct autophagy mechanisms in mammals.
(A) macroautophagy (autophagy), which includes initiation, phagophore expansion, autophago-
some fusion with the lysosome, developing an autolysosome and cargo degradation steps;
(B) microautophagy, in which the lysosome takes up small soluble particulates by invagination
or protusion, followed by scission of the lysosomal membrane; and (C) CMA, which is a selective
mechanism for proteins with specific amino acid motif (KFERQ sequence). The figure was created
with BioRender.com. Licensing Right NX24OB5K3I, 21 November 2022.

During microautophagy, lysosomes take up small cytosolic constituents (soluble or
particulate cellular components) by invagination or protrusion of the lysosomal limiting
membrane followed by scission [25–28]. This type of autophagy is non-selective and does
not require autophagosome formation. It has been postulated that microautophagy occurs
to maintain the correct size and membrane composition of the lysosome [29,30]. Note that
there are microautophagy-like processes (i.e., involving direct uptake at the lysosomal
limiting membrane) that are highly selective, including micropexophagy.

Finally, CMA is an autophagy mechanism selective for protein degradation. In fact,
only individual proteins that have a specific amino acid motif (KFERQ sequence) [31] bind
to a chaperone located in the cytosol (HSPA8/HSC70; heat shock protein family A (Hsp70)
member 8). These proteins are unfolded and transferred across the lysosomal membrane
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through LAMP2A (lysosomal membrane protein 2A) in a process involving lumenal HSPA8
and they are subsequently rapidly degraded [32].

Disruption of autophagy has been correlated with several pathologies, such as cancer,
cardiomyopathies, neurodegenerative diseases, diabetes, liver diseases, immune disorders
and pathogen infections [33–45]. Thus, targeting the autophagic process could be a valuable
strategy for the identification of new therapeutic avenues. Several studies have highlighted
the potential of a broad range of natural products and compounds to modulate autophagy,
either leading to pro-survival autophagy or autophagic cell death (ACD) [46]. Natural
compounds that modulate autophagy have become an important focus of research that
aims to address autophagy-related diseases.

3. Autophagy Databases

Advances in understanding the autophagy process have allowed the discovery of
genes and their corresponding proteins that are involved in autophagy mechanisms. Cur-
rently, more than 40 such genes have been identified, of which many are conserved among
different organisms including yeasts, worms, slime mold, flies, plants and mammals [47].

The availability of several databases with detailed information on autophagy-related
genes and proteins represents a valuable resource for bioinformatics applications. For exam-
ple, the human autophagy database (HADb) is a public autophagy resource and is a product
of the Luxembourg Institute of Health/LIH, which provides inclusive information on
the gene of interest and autophagy-related proteins (http://autophagy.lu/index.html,
22 November 2022).

The autophagy database of the National Institute of Genetics (NIG) provides data
on proteins involved in autophagy to modernize current autophagy research; it offers
a comparison of homologous proteins among more than forty different species, allowing the
user to search for new and established autophagy-related proteins (http://www.tanpaku.
org/autophagy/overview.html, 22 November 2022) [48].

Autophagy To Disease/ATD (http://auto2disease.nwsuaflmz.com, 22 November
2022) offers an overview of autophagy-associated diseases, providing a bioinformatic
annotation system for chemical sorts, human diseases, and genes and proteins related
to autophagy.

The Autophagy Regulatory Network (ARN) (http://autophagyregulation.org,
22 November 2022) is a manually curated database of autophagy components and re-
lated connections, integrating resources with known autophagy protein regulators. The
database contains 1485 proteins with 4013 different interactions. This database includes
possible transcriptional and post-transcriptional regulators (i.e., transcription factors and
microRNA/miRNA) of autophagy and its regulatory proteins. All these autophagy effec-
tors have been linked to the most important signaling pathways of the SignaLink 2 resource.
The ARN is particularly useful for the identification of potentially relevant therapeutic
strategies; by using the online resource, accessible through an easy-to-use interface, it is
possible to predict novel regulators and interactions [49].

In addition to databases specifically dedicated to autophagy genes and proteins,
several other online resources are available to extract relevant information about au-
tophagy modulators. These include the Autophagic Compound Database (ACDB)
(http://www.acdbliulab.com/search.php, 22 November 2022), curated with data retrieved
from scientific literature on known compounds and their relationships to autophagy. Specif-
ically, the database contains information on over 350 compounds with more than 160 related
signaling pathways and potential targets in various disorders [50]. The Autophagy Small
Molecule Database (Autophagy SMDB) (http://www.autophagysmdb.org/ 22 November
2022) is a comprehensive, manually curated, cross-platform database that includes com-
pounds and their associated protein targets, capable of behaving as autophagy modula-
tors. Currently, the Autophagy SMDB lists over 10,000 molecules related to 71 cellular
targets. For all entries, detailed information regarding the activity, International Union
of Pure and Applied Chemistry (IUPAC) name, canonical Simplified Molecular Input

http://autophagy.lu/index.html
http://www.tanpaku.org/autophagy/overview.html
http://www.tanpaku.org/autophagy/overview.html
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Line Entry System (SMILE), structure, molecular weight and calculated physicochemi-
cal properties, is available [51]. The Human Autophagy Modulator Database (HAMdb)
(http://hamdb.scbdd.com, 22 November 2022) is a manually curated database containing
information on 841 chemicals, 132 microRNAs and 796 proteins, related to the particu-
lar impacts on autophagy mechanisms, biological and physicochemical properties, and
disorder involvement. Moreover, the HAMdb contains several external links to retrieve
additional information that covers extensive biomedical knowledge [52].

All these tools can provide researchers with insightful information about au-
tophagy pathways and related diseases necessary to facilitate the discovery of novel
autophagy modulators.

4. Physiological and Pathophysiological Roles of the Autophagic Machinery in Cancer

Autophagy is one of the main degradation systems, common to all eukaryotic organ-
isms; during this process, parts of the cytoplasm are isolated and released into lysosomes
for degradation [9,53,54]. Mammalian autophagy mechanisms are essential for maintaining
a healthy cellular state. Autophagy serves a prominent role in cytoplasmic turnover, re-
moving superfluous, damaged and misfolded organelles and proteins and reducing DNA
instability that may lead to oncogenic alterations and ultimately cancer [43,55–57]. This
process also entails recycling cellular components to provide sources of energy or building
blocks (amino acids, fatty acids and sugars) for the biosynthesis of macromolecules [58–60].
Thus, autophagy is critically vital for the quality control of intracellular organelles and
proteins [61].

Depending on the form of stress stimulus, the autophagic machinery can either support
cell survival and adaptation (cell protective) or lead to cell death (cell destructive) [62,63].
Autophagy is induced by nutrient deficiency, hypoxia and oxidative stress, involving the
activation of different pathways and processes such as the MTOR (mechanistic target of
rapamycin kinase) pathway, stress signals from the endoplasmic reticulum (ER), calcium
signaling and the insulin pathway [38,64,65].

A wide diversity of nutrients, growth factors and insulin-like signals inhibit autophagy
via the MTOR pathway by directly modulating class I phosphoinositide 3-kinase (PI3K)-
AKT/protein kinase B signaling [8,15,55,66,67].

An increasing number of studies suggest an intricate association between autophagy
and cancer. In particular, the dualistic behavior of autophagy has been linked to tumor
type, staging and nature of the stress signal [56,57,68].

Other autophagy modulators have essential roles in the response to different stimuli.
For instance, 5′-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is
a modulator that responds to low cellular energy; EIF2A/eIF2α (eukaryotic translation
initiation factor 2A) responds to starvation, ER stress and accumulation of double-stranded
RNA; and the tumor suppressor protein TP53/p53 together with TP53-related proteins are
rapidly activated in the presence of DNA damage [69]. Interestingly, TP53 can inhibit or
activate autophagy mechanisms depending on various elements such as the nature of DNA
damage or its subcellular localization, DAPK (death associated protein kinase) proteins,
MAPK/SAPK, MAPK8/JNK1 (mitogen-activated protein kinase 8), ITPR (inositol 1,4,5-
trisphosphate receptor), the ER membrane-associated protein ERN1/IRE1 (endoplasmic
reticulum to nucleus signaling 1), GTPases, MAPK1/ERK2-MAPK3/ERK1, ceramide and
calcium [37,53,70,71].

Considering its broad association with various cellular processes, the modulation
(activation or inhibition) of the autophagic machinery represents a potential approach for
treating several diseases [17,42,55,62,71–73].

Activation of autophagy has been proposed to promote healthy aging by reducing
the incidence of cancer, cardiovascular disease, diabetes and brain decline [74]. In this
sense, stimulating autophagy has attracted interest in developing innovative curative
approaches for neurodegenerative disorders [35]. However, it has been observed that in-
ducing autophagy processes to treat specific disorders may not be devoid of severe adverse
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effects. For instance, the activation of autophagy can promote the onset of pathological
processes such as the reactivation of dormant tumors [75]. Accordingly, with an improved
understanding of the autophagic machinery, it will be possible to improve the selectivity of
drugs and specifically target altered autophagy pathways [76]. To date, several examples of
molecules able to modulate autophagy have been described in the literature and the num-
ber of studies on this topic is constantly growing (https://www.ncbi.nlm.nih.gov/pubmed,
22 November 2022).

4.1. Autophagy in the Initial Stages of Cancer

In the course of the primary stages of oncogenesis, autophagy is mainly a tumor
suppressor mechanism via the “recycling” of damaged organelles or misfolded proteins,
which are involved in cancer initiation [77,78]. Therefore, any disruption in the autophagy
pathway is potentially correlated with genetic instability, epigenetic changes, malignant
transformation and tumorigenesis [79,80]. For example, an autophagy defect resulting from
knocking down BECN1 (beclin 1) promotes the formation of cancer in mice [81,82]. Further-
more, Becn1 loss is frequently observed in different forms of cancer, such as breast, prostate
and ovarian cancers, besides BECN1 loss in malignant epithelial ovarian cancer [82–84].
BECN1 is involved in autophagy induction and promotes tumor-suppressive functions
by regulating UVRAG (UV radiation resistance associated) and SH3GLB1/Bif-1 (SH3 do-
main containing GRB2 like, endophilin B1) that positively regulates the activity of BECN1
via supporting the interplay between BECN1 and PIK3C3/VPS34, a component of the
class III autophagy-specific phosphatidylinositol 3-kinase (PtdIns3K) complex, resulting
in increased autophagy [85,86]. Lower expression of SH3GLB1 and UVRAG mutations
that induce its inactivation [87] have been identified in different types of cancers including
gastric, prostate, bladder and breast cancers [80].

In addition to Becn1, many studies revealed that the deletion of several Atg genes is
associated with oncogenesis. Indeed, deficiency of Atg5 and Atg7 boosts the growth of liver
tumors in mice due to an imbalance in oxidative stress and mitochondrial damage [88].
Furthermore, mice lacking Atg4, which is necessary for the subsequent interaction between
MAP1LC3/LC3 (microtubule associated protein 1 light chain 3) and the ATG12–ATG5-
ATG16L1 complex and functions as a tumor suppressor, present a higher risk factor with
respect to developing chemical-induced fibrosarcoma [89]. Additionally, autophagy is
controlled by signaling pathways that regulate tumorigenesis, such as PI3K-AKT [90,91].
For example, AKT overexpression, PI3K mutations or PTEN (phosphatase and tensin
homolog) loss impair autophagy mainly via MTOR activation in glioblastoma cells [90,91].
BCL2 (B-cell lymphoma 2), apoptosis regulator, overexpression can potentially regulate
autophagy through an inhibitory binding to BECN1 in mammalian cells [92]. These lines
of evidence highlight the fact that autophagy is a crucial biological process that inhibits
tumor generation, and its dysfunction could promote tumorigenesis.

4.2. Autophagy in Advanced Tumors

Although autophagy has a crucial function in the suppression of malignant trans-
formation in the early stages of cancer, several surveys showed that in the later stages
of cancer, autophagy activation can have pro-survival effects, sustaining tumor growth
and promoting tumor progression [78,93]. Cancer cells are defined by a significant growth
measure and increased metabolic stress, leading to a toxic environment in tumor cells, if it
is left unresolved [93]. In this context, autophagy is considered a complex means that reacts
to different types of stress, including uncontrolled tumor growth, depletion of the blood
supply to tumor cells, starvation and hypoxia. Starvation decreases adenosine triphosphate
(ATP) levels and stimulates the AMPK pathway and consequently promotes autophagy [94].
Conversely, the hypoxic condition triggers the stimulation of HIF1A/HIF-1α (hypoxia
inducible factor 1 subunit alpha)-dependent autophagy [94]. In both of these conditions,
autophagy contributes to tumor survival [94].

https://www.ncbi.nlm.nih.gov/pubmed
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Autophagy may also be activated by some oncogenic pathways during cancer cell
proliferation, supported by a high frequency of KRAS (KRAS proto-oncogene, GTPase)
or HRAS (HRas proto-oncogene, GTPase) mutations that promote the development of
cancer cells in an autophagy-dependent mode in different cell types, like pancreatic cancer
and colorectal cancer (CRC) cells [89]. The induction of the autophagy process maintains
tumor cell development and, consequently, the suppression of KRAS and HRAS could
slow down the tumor progression and proliferation partially via autophagy inhibition [89].
Different mechanisms that activate autophagy are linked to several hallmarks of cancer.
There are some contradictory data sources concerning the supportive function of autophagy
in cancer cell proliferation. For example, some autophagy inducers, such as rapamycin
and its derivatives, can block MTOR-cascade-dependent cell growth via cell cycle arrest in
MDA-MB-231 breast cancer cells [95]. These studies suggest a fragile equilibrium between
autophagy-dependent tumor cell proliferation and cell death.

Another cancer hallmark called “angiogenic switch” is characterized by the ability of
tumor cells to induce and maintain angiogenesis during tumor development and provide
oxygen and nutrients to cancer cells [96]. Indeed, to sustain growth, cancer cells exploit
nearby normal cells for biosynthesis and secretion of VEGF (vascular endothelial growth
factor) that triggers the activation of signaling pathways, leading to the establishment of
novel blood vessels [96]. The elevated autophagy sustains cancer cells and allows them
to overcome oxygen stress [96]. Furthermore, autophagy facilitates tumor invasion and
metastasis via regulating the epithelial-to-mesenchymal transition and tumor immune
surveillance [20,55,97]. Autophagy is also linked to tumor metabolic reprograming; cancer
cells switch their metabolism by exploiting aerobic glycolysis to survive [98]. This phe-
nomenon is called the “Warburg effect” and allows the tumor cells to reduce the need for
oxygen in ATP production [98]. Even, in hematological/blood cancers, autophagy can
either perform as a chemo-resistance mechanism or have tumor suppressive functions,
depending on the context [99].

The plasticity of cancer cell metabolism makes limitations for anticancer treatments
that could lead to therapy resistance. Evidence suggests an important role of mitophagy
in tumor growth, metastasis and therapy resistance depending on tumor type, stage or
metabolic activity. Therefore, pharmacological modulation of mitophagy in tumors could
be a promising anticancer strategy [100]. Researchers demonstrated that autophagy plays
dual roles in drug resistance of gastric cancer [101] and it is activated in response to
chemotherapy in neuroblastoma cells that confers chemoresistance [102]. However, the
proposition of inhibition or activation of this pathway is still limited in preclinical models
and human tumors [100]. The dual function of autophagy in cancer is shown in Figure 2.

Cancer control may not be achieved by targeting only a single cell death program.
Each pathway has its own characteristics. For example, apoptosis exhibits cytoplasmic
shrinkage, chromatin condensation, nuclear fragmentation, plasma membrane blebbing
and formation of apoptotic bodies; however, autophagy shows extensive cytoplasmic
vacuolization and, similar to the culminating phagocytic uptake of apoptotic cells, there
is consequent lysosomal degradation [103]. The UPR is a stress pathway that can be
triggered by the abnormal accumulation of unfolded proteins in the ER caused by genetic
or environmental changes, hypoxia or altered glycosylation. The UPR maintains balance
in ER homeostasis by lowering the number of unfolded proteins present in the cell [104].
There is interaction/crosstalk among autophagy, apoptosis and the UPR in tumor cells,
which determine their fate. Therefore, we summarized them here to provide a better
understanding of the functional mechanism of natural compounds on cancer cells.
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Figure 2. Dual function of autophagy in cancer. The dualistic function of autophagy in cancer.
Autophagy in the initial stages of cancer promotes tumor suppression by digesting cellular damaged
structures. In contrast, in the late stages of cancer, autophagy sustains cancer cell growth by support-
ing elevated metabolism and by limiting the recruitment of macrophages. The figure was created
with BioRender.com. Licensing Right GD24OB603C, 21 November 2022.

4.3. Functional Crosstalk between Apoptosis and Autophagy in Cancer

Autophagy and apoptosis are interconnected, and their crosstalk has a crucial function
in the response of cancer cells to different chemotherapy compounds [57,105,106]. These
procedures often happen concurrently in response to a related trigger and mostly in a way
that autophagy negatively or positively regulates apoptosis [9,63,107].

There are several proteins, which are engaged in the regulation of switching be-
tween autophagy and apoptosis in malignancy [56]. Some links between these two
pathways are mediated via TP53-associated mitochondrial proteins and genes including
BBC3/PUMA (BCL2 binding component 3) and PMAIP1/NOXA (phorbol-12-myristate-
13-acetate-induced protein 1) [69,71]. Low induction of the mitochondrial membrane
permeabilization results in autophagy activation [108]. If the permeabilization passes
an irreversible threshold level, it will initiate apoptosis induction [108]. Therefore, the
activation of apoptotic or accidental cell death (ACD) may depend on the level of mito-
chondrial membrane permeabilization [108]. Several mediators can simultaneously induce
apoptosis and autophagy, including BECN1 and BCL2 interaction through the BCL2 ho-
mology 3/BH3 domain, phosphorylation of BECN1 and PRKD/PKD (protein kinase D)
via DAPK and phosphorylation of BCL2 via MAPK8/JNK1 with subsequent activation
of the BECN1-PIK3C3/VPS34 complex [56,105,108]. A brief overview of the functional
relationship between autophagy and apoptosis pathways that are involved in tumor cell
response to chemotherapy is shown in Figure 3.

BioRender.com
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Figure 3. The crosstalk between signals that induce both apoptosis and autophagy. (A) The tumor
suppressor TP53 has both pro-apoptotic and pro-autophagic functions depending on its subcellular
localization. (B) BH3 (BCL2 homology domain 3) proteins interact with BECN1 and BCL2 to activate
autophagy and apoptosis. (C) DAPK (death associated protein kinase) can stimulate autophagy
and apoptosis by phosphorylating BECN1, driving its dissociation from BCL2. DAPK can also
activate PRKD/PKD, which phosphorylates and activates PIK3C3/VPS34. (D) MAPK/JNK induces
autophagy and apoptosis by phosphorylating and inactivating BCL2 and activating the BECN1-
PIK3C3/VPS34 complex. The figure was created with BioRender.com. Licensing Right DV24OB65T6,
21 November 2022.

4.4. Functional Relationship between Autophagy and the UPR in Cancer

Autophagy and the UPR are also interconnected and play a strong role in the con-
trol of tumor cell response to chemotherapy compounds. There are three arms of the
UPR, involving ERN1/IRE1, ATF6 (activating transcription factor 6) and EIF2AK3/PERK
(eukaryotic translation initiation factor 2 alpha kinase 3), that are significantly engaged
in the initiation of autophagy through different mechanisms, whereas autophagy also
modulates the ER stress through the removal of protein aggregates and reduction of ER
enlargement [109–111]. The UPR is mainly activated to ameliorate the misfolded protein
aggregate load in the ER [110,112]. In cases of failure of the UPR to restore proper ER home-
ostasis, cell death is induced, usually by activating the intrinsic apoptosis pathway [113,114].

BioRender.com
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Moreover, in order to clear the accumulated misfolded proteins, the UPR may upregulate
the autophagy machinery [112,115,116].

There is an interplay between EIF2AK3, EIF2A, ATF4 and DDIT3/CHOP/GADD153
(DNA damage inducible transcript 3) and induction of autophagy [109]. The activated EIF2AK3
helps to phosphorylate EIF2A, causing the inhibition of broad protein synthesis [117]. Phos-
phorylated EIF2A supports the translocation of ATF4 to the nucleus [118]. ATF4 is in
charge of the upregulation of ATG12 [118], a crucial element of the ATG12–ATG5-ATG16L1
complex, which is critical for the expansion of phagophores [109]. The EIF2A-ATF4-DDIT3
axis can promote the SQSTM1/p62 (sequestosome 1) expression at the transcriptional level
via binding to the Sqstm1 promoter to regulate autophagy induction [119]. There is also in-
terplay between ATF6 and autophagy induction. The mechanism includes ATF6 interaction
with CEBPB and the formation of a transcriptional heterodimer combination that attaches
to ATF/CREB components of the DAPK1 promoter to stimulate the DAPK1 expression.
DAPK1 can drive autophagosome formation through BECN1 phosphorylation [120]. The
upregulation of DDIT3, XBP1 (X-box binding protein 1) and HSPA5/GRP78/BiP (heat
shock protein family A (Hsp70) member 5) mediated by ATF6 also contributes to ATF6-
induced autophagy [121]. The UPR and autophagy are also interconnected via ERN1 in
tumor cells. ERN1 RNase produces spliced XBP1 (sXBP1), which controls the expression
of genes responsible for folding, entry of proteins into the ER, ER-associated degrada-
tion/ERAD and biogenesis of the ER and Golgi apparatus [122]. Moreover, MAPK/JNK
activation through the ERN1-MAPK/JNK-BECN1 complex initiates autophagy and helps
tumor cells to adapt to UPR conditions [116,123]. The functional relationship between the
autophagy and UPR pathways is summarized in Figure 4.

Figure 4. The interplay between ER stress (UPR) and autophagy. UPR signaling pathways and ER
stress activate autophagy. The ERN1 arm of the ER stress response causes MAPK/JNK activation
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and phosphorylation of BCL2, which stimulates its dissociation from BECN1, leading to autophagy
activation. Increased phosphorylation of EIF2A by EIF2AK3, another arm of the ER stress reaction,
in response to distinct ER stress factors can result in autophagy via an ATF4-related increase in the
ATG12 expression. The EIF2A-ATF4-DDIT3 axis can promote the SQSTM1 expression and autophagy
induction. ATF6, the third arm of the ER stress reaction, activates autophagy not only through CEBPB,
induction of DAPK1 expression and BECN1 phosphorylation, but also through the ATF4-DDIT3-
SQSTM1 pathway. The figure was created with BioRender.com. Licensing Right JA24OB6AMR,
21 November 2022.

4.5. Interaction between the Immune System and Autophagy in Cancer Treatment

It was presumed that autophagy inhibition is a potential opportunity to cure cancer,
given that autophagy helps in adaptation to stress conditions including chemotherapy
compounds [124]. In the immune-competent and immune-deficient mouse experimental
models, it was revealed that autophagy inhibition decreases tumor growth in immune-
deficient mice, whereas it reduces the effectiveness of chemotherapy in immune-competent
mice [125]. Therefore, autophagy inhibition is not necessarily helpful for tumor growth
inhibition in the company of an operative immune system and the help of the immune
response is vital for thriving neoplastic treatment [126].

Innate immunity activates autophagy through TLRs (toll-like receptors) and NOD-
like receptors (NLRs) by natural killer T (NKT) cell activation, cytokine production and
phagocytosis [125]. Adaptive immunity affects autophagy by antigen presentation, lym-
phocyte development, homeostasis and cytokine release [125].

Autophagy can induce or inhibit tumor progression by modulating immune cell home-
ostasis. Autophagy can promote tumor development through M2-like tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells and regulatory T cells (Tregs) [125].
Autophagy controls tumor progression through MTOR inhibition, which activates CD8+ T
cell differentiation to generate cytotoxic T lymphocytes (CTLs) but inhibits T cell differentia-
tion into helper T cells [125]. Autophagy activates dendritic cell and B cell development and
specific IgM and IgG production via antigen presentation [127]. Autophagy in association
with cytosolic phosphorylated FOXO1 (forkhead box O1) and ATG7 contributes to NKT
cell development [128]. In addition, autophagy activates ULK1 (unc-51 like autophagy
activating kinase 1) and MAPK/JNK, which are essential for macrophage production
and inhibition of tumor progression [125]. MAPK14/p38 can block the development of
neutrophils via autophagy induction and impair inhibition of tumor development [125].
The functional relationship between autophagy and immune cells, involved in response to
chemotherapy is shown in Figure 5.

Autophagy plays a role in immune cells, T-cells, B cells, macrophages, myeloid de-
rived suppressor cells and dendritic cells. It can alter tumor immunity as well as the
efficacy of immunotherapy [129]. The tumor microenvironment (TME), an integral complex
component of cancer, can significantly influence the therapeutic response and determine
tumor fate by its composition and dynamics [130]. There is a complex interaction between
autophagy and TME, which modulates immunotherapy. Autophagy-mediated regulation
of tumor-associated immunity may counteract or enhance the efficacy of immunotherapy.
On the one hand, autophagy can promote immune response by enhancing the inhibitory
role of immune cells on tumor cells and the release of cytokines, which leads to the en-
hanced antitumor immunotherapy responses. On the other hand, it can reduce immune
response by immunosuppressive Tregs and cytokines, contributing to attenuated antitu-
mor immunotherapy effects and accelerated tumor development. The lack of sufficient
specificity of autophagy activators or inhibitors limits their clinical applications [129].
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Figure 5. The relationship between autophagy and immune cells. Autophagy activation can increase
or prevent tumor development by modulating the immune system. Autophagy inhibits tumor
development through MTOR inhibition, antigen presentation, M1-like TAM polarization, ULK1
and MAPK/JNK activation, phosphorylation of FOXO1 working with ATG7 and inhibition of
MAPK14/p38. Autophagy can promote tumor development by M2-like TAMs, regulatory T cells
(Tregs) and myeloid-derived suppressor cells. The figure was created with BioRender.com. Licensing
Right RN24OB6GKQ, 21 November 2022.

5. Natural Compounds and Cancer
5.1. The Effects of Natural Compounds on the Autophagy Signaling Pathway

Natural compounds are approximately the source of 60% of the routinely found anti-
cancer factors [131]. Natural product molecules have been suggested to act as autophagy
regulators due to their effects on several cellular signaling pathways and transcription
factors both in vitro and in vivo [132]. In the following sections, we introduce these com-
pounds and review their effects on the autophagy pathway. We later highlight how the
UPR and apoptosis might be affected by natural compounds via the autophagy pathway.

5.1.1. Alkaloids

Alkaloids are noteworthy chemical compositions that act as a major origin for
new medicine. Alkaloids contain nitrogen and heterocyclic rings and are found in
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different plants. Some alkaloids have only recently managed to become established as
anti-cancer medications including vinblastine (1), vinorelbine (2), vincristine (3) and
vindesine (4). Vinblastine (1), vincristine (3) and vindesine (4) are indol alkaloids isolated
from Catharanthus roseus [133]. Vincristine (3) and vinblastine (1) are usually utilized in
conjunction with other chemotherapeutic factors for the therapy of lymphoma, advanced
testicular cancer, leukemia, breast cancer, Kaposi sarcoma and lung cancer [4].

Numerous alkaloids presented activities against human hepatocarcinoma cell line (HepG2)
and human colon cancer cell line (LS174T) by modulating autophagy. Vinblastine (1), which
was reported to inhibit autophagy maturation, was combined with an autophagy stimulator,
nanoliposomal C6-ceramide; this mixture enhances autophagy vacuole accumulation and
decreases the autophagy maturation of the treated cells [134]. Another example of the use
of these alkaloids is seen with vincristine and CD24, a protein that is bound to membrane
lipid raft microdomains through a glycosylphosphatidylinositol anchor. CD24 is associated
with poor prognosis in several forms of tumor tissues [135–137]. Furthermore, CD24
was reported to cause chemotherapy resistance [138–140] and regulate various signaling
pathways in diverse types of tumor cells [141]. Vincristine (3) was reported to suppress
the CD24 expression and eliminate autophagy via suppression of the PTEN-AKT-MTOR
complex 1 (MTORC1) pathway in WERI-Rb-1 (HTB-169) and Y79 cell lines. Therefore, the
sensitivity of retinoblastoma cells to vincristine (3) increases significantly [142].

Camptothecin (5), a natural compound originally derived from the Asian tree
Camptotheca acuminate, was synthesized in 1966 [143]. A low dose of camptothecin (5)
stimulates autophagy through the AMPK-TSC2 (TSC complex subunit 2) MTOR pathway
in human CRC cell lines, HCT116 and RKO [144]. Camptothecin (5) and its derivatives
have shown anti-cancer function against several types of tumor cells. It was found that
camptothecin (5) enhances MYC/c-Myc expression, which in turn upregulates the expres-
sion of UPR sensor proteins in human prostate cancer (LNCaP cells), as well as reactive
oxygen species (ROS) generation, which induces autophagy through the Ca2+-AMPK
and MAPK/JNK-AP-1 signaling pathways [145]. Human non-small cell lung cancer
(NSCLC) H1299 cells can be sensitized to camptothecin (5) by modulating autophagy.
Camptothecin (5) increases autophagosome formation in H1299 cells, in a dose-related
mode. The induced autophagy exerts a protective role in camptothecin-treated cells
with regard to DNA damage and apoptosis. It was suggested that a combination of
camptothecin (5) with an autophagy suppressor may be considered an effective approach
for lung cancer treatment [146].

Matrine (6), an alkaloid isolated from Sophora flavescens Ait, has been reported to
function as an autophagy inhibitor by blocking autophagic degradation and modulating
the maturation procedure of lysosomal proteases in the gastric cancer (GC) SGC-7901 cell
line [147].

Berberine (7) is an isoquinoline quaternary alkaloid isolated from many well-
known medicinal plants, such as Rhizoma coptidis [148]. Some synthesized derivatives
of berberine (7) with improved efficacy and bioavailability (NAX053, NAX056, NAX057,
NAX080 and NAX081) have been reported to increase LC3 lipidation (LC3-II) and con-
sequently are able to stimulate autophagy in human colon carcinoma (HCT116) cells,
expressing WT TP53 and in TP53-mutated drug-resistant (SW613-B3) cell lines [149].

Isorhynchophylline (8) is a tetracyclic oxindole alkaloid isolated from Uncaria rhynchophylla.
A study showed that this alkaloid results in an enhancement of autophagy markers includ-
ing LC3-II and stimulates autophagy in an MTOR-independent but BECN1-dependent
manner in neuronal cells including SH-SY5Y, PC12 cells and N2a, as well as primary cortical
neurons. Moreover, isorhynchophylline (8) can trigger autophagy in vivo in the fat bodies
of Drosophila L3 larvae [150].

Tetrandrine (9) is a bisbenzylisoquinoline alkaloid isolated from the stem of the creeper
Stephania tetrandra S. Moore [151]. The effect of tetrandrine (9) on human hepatocellular
carcinoma (HCC) metastasis was evaluated both in vivo and in vitro. The obtained data
showed that this compound stimulates autophagy in human liver cells, which modu-
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lates cancer cell metastasis by inhibiting WNT-CTNNB1/β-catenin pathway activity and
decreasing MTA1 (metastasis-associated 1) expression [152].

Hernandezine (10) is an isoquinoline alkaloid isolated from Thalictrum glandulosissimum.
Hernandezine (10) demonstrates potent cytotoxic effects toward different cancer cell types
(A549, HeLa, PC3, MCF-7, Hep3B, HepG2 and H1299), while it shows low cytotoxicity
toward normal liver hepatocytes. This compound activates AMPK directly and conse-
quently induces ACD in apoptosis-resistant or drug-resistant cancer. Moreover, the result-
ing alkaloid-induced cellular toxicity is related to the upregulation of ATG7-dependent
autophagy [153].

Bisleuconothine A (11) is a bisindole alkaloid isolated from Leuconotis griffithii. This
compound increases LC3 lipidation in lung cancer A549 and in breast cancer MCF-7
cells, which might be due to the induction of autophagy via the AKT-MTOR signaling
pathway. Bisleuconothine A (11) induces formation but inhibits the degradation of au-
tophagosomes [154].

The utmost common cancer of the oral cavity is oral squamous cell carcinoma (OSCC),
which is a serious global well-being issue. The major constituents of Murraya koenigii (L.)
Sprengel are carbazole (12) alkaloids. The anti-cancer activities and mechanism of ac-
tion of methanol and dichloromethane extract of the leaves of M. koenigii were investi-
gated in OSCC cell line, CLS-354. The obtained results indicated that both isomahanine
and carbazole alkaloids-mahanine cause increased accumulation of SSQTM1/p62, with
a coordinated expression of LC3B-II and cleaved CASP3 (caspase 3), implying inhibition
of autophagy flux. It was suggested that suppression of autophagy flux is related to
carbazole-induced apoptosis [155].

Capsaicin (8-methyl-N-vanillyl-6-nonenamide) (13) is a functional element of chili
peppers. Capsaicin (13) triggers mutated TP53 protein degradation through autophagy.
Treatment with capsaicin (13) results in a reduction in mutated TP53 levels and reactivated
WT TP53 protein in mutant TP53-carrying cells and the TP53 reactivation contributes to
capsaicin-induced autophagy [156].

Alkaloids that are mentioned in this section are presented in Figure 6. Moreover, the
schematic role of these natural compounds on different proteins involved in the autophagy
pathway is demonstrated in Figure 7.

5.1.2. Terpenoids

In 2005, the effect of some saponins isolated from soybeans was evaluated on the inhibi-
tion of colon tumor cell growth. According to the obtained results, a refined soybean B-group
saponin extract caused the accumulation of human colon adenocarcinoma HCT-15 cells
in the S phase along with a substantial increase in LC3-II levels and numerous autophagy
vacuoles, showing autophagy induction [157]. Neoalbaconol (14), a terpenoid isolated
from the fungus Albatrellus confluens, targets PDPK1/PDK1 (3-phosphoinositide-dependent
protein kinase 1) and inhibits the subsequent PI3K-AKT signaling in the nasopharyngeal
carcinoma (NPC) nude mouse model, resulting in activation of autophagy [158].

Guttiferone K (15) is isolated from Garcinia yunnanensis Hu. This compound results
in stress-induced cell death through an AKT-MTOR-dependent autophagy pathway in
cervical cancer HeLa cells by MAPK/JNK activation and AKT-MTOR inhibition, causing
LC3-II accumulation and SQSTM1 degradation [159].

Oridonin (16), an active diterpenoid isolated from Rabdosia rubescens [160], induces
autophagy via deactivation of p-AMPK and downregulation of SLC2A1/GLUT1 (solute
carrier family 2 member 1) in the CRC cell line, SW480 [161].

Paclitaxel (17) is a taxane class diterpenoid, which was first discovered in the Pacific
yew tree (Taxus brevifolia Nutt). Paclitaxel (17), with the trademark of Taxol, has been
identified as a promising anti-cancer drug [162]. The anti-cancer effects of paclitaxel (17)
have been extensively studied [163,164]. The accumulation of ATG genes (ATG7, ATG12,
ATG5), BECN1 and MAP1LC3B has been found in drug-resistant HeLa cells (HeLa-R)
treated with paclitaxel (17). HeLa-R cells may undergo a shift in cellular metabolism from
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the tricarboxylic acid cycle to glycolysis; this activates HIF1A in HeLa-R cell lines. Suppres-
sion with koningic acid or glycolysis by 2-deoxy-D-glucose and downregulation of HIF1A
by specific siRNA can reduce autophagy and increase the sensitivity of HeLa-R cells to
paclitaxel (17) [165]. In 2016, it was found that paclitaxel (17) activates BECN1 in 2 NSCLC
lines, A549 and Calu-3 in a dose-dependent manner. The microRNA MIR216B levels are
significantly downregulated in paclitaxel-treated cells. In fact, paclitaxel (17) modulates
MIR216B, which targets BECN1 upregulation to increase autophagy in NSCLC [166]. Re-
search shows that paclitaxel (17) can suppress the proliferation of cervical cancer SiHa cells
in a dose-related mode. However, following treatment with the long non-coding RNA
RP11-381N20.2 substantial changes are found in the expression of key regulators of cell
death pathways and autophagy is reduced significantly [167].

Figure 6. Chemical structures of alkaloids. Vinblastine (1), vinorelbine (2), vincristine (3),
vindesine (4), camptothecin (5), matrine (6), berberine (7), isorhynchophylline (8), tetrandrine (9),
hernandezine (10), bisleuconothine A (11), carbazole (12), capsaicin (13), subditine (49), caffeine (50),
hydroxycamptothecin (51), piperine (61), irinotecan (62). The images were prepared using ChemDraw
Professional 15.0.
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Figure 7. The schematic role of alkaloids on different proteins involved in the autophagy pathway.
Alkaloids regulate autophagy in different ways. Vincristine and carbazoles have been demonstrated
to inhibit autophagy by suppression of CD24, suppression of the PTEN-AKT-MTOR pathway and
enhancement of SSQTM1/p62. Other alkaloids induce autophagy via activation of AMPK, TSC2,
MAPK/JNK-AP-1 and BECN1, and enhance MYC/c-Myc, LC3-II and ATG7 expression. Moreover,
inhibiting the AKT-MTOR pathway has a key function in induced autophagy by alkaloids. Moreover,
another alkaloid named tetrandrine induces autophagy by suppressing the WNT-CTNNB1/β-catenin
pathway and decreasing MTA1 expression. →: Indicates activation or an increase in the mentioned
protein expression.
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In 2011, it was proposed that gelomulide K (18), a diterpene, can induce PARP1
(poly(ADP-ribose) polymerase 1) hyperactivation, AIFM/AIF nuclear translocation and cy-
toprotective autophagy in cancer cells. Gelomulide K (18) can synergize with paclitaxel (17);
together, it shows low toxicity in normal cells. This compound induces autophagy through
an ROS-mediated downstream signaling pathway. Moreover, the significance of the
8,14-epoxy group in the structure of gelomulide K (18) was highlighted for induction
of cell death and autophagy [168].

Tanshinone IIA (19), an abietane diterpenoid, isolated from Salvia miltiorrhizae, was
reported to trigger autophagy in KBM-5 leukemia cells through AMPK activation and sup-
pression of MTOR and RPS6KB/p70S6K. Moreover, it significantly increases the expression

BioRender.com


Cancers 2022, 14, 5839 17 of 80

of LC3-II and activates the MAPK/ERK signaling pathway, such as RAF, MAPK/ERK and
RPS6KA1/p90 RSK in a dose- and time-related mode [169].

A sesquiterpene lactone named helenalin (20) was reported to trigger autophagy via
inhibition of RELA/NF-κB p65 expression in the RKO colon carcinoma, MCF-7 breast ade-
nocarcinoma and A2780 human ovarian cancer cell lines. According to the acquired results,
helenalin (20) treatment induces autophagy markers (MAP1LC3B and ATG12) and caspase
activation, showing caspase activity is vital for ACD triggered by helenalin (20) [170].

Elevated MAPK/JNK signaling association with autophagy induction has been
demonstrated [171]. Ursolic acid (21), a natural triterpenoid, was reported to modulate
autophagy by stimulating the accrual of LC3B-II and SQSTM1/p62 with the engagement
of the MAPK/JNK pathway in apoptosis-resistant CRC cells [172].

The results from an experiment on HCT116 colon cancer cells showed that ginsenoside
compound K (22) stimulates autophagy mediated by the ROS-JNK1 pathway. Ginsenoside
compound K (22) therapy of tumor cells causes sensitizing TNFRSF10A/TRAIL/APO2L1
(TNF receptor superfamily member 10a) and TNFRSF10A-triggered apoptosis through
autophagy-related and -independent (TP53-DDIT3 pathway) TNFRSF10B upregulation [173].

Frondoside A (23), extracted from the sea cucumber Cucumaria frondosa, is a triterpenoid
saponin with a sugar-steroid structure [174], which inhibits autophagy in human urothelial
carcinoma cell lines. Accumulation of LC3-I/II and SQSTM1 and LC3-positive organelles
(autophagosomes), time- and dose-dependently, indicates inhibition of autophagy [175].

Oblongifolin C (24) is a natural compound isolated from Garcinia yunnanensis Hu. It is
an effective autophagy flux inhibitor. Contact with oblongifolin C (24) leads to an elevated
quantity of autophagosomes and defective degradation of SQSTM1 [176].

The chemical structures of all autophagy-modulator terpenoids are mentioned in
Figure 8. The schematic role of the mentioned terpenoids on the proteins involved in the
autophagy pathway is shown in Figure 9.

Figure 8. Cont.
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Figure 8. Chemical structures of terpenoids. Neoalbaconol (14), guttiferone K (15), oridonin (16),
paclitaxel (17), gelomulide K (18), tanshinone IIA (19), helenalin (20), ursolic acid (21),
ginsenoside compound K (22), frondoside A (23), oblongifolin C (24), isobavachalcone (59),
cucurbitacin B (60), garcinol (70), polyphyllin D (71), saxifragifolin D (72), dehydrocostuslactone (73),
cryptotanshinone (74), pimpinelol (75), furanodiene (76), parthenolide (77), zerumbone (78),
α-tocopheryl succinate (79), 4-nerolidylcatechol (80), 7-acetylsinumaximol B (7-AB) (81),
γ-tocotrienol (82). The images were prepared using ChemDraw Professional 15.0.

5.1.3. Flavonoids and Phenolic Compounds

Quercetin (25), a flavonoid molecule discovered in vegetables, grains, leaves and
fruits has exhibited anti-cancer effects on different cancer cells [177–179]. Quercetin (25)
causes preferential degradation of oncogenic RAS and leads to autophagy in HRAS/Ha-
RAS-transformed human colon cells, DLD-1 and HT-29. Treatment with 3-methyladenine
(3-MA), an autophagy inhibitor, inhibits quercetin-induced cell death. Moreover, the
formation of EGFP-LC3 is detected in quercetin-treated cells. Moreover, zVAD-FMK,
a general caspase inhibitor, fails to suppress vacuolization, demonstrating that the induced
autophagy is caspase-independent [180]. Moreover, quercetin (25) induces autophagy in
GC cells. The results indicate the engagement of PI3K-AKT-MTOR and HIF1A signaling in
quercetin-triggered autophagy development. In the presence of quercetin (25), formation
of acidic vesicular organelles (AVOs), autophagic vacuoles, conversion of LC3-I to LC3-II,
activation of autophagy genes and recruitment of LC3-II to phagophores are detected. Ac-
cordingly, quercetin (25) triggers autophagy progression in GC cells, such as AGS, BGC-823,
SGC-7901 and MKN-28 [181]. Quercetin (25) suppresses the proteasome function in breast
cancer cells, resulting in blocking MTOR activity by a decrease in the MTOR substrates
EIF4EBP1/4E-BP1 and RPS6KB/p70S6 kinase phosphorylation, consequently triggering
autophagy [182]. Emblica officinalis extract reduces cell proliferation in ovarian cancer OV-
CAR3 cells, dose- and time-dependently, by significantly increasing the expression of the
autophagy proteins BECN1 and LC3B-II in vitro. Quercetin (25) as one of the components
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of the extract also increases the expression of these proteins and consequently reduces cell
proliferation in ovarian cancer cells under in vitro conditions [183].

Figure 9. The schematic role of terpenoids on the proteins involved in the autophagy pathway.
Terpenoids induce autophagy via different signaling pathways such as MAPK/ERK, PI3K-AKT-
MTOR, MAPK/JNK, NFKB, RAF, RPS6KA1/p90RSK, RPS6KB/p70S6K and reactive oxygen species
generation. Moreover, these compounds upregulate the expression of some proteins such as LC3-II
and BECN1, ATG genes and TNFRSF10B/DR5 while suppressing the expression of RELA/NF-κB
p65, SQSTM1, SLC2A1/GLUT1 and MIR216B. However, accumulation of SQSTM1 is observed in the
treatment with ursolic acid and frondoside A.→: Indicates activation or an increase in the mentioned
protein expression.
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Apigenin (26), a common dietetic flavonoid available in vegetables and fruits, shows
promising biological effects against different cancer cells [184–186]. This compound initiates
autophagy through the suppression of MTOR and RPS6KB/p70S6K of the JAK-STAT
pathway in leukemia TF1 cells [187].

Genistein (27), a naturally derived isoflavonoid discovered in soy products [188], can
trigger cell death through autophagy in ovarian cancer cells via a caspase-independent
pathway in a starvation-like signaling response. Treatment with 25–100 µM genistein (27)
results in reduced AKT phosphorylation [189]. In 2010, another investigation showed
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that this isoflavonoid as a tyrosine kinase inhibitor activates autophagy in ovarian can-
cer cells through the PDE4A/PDE4A4 (phosphodiesterase 4A) and SQSTM1 pathways.
Genistein (27) inhibits both PRKC/PKC and MAPK/ERK inhibitors via suppression of
PDE4A mass formation, which results in the induction of autophagy [190].

Salvigenin (28), a natural polyphenolic compound, increases the levels of autophagy
factors, including the LC3-II:LC3-I ratio, ATG12 and ATG7 in human neuroblastoma SH-
SY5Y cells [191].

Chrysin-organotin is a synthetic compound based on a natural flavonoid named
chrysin (29). Research has shown that treatment with chrysin (29) and chrysin-organotin/
Chry-Sn in breast cancer MCF-7 cells results in an enhancement of LC3-II levels, giving rise
to the induction of autophagy in the treated cells [192].

Another natural flavonoid named baicalin (30) is present in several medicinal plants in-
cluding Scutellaria baicalensis Georgi [193]. Repolarization of tumor-associated macrophages
towards the M1 phenotype characterizes the immunocompetent microenvironment in fa-
vor of tumor regression. Baicalin (30) treatment in hepatocellular carcinoma induces this
repolarization, which is implemented by autophagy induction through activation of the
RELB-p52 pathway and degradation of TRAF2 (TNF receptor associated factor 2) [194].

Juglanin (31) is a flavonol compound isolated from Polygonum aviculare, which triggers
autophagy and apoptosis in breast cancer cells via MAPK/JNK activation and ROS produc-
tion. A MAPK/JNK inhibitor attenuates juglanin (31) and significantly induces apoptosis
and autophagy, whereas an ROS scavenger can reverse them [195].

Resveratrol (32) is a stilbenoid that is found in significant concentrations in berries, red
wine, grapes and some other herbal sources [196]. A connection between autophagy and
resveratrol (32) has been shown in the treatment of several cancer cells. It has been demon-
strated that this compound triggers autophagy in ovarian tumor cells. Morphology and
ultra-structural changes and even a high amount of the anti-apoptotic proteins BCL2L1/Bcl-
xL and BCL2 indicate that resveratrol (32) stimulates cell death in ovarian cancer A2780
and CaOV3 cells via a different mechanism, compared to apoptosis [197]. Resveratrol (32)
significantly suppresses breast cancer cell development in breast cancer stem-like cells
separated from SUM159 and MCF-7 by repressing the WNT-CTNNB1/β-catenin signaling
pathway. Moreover, LC3-II, BECN1 and ATG7 are significantly upregulated by resveratrol
(32) in breast cancer cells in a dose-related mode [198]. The resveratrol (32) impact was
investigated in C33A (TP53 mutant), HeLa and CaLo (HPV18+), and CaSki and SiHa
(HPV16+) cervical cancer cell lines. An elevated lysosomal permeability (autophagy) was
observed in HeLa, C33A and CaLo cell lines in a concentration-independent manner [199].
Resveratrol (32) also induces autophagy in melanoma B16 cells via ceramide accumulation
and suppression of the AKT-MTOR pathway [200]. Moreover, resveratrol (32) triggers
autophagy-mediated cell death in prostate tumor cells (PC3 and DU-145) through regu-
lation of a store-operated calcium entry (SOCE) mechanism, including downregulating
STIM1 (stromal interaction molecule 1) expression, which triggers ER stress and therefore
activates AMPK and inhibits the AKT-MTOR pathway [201]. The ability of resveratrol (32)
to trigger a starvation-like signaling reaction through decreasing phosphorylated AKT and
MTOR to start autophagy was reported in ovarian tumor cells [202]. However, the AKT-
MTOR pathway is not engaged in resveratrol-triggered autophagy in resveratrol-treated
U373 glioma cells. MAPK14/p38 or MAPK1/ERK2-MAPK3/ERK1 inhibitors decrease the
autophagy pathway, suggesting that resveratrol-induced autophagy is positively controlled
by MAPK14/p38 and the MAPK1-MAPK3 pathways [203]. Resveratrol (32) was concluded
to trigger ACD in chronic myelogenous leukemia cells through both AMPK activation and
MAPK/JNK-mediated SQSTM1 overexpression [204].

Another study reported that resveratrol (32) activates a novel type of autophagy in
breast tumor cells. Resveratrol (32) can inhibit the activation of AKT and MTOR in the
MCF-7 cell line. Resveratrol (32)-induced ACD is impeded by CASP3 expression, except
for its enzymatic function. Overexpression of BCL2 cannot reverse the non-canonical au-
tophagy induced by resveratrol (32) in these breast tumor cells and resveratrol (32)-induced
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autophagy acts as a caspase-independent cell death mechanism in breast tumor cells [205].
Moreover, in some studies, resveratrol (32) was reported to induce premature senescence
in squamous cell carcinoma (SCC) A431, which is related to a blockage in autolysosome
formation, as evaluated by the lack of colocalization of essential markers of lysosomes and
autophagosomes LAMP2 (lysosomal associated membrane protein 2) and LC3, respectively.
RICTOR (RPTOR independent companion of MTOR complex 2) is a crucial element of the
MTORC2 complex. Resveratrol (32) is able to downregulate the amount of RICTOR, which
in turn decreases RHOA GTPase activity, alters the actin cytoskeleton network, elevates the
senescence-associated GLB1/β-gal function and attenuates the autophagy process, which
may be the mechanism of tumor inhibition related to early senescence [206].

The phosphatidylinositol-3-phosphate (PtdIns3P) effectors, WIPI1 (WD repeat do-
main, phosphoinositide interacting 1) and WIPI2 (WD repeat domain, phosphoinositide
interacting 2) act downstream during the start of autophagosome creation and following
resveratrol (32) treatment. The involvement of WIPI1 with the phagophore membrane was
confirmed by the localization of WIPI1 at the ER and the plasma membrane, upon trigger-
ing autophagy [207]. An investigation was conducted to assess the autophagy-inducing
properties of resveratrol (32) in four human tumor cell lines (G361, U2OS, MCF-7 and
HeLa). The results indicate that WIPI1 is specifically bound to PtdIns3P and becomes
a membrane-associated protein of the phagophore. Moreover, WIPI1 increases the LC3-II
level, upon nutrient starvation and functions upstream of both ATG5 and ATG7. It was sug-
gested that resveratrol (32)-mediated autophagy occurs through the non-canonical pathway
and is BECN1-independent but ATG7- and ATG5-dependent [208]. Resveratrol (32) was
reported to increase the protein expression of ATG5, ATG7, ATG9 and ATG12 in a human
hepatitis C-triggered Huh-7 hepatoma cell line inducing ACD [209].

Glioblastoma is one of the increasingly prevalent main brain cancers [210].
Resveratrol (32) induces the formation of autophagosomes in three human glioblastoma
cell lines (U-251, U-87 MG and U-138 MG) via upregulation of autophagy proteins ATG5,
BECN1 and LC3-II [211]. SIRT1 (sirtuin 1) is a NAD-dependent deacetylase that has a key
function in regulating autophagy; it forms a complex with some autophagy machinery com-
ponents ATG5, ATG7 and Atg8-family proteins and directly deacetylates these components
in a NAD-dependent fashion [212]. Resveratrol (32) is able to regulate SIRT1 and PARP and
consequently regulates induced autophagy in lung cells with cigarette smoke-mediated
oxidative stress [213]. SERPINB4/SCCA1 (serpin family B member 4), an endogenous CTSL
(cathepsin L) inhibitor, is widely expressed in various uterine cervical cells. Autophagy
and the CTSL-SERPINB4/SCCA1 lysosomal pathway are engaged in resveratrol-induced
cytotoxicity in cervical tumor cells. Moreover, resveratrol (32) increases the level of LC3-II
and autophagosomes in these cells [214].

Curcumin (33) is a natural curcuminoid with high anti-cancer efficacy. Curcumi-
noids are the major polyphenolic-derived compounds found in the rhizome of many
Curcuma species, which have been applied for centuries in conventional Indian and Chi-
nese medicine. The primary study on the anti-cancer activities of curcumin (33) was
published in 1987 [215]. The antineoplastic activity of curcumin (33) has been comprehen-
sively investigated in several cancers, including melanoma, breast [216], colon and prostate
cancers [217]. There are numerous studies demonstrating the beneficial effect of curcumin
(33) in modulating autophagy. Curcumin (33) suppresses the AKT-MTOR-RPS6KB/p70S6K
pathway and stimulates the MAPK1-MAPK3 pathway, thereby inducing autophagy [218].
Curcumin (33) exerts anti-proliferative effects on two human malignant glioma cell lines
(U373-MG and U87-MG) by arresting the cell cycle in the G2/M phase and promoting
autophagy by inhibiting the AKT-MTOR-RPS6KB/p70S6K pathway and stimulating the
MAPK1-MAPK3 pathway [219]. In 2011, the participation of ROS in curcumin-triggered
ACD was investigated. The data indicate that curcumin (33) leads to ROS production,
which results in ACD in human colon cancer HCT116 cells. However, curcumin-triggered
autophagy is not implicated in the ROS-dependent stimulation of MAPK1-MAPK3 and the
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MAPK14/p38 signaling pathway. Thus, a combination of curcumin (33) and agents that
result in ROS production might enhance the cytotoxic effect of this compound [220].

Additionally, this compound exhibits anti-cancer activity against OSCC through in-
duction of autophagy, which was confirmed by detecting a significant increase in LC3-I
conversion to LC3-II in curcumin-treated cells. In this research, a substantial level of AVOs
can be identified in spite of a brief duration of exposure (6 h) to curcumin (33) [221]. This
compound also induces autophagy in the human lung adenocarcinoma cell line, A549, as
confirmed by the analysis of LC3 and SQSTM1. In addition, it enhances the phosphoryla-
tion of AMPK and ACAC (acetyl-CoA carboxylase) in A549 cells, although it can also cause
blocking and disruption in the AMPK signaling pathway [222]. Curcumin (33) induces
autophagy in SK-UT-1 and human uterine leiomyosarcoma SKN cell lines through stimu-
lation of the MAPK1-MAPK3 pathway; accordingly, suppression of the MAPK1-MAPK3
pathway decreases curcumin-induced autophagy [223].

Lysosomes have a vital function in the maturation and degradation of autophagosomes.
A major molecular mechanism in the control of lysosomal action involves nuclear TFEB
(transcription factor EB), which is the immediate downstream focus of MTOR. TFEB
activity is regulated by the MAPK1/ERK2 pathway [224,225]. Data obtained from one
study revealed that curcumin (33) triggers autophagy in human colon cancer HCT116 cells
by activation of lysosomal function via suppression of the AKT-MTOR signaling pathway
and induces TFEB transcriptional activity by direct binding to TFEB [226]. The effect of
curcumin (33) was investigated on H2O2-triggered apoptosis and autophagy in EA.hy926
cells. In this case, curcumin (33) induces autophagy and LC3-II expression and suppresses
the phosphorylation of AKT-MTOR, indicating its protective effect against oxidative stress
damage by triggering autophagy via AKT-MTOR pathway inhibition [227]. Curcumin (33)
also triggers autophagy and suppresses proliferation by downregulating the AKT-MTOR
signaling pathway in human melanoma A375 and C8161 cell lines [228]. Curcumin (33)
potentiates autophagy in pancreatic cancer PANC1 and BxPC3 cells, as confirmed by the
promotion of autophagosome formation, upregulation of LC3-II and downregulation of
the MTOR protein expression [229].

Finally, inhibition of apoptosis following curcumin (33) treatment in osteosarcoma
MG63 cells increases autophagy due to upregulation of the MAPK/JNK signaling path-
way [171]. In addition, the impact of curcumin (33) on the proliferation, apoptosis and
autophagy of GC cells (SGC-7901 and BGC-823) shows that this compound inhibits PI3K via
downregulating the PI3K-AKT-MTOR pathway and activates the TP53 signaling pathway
by upregulating TP53 and CDKN1A/p21, both of which regulate autophagy [230].

Some derivatives of curcumin (33) also possess anti-cancer activities. A derivative of
curcumin named bis-dihydroxy-curcumin (36) increases autophagosome formation and
autophagy flux in human colon cancer HCT116 cells. An enhancement of ER stress and
poly-ubiquitinated proteins is detected upstream of autophagy initiation and results in cell
death. Thus, this compound induces autophagy through an ER-stress pathway [231]. More-
over, tetrahydrocurcumin (37) is one of the primary catabolic products of curcumin (33).
This compound suppresses the PI3K-AKT-MTOR-RPS6KB/p70S6K, GSK3B (glycogen
synthase kinase 3 beta) and MAPK14/p38 pathways and activates the MAPK1-MAPK3,
MAPK8/JNK1-MAPK9/JNK2 pathways. These changes cause the initiation of autophagy
in human leukemia HL-60 cells [232].

Honokiol (34), a biphenolic compound isolated from Magnolia officinalis, acts as a potent
inhibitor of melanoma B16-F10 cells by targeting melanoma stem cell signaling pathways
by either suppressing NOTCH1 (notch receptor 1) signaling or increasing autophagosome
formation, suggesting that honokiol (34) can also induce autophagy in melanoma cells via
attenuating AKT-MTOR [233].

Magnolol (35), a lignin compound, induces autophagy via the PI3K-AKT signaling
pathway in human GC cells SGC-7901 at elevated amounts, but it is not engaged in cell
death [234].
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Rottlerin (38) is a polyphenol isolated from Mallotus phillippinensis (the monkey-faced
tree, Kamala) [235]. Rottlerin (38) triggers autophagy in human fibrosarcoma HT1080
cells through a PRKCD/PKCδ-independent pathway. The LC3-II protein level also in-
creases following the administration of rottlerin (38); early induction of autophagy acts
as a survival mechanism versus late apoptosis [236]. Another pathway through which
autophagy is regulated via rottlerin (38) involves PRKCD-TGM2 (transglutaminase 2) and
downregulation of PRKCD results in ACD [237]. Moreover, this phytochemical inhibits
MTORC1 signaling through its negative controller TSC2 in breast tumor cells in a high
nutritional environment. Rottlerin (38) causes the assembly of EGFP-LC3-II and free EGFP,
along with proteolytic fragments of EGFP [238]. Moreover, rottlerin (38) induces ACD in
apoptosis-resistant breast cancer MCF-7 cells, as confirmed by an elevated LC3-II:LC3-I
ratio and degraded SQSTM1 protein. The autophagic death appears to be triggered by
non-canonical signaling cascades because it is independent of BCL2, BECN1, AKT and
MAPK/ERK pathways [239].

Another investigation using breast cancer stem cells revealed that rottlerin (38) treat-
ment increases the expression of ATG12, BECN1 and LC3 proteins. Rottlerin (38)-triggered
autophagy is mediated through stimulation of the AMPK pathway [240]. Rottlerin (38)
treatment results in BCL2- and BECN1-independent autophagic death in apoptosis-resistant
breast cancer MCF-7 cells. Interestingly, it was reported that rottlerin (38)-triggered au-
tophagy is mediated by suppression of MTORC1; however, any role for AMPK was
excluded and it was suggested that rottlerin (38) interacts directly with MTORC1 and
induces autophagy through a novel AMPK- and MTORC1 phosphorylation-independent
mechanism [241]. Rottlerin (38) triggers autophagy via the PI3K-AKT-MTOR signaling
pathway in prostate tumor stem cells; as a result, the formation of autophagosomes, an
increase in LC3-II and induction of BECN1, ATG7, ATG5 and ATG12 are observed [242].

Gossypol (39) is a natural phenol isolated from the cotton plant (genus Gossypium) [243].
An enhancement in LC3-II levels and autophagosome numbers in mutant TP53 pan-
creatic adenocarcinoma PANC-1 cells are observed in the presence of a combination of
gossypol (39) and BRD4770, an inhibitor of histone methyltransferase EHMT2/G9a (eu-
chromatic histone lysine methyltransferase 2). This combination acts in a BNIP3 (BCL2
interacting protein 3)-dependent manner. It seemed that gossypol (39) enhances BRD4770
cytotoxicity significantly in TP53-mutant cells and induces autophagy-related cell death.
The upregulation of BNIP3 upon EHMT2 inactivation might be responsible for the syn-
ergistic ACD effect. Thus, EHMT2 inhibition may solve drug resistance issues in certain
cancer cells [244].

Salvianolic Acid B (40) is a phenolic acid isolated from the dried root and rhizome of
Salvia miltiorrhiza that triggers autophagy via the AKT-MTOR pathway suppression in CRC
cell lines, HCT116 and HT-29 [245].

Isoliquiritigenin (41), a natural flavonoid derived from the root of licorice (Glycyrrhiza
uralensis), triggers autophagy in drug-resistant breast tumor MCF-7 cells through MIR25
inhibition, thus functioning as a regulator of chemoresistance-associated autophagy by
promptly elevating ULK1 expression [246].

Summaries of the flavonoids and phenolic compounds that act as autophagy modula-
tors are shown in Figures 10 and 11. The schematic role of these compounds on the proteins
involved in the autophagy pathway is shown in Figure 12.

5.1.4. Other Natural Compounds

Elaiophylin (42) has been identified as an autophagy inhibitor. It promotes anti-tumor
activity in human ovarian cancer cells by autophagosome collection but stops autophago-
some maturation by attenuation of lysosomal cathepsin function, which destabilizes lyso-
somes. This compound causes the accumulation of SQSTM1 [247].

Lipoic acid (43) is a natural disulfide complex. Lipoic acid (43) suppresses MGMT (O-6-
methylguanine-DNA methyltransferase) by interfering with its catalytic Cys145 residue, in-
ducing autophagy in a TP53-independent manner in isogenic colorectal carcinoma HCT116
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cell lines. Moreover, dephosphorylation of AKT is observed, which is accompanied by
an increase in the autophagy marker LC3B-II. Furthermore, lipoic acid (43) enhances the
cytotoxic effects of temozolomide, an alkylating anti-cancer drug [248].

A combination of resveratrol (32) and spermidine (44), a polyamine found in soybean
and citrus fruit [249], triggers autophagy in human colon cancer HCT116 cells through
AMPK-MTOR-independent pathways; although the major targets of resveratrol (32) and
spermidine (44) are different, both factors activate converging pathways. They both stim-
ulate MTOR-independent autophagy and elicit quite comparable alterations in the phos-
phoproteome and acetylproteome. This result proposes that both factors synergistically
activate autophagy via a multi-faceted mechanism that engages a considerable amount of
deacetylation responses [250].

Allicin (45), a diallylthiosulfinate, is an active compound in freshly crushed garlic
extract [251]. Allicin (45) possesses an anti-cancer effect against different cancer cell lines
by proliferation inhibition [252]. This compound activates ACD in thyroid cancer SW1736
and HTh-7 cells by suppressing the AKT-MTOR signaling pathway. Moreover, combined
usage of allicin (45) and rapamycin induces more cell death, compared to that induced by
either compound alone [253].

Figure 10. Chemical structures of flavonoids. Quercetin (25), apigenin (26), genistein (27),
salvigenin (28), baicalin (30), juglanin (31), epigallocatechin gallate (52), casticin (63), ampelopsin (64).
The images were prepared using ChemDraw Professional 15.0.



Cancers 2022, 14, 5839 25 of 80

Figure 11. Chemical structures of phenolic compounds. Resveratrol (32), curcumin (33),
honokiol (34), magnolol (35), bis-dihydroxy-curcumin (36), tetrahydrocurcumin (37), rottlerin (38),
gossypol (39), salvianolic Acid B (40), isoliquiritigenin (41), epigallocatechin gallate (52), tria-
zolyl curcumins (53, 54), demethoxycurcumin (DMC) (55), bisdemethoxycurcumin (BDMC) (56),
WZ35 (57), chrysophanol (58), B19 (65), flavokawain B (66), α-mangostin (67), garcinone E (68),
gartanin (69). The images were prepared using ChemDraw Professional 15.0.

Trehalose (46), a natural disaccharide sugar, is a known autophagy enhancer. The dis-
assembly effect of trehalose on stress granules, however, is mediated via p-EIF2A instead of
autophagy. Upregulation of basal p-EIF2A by trehalose (46) may, nonetheless, be a mecha-
nism behind its autophagy-stimulating capacity [254]. Moreover, benzyl isothiocyanate (47)
causes autophagy in lung cancer A549 cells through EIF2AK3 and EIF2A pathways, and
preliminary treatment with the ER stress suppressor 4-PBA attenuates the autophagy
induction [255]. (+)-Grandifloracin (48), derived from Uvaria dac, shows better toxicity to
human pancreatic cancer, PANC-1 cells. This compound strongly inhibits AKT activation
and induces autophagy in PANC-1 cells [256].

Natural products that are mentioned in this section are presented in Figure 13. More-
over, the schematic role of these compounds on the proteins involved in autophagy is
shown in section A of Figure 14. The autophagy-mediated anti-cancer activity exerted by
natural compounds is summarized in Table 1.
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Figure 12. The schematic role of flavonoids and phenolic compounds on the proteins involved in
the autophagy pathway. mATG8, mammalian Atg8-family proteins. →: Indicates activation or
an increase in the mentioned protein expression.
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Figure 14. The schematic role of unclassified compounds on the proteins involved in three different
pathways ((A): Autophagy, (B): Apoptosis and (C): The UPR and ER stress). (A): Six natural com-
pounds are shown in this part of the figure as autophagy modulators. Upregulation of p-EIF2A,
p-EIF2AK3 and LC3B-II and inhibition of AKT and MTOR result in autophagy in cancer cells.
Conversely, the accumulation of SQSTM1 showed that elaiophylin acts as an autophagy inhibitor.
(B): Apoptosis: Two compounds that induce apoptosis are illustrated in this part. Both compounds
cause PARP, CASP3 and CASP9 activation in different cell lines. Moreover, allicin induces apop-
tosis via activation of CASP8 and upregulation of CDKN1A/p21, PMAIP1/NOXA, BAK1, BAX and
CYCS. Moreover, downregulation of NFE2L2, BCL2 and BCL2L1 and loss of ∆Ψm are observed
in allicin-treated cell lines. (C) UPR and ER stress: There are three compounds in this part that
induce an ER accumulation of misfolded proteins and activate the UPR. Under ER stress induced by
these compounds, some proteins, including p-EIF2A and ATF4, are overexpressed in different types
of cancer cells. Moreover, the expression of some genes including HSPA5, (u)XBP1 and DDIT3 is
increased.→: Indicates activation or an increase in the mentioned protein expression.
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Table 1. Natural autophagy modulators and their effect on signal transduction pathways.

Cancer Type Compound Cell Line Target Reference

Human colon cancer

Synthesized derivatives
of berberine (7) HCT116, SW613-B3 ↑ LC3-II [149]

Oridonin (16) SW480 ↑ p-AMPK, ↓ SLC2A1/GLUT1 [161]

Vinblastine (1) LS174T ↑ LC3-II, ↑ autophagic vacuole, [134]

Camptothecin (5) HCT116, RKO AMPK-TSC2-MTOR [144]

B-group soyasaponins HCT-15 ↑LC3-II, ↑ autophagic vacuoles [157]

Helenalin (20) RKO ↓ RELA, ↑ LC3B, ATG12 and caspases [170]

Ursolic acid (21) HCT15 MAPK/JNK, ↑ LC3, SQSTM1 [172]

Ginsenoside compound
K (22) HCT15 ROS-MAPK/JNK, ↑ TNFRSF10A [173]

Quercetin (25) DLD-1, HT-29 ↑ EGFP-LC3 [180]

Curcumin (33) HCT116

↑
ROS-MAPK1-MAPK3-MAPK14/p38 [220]

↓ AKT-MTOR,
↑TFEB [226]

Bis-dehydrox-
ycurcumin (36) HCT116 ER stress [231]

Salvianolic acid B (40) HCT116, HT-29 ↓ AKT-MTOR [245]

Lipoic acid (43) HCT116 ↓MGMT, AKT
↑ LC3-II [248]

Resveratrol (32) and
spermidine (44) HCT116

AMPK-MTOR independent,
Change phosphoproteome

and acetylproteome
[250]

Neuroblastoma Salvigenin (28) SH-SY5Y ↑ LC3-II, ATG7, ATG12 [191]

Hepatocellular
carcinoma

Tetrandrine (9) Huh7, HCCLM9,
Hep3B WNT-CTNNB1 pathway and ↓MTA1 [152]

Resveratrol (32) Huh-7 ↑ ATG5, ATG7, ATG9, ATG12 [209]

Baicalin (30) MHCC97L ↑ RELB/p52,
↓ TRAF2 [194]

Thyroid cancer Allicin (45) SW1736, HTh-7 ↓ AKT-MTOR [253]

Oral squamous cell
carcinoma Carbazole alkaloids CLS-354 ↑ SQSTM1, LC3B-II, cleaved CASP3 [155]

Breast cancer

Resveratrol (32)

MCF-7, SUM159 ↓WNT-CTNNB1
↑ LC3-II, BECN1, ATG7 [198]

MCF-7 ↓ AKT-MTOR [205]

MCF-7 WIPI1, ↑ LC3-II, ATG7, ATG5 [208]

Bisleuconothine A (11) MCF-7 AMPK-MTOR, ↑ LC3-II, [154]

Helenalin (20) MCF-7 ↓ RELA, ↑ LC3B, ATG12 and caspases [170]

Qauercetin (25) MCF-7 Triggering macroautophagy,
↓MTOR [182]

Rottlerin (38) MCF-7

↑ TSC2,MTORC1,
↑ EGFP-LC3-II, EGFP [238]

↑ LC3-II, ↓ SQSTM1 [239]

MTORC1 inhibition [241]

↑ LC3, BECN1, ATG12, AMPK [240]
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Table 1. Cont.

Cancer Type Compound Cell Line Target Reference

Isoliquiritigenin (41) MCF-7 ↓MIR25, ↑ ULK1 [246]

Juglanin (31) MCF-7, SKBR3, ↑MAPK/JNK, ROS [195]

chrysin (29) MCF-7 ↑ LC3-II [192]

Lung cancer

Hernandezine (10) A549, H1299 ↑ AMPK, ↑ ATG7 [153]

Curcumin (33) A549 ↑ LC3-II, p-AMPK, p-ACAC
↓ SQSTM1, AMPK [222]

Resveratrol (32) HFL1 SIRT1, PARP [213]

Bisleuconothine A (11) A549 AKT-MTOR, ↑LC3-II [154]

Camptothecin (5) H1299 ↑ Autophagosome formation [146]

Paclitaxel (17) A549, Calu-3 ↑ BECN1, ↓MIR216B [166]

Capsaicin (13) H1299 ↑WT TP53 [156]

Benzyl
isothiocyanate (47) A549 ↑ EIF2AK3, EIF2A,

LC3-II-ATG5, AVOs [255]

Osteosarcoma Curcumin (33) MG63 ↑MAPK/JNK [171]

Human fibrosarcoma Rottlerin (38) HT1080 ↑ LC3-II [236]

Gastric cancer (GC)

Matrine (6) SGC-7901 blocking autophagic degradation [147]

Quercetin (25) AGS, BGC-823,
SGC-7901, MKN-28 PI3K-AKT-MTOR, HIF1A [181]

Curcumin (33)
SGC-7901, BGC-823 ↓ PI3K-AKT-MTOR

↑ TP53, CDKN1A/p21 [230]

MKN-28 PI3K-AKT-MTOR [255]

Magnolol (35) SGC-7901 ↓ PI3K-AKT [234]

Uterine
leiomyosarcoma Curcumin (33) SKN, SK-UT-1 ↑MAPK1, MAPK3 [223]

Pancreatic cancer

Curcumin (33) PANC-1, BxPC3 ↑ LC3-II, ↓MTOR [229]

(+)-Grandifloracin (48) PANC-1 ↓ AKT [256]

Rottlerin (38) MDA-Panc28 ↓ PRKCD, TGM2 [237]

Gossypol (39) PANC-1 ↑ LC3-II, BNIP3
↓ EHMT2 [244]

Nasopharyngeal
carcinoma Neoalbaconol (14) C666, HK1, CNE1 PI3K-AKT [158]

prostate cancer

Resveratrol (32) PC-3, DU145 ↑ AMPK
↓ STIM1, AKT, MTOR [201]

Camptothecin (5) LNCaP ↑ EIF2AK3, EIF2A, ATF4, DDIT3,
MYC, ROS, MAPK/JNK [145]

Rottlerin (38) Cancer stem cells ↓ PI3K-AKT-MTOR
↑ LC3-II, ATG5, ATG7, ATG12, BECN1 [242]

leukemia

Tanshinone IIA (19) KBM-5
↑ AMPK, LC3-II, MAPK/ERK, RAF,

RPS6KA1/p90RSK
↓MTOR, RPS6KB/p70S6K

[169]

Resveratrol (32) K562 MAPK/JNK
↑ SQSTM1, AMPK [204]

Tetrahydr-
ocurcumin (37) HL-60

↓ PI3K-AKT-MTOR-RPS6KB/p70S6K,
GSK3B-MAPK14/p38,

↑MAPK1-MAPK3,MAPK8/JNK1-
MAPK9/JNK2

[232]



Cancers 2022, 14, 5839 30 of 80

Table 1. Cont.

Cancer Type Compound Cell Line Target Reference

Apigenin (26) TF1 ↓MTOR, RPS6KB/p70S6K, JAK-STAT [187]

Cervical cancer

Guttiferone K (15) Hela ↑MAPK/JNK, LC3-II
↓ AKT-MTOR, SQSTM1 [159]

Paclitaxel (17)

SiHa ↑ LC3-II, ATG7 [167]

HeLa-R ↑ ATG genes (ATG7, ATG12–ATG5),
BECN1, MAP1LC3B, HIF1A [165]

Resveratrol (32)
SiHa, Hela ↑ LC3-II, autophagosomes [214]

Hela ↑ Lysosomal permeability [199]

Oral squamous
cell carcinoma Curcumin (33) YD10B ↑ LC3-II, AVOs [221]

Glioma
Resveratrol (32)

U373 ↑MAPK14/p38-MAPK1-MAPK3 [203]

U-87, U-251, U-138 ↑ LC3-II, ATG5, BECN1 [211]

Curcumin (33) U87-MG, U373-MG ↓ AKT-MTOR-RPS6KB/p70S6K,
↑MAPK1-MAPK3 [219]

Ovarian

Helenalin (20) A2780 ↓ RELA,
↑ LC3B, ATG12 and caspases [170]

Quercetin (25) OVCAR3 ↑ BECN1, LC3B-II [183]

Resveratrol (32)
A2780, CaOV3 ↑ BCL2L1, BCL2 [197]

SKOV3, CaOV3 ↓ AKT-MTOR [202]

Genistein (27)
A2780, CaOV3, ES2 ↓ p-AKT [189]

CHO ↓ PDE4A4-SQSTM1 [190]

Elaiophylin (42) SKOV3, A2780 ↑ SQSTM1 [247]

Epidermoid
carcinoma Resveratrol (32) A431 ↓ RICTOR, RHOA GTP

↑ GLB1/β-gal [206]

Urothelial carcinoma Frondoside A (23) RT112 ↑ LC3-I/II, SQSTM1 [175]

Skin cancer
(melanoma)

Resveratrol (32) B16 ↑ Ceramide,
↓ AKT-MTOR pathway [200]

Honokiol (34) B16-F10 ↓ NOTCH1, AKT-MTOR [233]

Human melanoma Curcumin (33) A375,C8161 ↓ AKT-MTOR [228]

Up and down arrows indicate increase or decrease, respectively.

5.2. The Effects of Natural Compounds on the Apoptosis Signaling Pathway
5.2.1. Alkaloids

Vinblastine (1) induces apoptosis in KB-3 carcinoma cells via JUN auto-amplification
and TP53-independent downregulation of CDKN1A/p21/WAF1/CIP1 [257]. Besides
induction of JUN phosphorylation, this compound activates MAPK/JNK and promotes the
inactivation of MAPK/ERK in KB-3 cells. Moreover, Vinblastine (1) decreases TP53 protein
expression [258]. Vinblastine (1) can induce apoptosis through activation of MAPK/JNK,
which might be mediated by BCL2 inhibition in leukemia cell lines [259].

Vincristine (3) induces apoptosis in Jurkat acute lymphoblastic leukemia cells by activa-
tion of CASP3 and CASP9. Moreover, the production of ROS is found early in Jurkat cells by
exposure to vincristine (3), which confirms a mitochondrial role in vincristine (3)-induced
apoptosis [260]. In melanoma cell lines vincristine (3)-triggered apoptosis is related to the
activation of MAPK/JNK. Moreover, phosphorylation of BCL2 results in the activation of
BAX-BAK1, discharge of CYCS from the mitochondria and stimulation of caspases [261].
A small, anti-apoptotic heat shock protein, HSPB1/HSP27, is an anti-apoptotic molecule in-
volved in the survival of cells exposed to several types of stress, including anti-cancer drugs.
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Vincristine (3) regulates the phosphorylation of HSPB1 in breast cancer cells [262,263].
Moreover, this compound activates AMPK in B16 melanoma cells through ROS-dependent
STK11/LKB1 (serine/threonine kinase 11) activation. Furthermore, activation of TP53
and inhibition of MTORC1 are detectable in vincristine (3)-treated B16 melanoma and
this treatment causes apoptosis in this cell line [264]. Moreover, this compound induces
apoptosis in SH-SY5Y neuroblastoma cells and promotes the expression of CASP3, CASP9
and CCNB (cyclin B), while decreasing the expression of CCND (cyclin D) [265].

Matrine (6) was previously mentioned as an autophagy inhibitor. This compound
induces apoptosis in different cancer cell lines. The antineoplastic activity of matrine (6) was
investigated against human BxPC-3 and PANC-1 pancreatic tumor cells. The results showed
this compound induces apoptosis by decreasing the ratio of BCL2:BAX, upregulating FAS
(Fas cell surface death receptor) and increasing the activation of CASP3, CASP8 and CASP9
in a dose-related mode. Moreover, matrine (6) suppresses the growth of pancreatic cancer
cells [266].

In 2004, a study demonstrated that tetrandrine (9) reduces the survival of U937
leukemia cells in a dose- and time-related mode. This compound induces apoptosis in
U937 cells through oxidative stress, as well as activation of caspases and PRKCD. More-
over, it seems that there might be a mutual regulation between PRKCD and caspases for
their activation [151]. Tetrandrine (9) induces apoptosis in the cultured and subcutaneous
mouse colon cancer CT-26 cells, which can be attributed to stimulation of the MAPK14/p38
signaling pathway [267].

Subditine (49) is a monoterpenoid indole alkaloid isolated from the bark of the
Nauclea subdita. This compound triggers apoptosis in human prostate cancer LNCaP and
PC-3 cell lines by downregulation of BCL2 and BCL2L1. Its apoptotic effect is TP53-
dependent in LNCaP (WT TP53), but not in PC-3 (TP53-null) cells [268].

Caffeine (50) is a well-known alkaloid found in tea, coffee and the cacao plant [269]. It
was suggested that caffeine (50) triggers apoptosis by an increase of autophagy through
PI3K-AKT-MTOR-RPS6KB/p70S6K suppression and MAPK1-MAPK3 pathway activation
in various cell lines including HeLa, PC12D and SH-SY5Y. Apoptosis is partially attenu-
ated by blocking caffeine-induced autophagy via 3-MA treatment or atg7 knockout [270].
Chrysin-organotin and chrysin (29) increase the level of ROS and CASP3, indicating that
these compounds induce apoptosis to suppress the expansion of human breast cancer
MCF-7 cells [192].

Camptothecin (5) induces autophagy in H1299 and H460 lung cancer cells, which
can protect these cells from apoptosis. The results indicate that activation of CASP9 is
enhanced in response to the suppression of autophagy by 3-MA [146]. A derivative of
camptothecin (5), named hydroxycamptothecin (51), increases apoptosis in human Tenon’s
capsule fibroblasts. It is suggested that an ER stress reaction and mitochondrial dysfunction
have participated in apoptosis, which might be mediated by the PERK pathway [271].
Low-dose camptothecin (5) induces autophagy; however, suppression of autophagy causes
an increase in apoptosis and attenuation in senescence possibly by blocking the TP53-
CDKN1A/p21 pathway in human CRC cell lines, HCT116, and RKO. In this case, there
may be a positive circuit between BECN1-mediated autophagy and TP53, through which
autophagy plays a switched role between premature senescence and apoptosis [144].

The chemical structures of alkaloids are presented in Figure 6. The schematic role of
these alkaloids on different proteins involved in apoptosis can be seen in Figure 15.
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Figure 15. The schematic role of alkaloids on the proteins involved in the apoptosis pathway.
Alkaloids induce apoptosis in distinct cells via downregulation of CDKN1A/p21/WAF1/CIP1, BCL2,
BCL2L1 and CCND while promoting the expression of some other proteins like CASP3, CASP8,
CASP9, CCNB, BAX, CYCS, BAK1 and FAS. Moreover, activation of MAPK/JNK, TP53, PRKCD and
MAPK14/p38 signaling pathways, as well as inactivation of MAPK/ERK and RPS6KB/p70S6K, is
observed in different cell lines treated with these alkaloids. →: Indicates activation or an increase
in the mentioned protein expression.
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5.2.2. Flavonoids and Phenolic Compounds

As mentioned above, quercetin (25) is a naturally accruing flavonoid molecule that
exhibits anti-cancer properties in different cancer cells [177–179]. There is a wide range
of publications on the cytostatic and pro-apoptotic effects of quercetin (25) [272–274]. In
2006, an investigation reported that TNFRSF10A/TRAIL-induced apoptosis is increased by
quercetin (25) via AKT dephosphorylation and activation of caspases in human prostate
cancer LNCaP and DU-145 cells [275]. Later, in 2016, the results from a study showed
that the complex of quercetin (25) and TNFRSF10A triggers apoptosis in breast cancer
cells, as indicated by increased PARP cleavage and activation of the executioner caspases;
CASP3 and CASP7, which have therapeutic potential for all types of hormone-dependent
and triple-negative breast cancer (TNBC) cells [276]. Moreover, quercetin (25)-triggered
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apoptosis in human prostate cancer LNCaP cells is mediated by dissociation of BAX from
BCL2L1 and the activation of caspases [277]. Quercetin (25) possesses inhibitory activities
against GC cells, BGC-823. This compound induces apoptosis via the mitochondrial
pathway, as confirmed by a reduction in the BCL2:BAX ratio and an elevation in the
CASP3 expression [278]. Quercetin (25) induces apoptosis in the drug-resistant sphere
model of OSCC via inhibition of the MAPK14/p38-HSPB1 pathway [278]. Moreover,
quercetin (25) induces apoptosis via PI3K-AKT-MTOR signaling pathway inhibition in
MCF-7 breast tumor stem cells. This effect is achieved by upregulating the BAX expression
and downregulating the BCL2 expression [279].

Epigallocatechin gallate (52) is a flavonoid found in green tea. Administration of
this compound in combination with TP53 silencing, leads to an anti-tumoral effect in the
Hs578T cell culture model of a TNBC cell line, by inhibition of autophagy and activation
of pro-apoptotic genes. Epigallocatechin gallate (52) along with TP53 siRNA altered gene
expression, promotes apoptosis, decreases cell survival and reduces angiogenesis and
autophagy [280].

Genistein (27), a naturally occurring flavonoid, triggers apoptosis in human colon can-
cer HT-29 cells, mainly via upregulation of CDKN1A/p21 and BAX-BCL2 expression [281].
Moreover, apigenin (26), another flavonoid, triggers caspase-related apoptosis in myeloid
leukemia HL60 cells through inhibition of the PI3K-AKT pathway. This effect is cell-
dependent and is not observed in erythroid leukemia TF1 cells. Moreover, downregulation
of the JAK-STAT pathway was observed in both cells [187].

In contrast to the case with normal tissues, curcumin (33) by itself and in conjunction
with chemotherapy or radiation can induce apoptosis in most cancers. Curcumin (33) stim-
ulates apoptosis via modulating various signaling pathways in cancer cells. In pancreatic
cancer PCa cells in high concentration, this compound can upregulate pro-apoptotic genes
such as BAX, whereas it downregulates anti-apoptotic genes such as BCL2 [229]. Inhibi-
tion of NFKB is reported to be one of the most important targets for curcumin (33) [282].
Curcumin (33) results in an enhancement in cell death of CRC cells and inhibits cell growth
in conjunction with 5-fluorouracil (5-FU), which itself downregulates NFKB [283]. In ad-
dition, curcumin (33) reduces chemoresistance via inhibition of NFKB and anti-apoptotic
genes, such as BCL2 and BCL2L1 [284]. Other synergistic effects on NFKB suppression
by curcumin (33) and 5-FU have also been reported on additional cancer cell types like
esophageal squamous cell carcinoma [285].

Inhibition of PI3K-AKT is another way to simplify apoptosis initiation in cancer cells,
in specific in cancers with a mutation in PTEN. The administration of curcumin (33) in
breast cancer MCF-7 cells results in apoptosis via downregulation of AKT and upregulation
of PTEN. Moreover, curcumin (33) inhibits MIR21 by upregulating the PTEN-AKT signaling
pathway. Thus, the MIR21-PTEN-AKT signaling pathway is an important mechanism for
the anti-cancer impact of curcumin (33) [286].

One of the top crucial roles of TP53 is the induction of apoptosis in pre-cancerous and
cancer cells. Thus, activation of TP53 has been suggested as a mechanism for ameliorat-
ing the tumor reaction to chemotherapy and radiotherapy [287]. Curcumin (33) triggers
apoptosis in human breast cancer MCF-7 cells through TP53 activation and upregulation
of BAX [288]. The same result was reported about the impact of curcumin (33) on the
upregulation of TP53 in a human multiple myeloma MM RPMI 8226 cell line [289]. In 2017,
curcumin (33) was reported to affect apoptosis via a decrease in TP53 and ESR1/ERα in
hormone-dependent breast cancer T-47D cells. However, it was suggested that in this type
of cell, the curcumin (33) effect may not be dependent on TP53 and the downregulation of
protein levels was due to its cytotoxicity to the cells [290]. Curcumin (33) downregulates
the expression of pro-apoptotic proteins BCL2 and BCL2L1, upregulates the expression
of pro-apoptotic proteins BAX, BAK1, BBC3/PUMA and PMAIP1/NOXA and activates
CASP3 and CASP9 in prostate cancer cells, which enhances the apoptosis-triggering ability
of TNFRSF10A in androgen-unresponsive PC-3 cells and sensitized androgen-responsive
TNFRSF10A-resistant LNCaP cells. In addition, curcumin (33) upregulates the expression
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of TP53 and downregulates AKT when combined with TNFRSF10A/TRAIL [291]. Another
investigation showed that curcumin (33) induces apoptosis in head and neck squamous
cell carcinoma (HNSCC) through suppression of NFKB mediated by NFKBIA/IκBα kinase
inhibition and, consequently, results in the suppression of cell survival and cell proliferative
genes, including BCL2, CCND1, MT-CO2/COX-2, IL6 (interleukin 6) and MMP9 (matrix
metallopeptidase 9) [292].

Furthermore, curcumin (33) is able to activate SMPD (sphingomyelin phosphodi-
esterase) and inhibit sphingolipid-modifying enzyme activity, leading to ceramide genera-
tion and, accordingly, resulting in apoptosis in multidrug-resistant human leukemia HL60
cells [293]. Further study by the same group demonstrated that ceramide formation by
curcumin (33) is controlled by crosstalk among BCL2, BCL2L1, caspases and glutathione.
It was suggested that curcumin (33) triggers apoptosis in human leukemia HL60 cells
via suppression of glutathione, leading to ceramide generation. Moreover, it was shown
that activation of SMPD by curcumin (33) is accompanied by reduction of glutathione
that is required for the stimulation of CASP8 and suppression of BCL2L1 [294]. Similarly,
curcumin (33) is proposed as a powerful anti-cancer factor for uterine leiomyosarcoma
(LMS) due to its noticeable impact on the induction of apoptosis and autophagy. Following
curcumin (33) treatment of leiomyosarcoma SK-UT-1 and SKN cells, the expression of LC3B-
II increases, SQSTM1 levels decrease and the MAPK1-MAPK3 pathway is activated [223].
Moreover, considerable evidence has demonstrated that curcumin (33) induces cancer cell
apoptosis via autophagy activation. For instance, curcumin (33) enhances the levels of
BECN1 and LC3-II in a leukemia cell line (K562). Additionally, an autophagy inhibitor,
bafilomycin A1, represses curcumin-triggered K562 cell death. In this instance, autophagy
is not the major reason for the death of K562 cells; curcumin (33) treatment might promote
apoptosis [295].

Another study indicated that the combination of curcumin (33) with tamoxifen pro-
motes autophagy and apoptosis in human melanoma cells more effectively than each drug
alone. Curcumin (33) induces high levels of apoptosis in A375 and the G361 chemoresis-
tant malignant human melanoma cell lines. There is a significant induction in autophagy
and apoptosis following combination treatment with curcumin (33) and tamoxifen in low
doses [296]. The expression levels of p-MAPK1-MAPK3 in curcumin (33)-treated TNBC
cells decrease significantly, in comparison to the control group. Consequently, curcumin (33)
might be able to suppress the proliferation of TNBC cells through EGFR signaling pathway
inhibition and apoptosis induction [297].

Upregulation of TNFRSF10A has an important function in the sensitization of can-
cer cells to apoptosis [298]. ROS generation, stimulation of TP53 and suppression of
NFKB are proposed to upregulate the expression of TNFRSF10A [299]. Curcumin (33)
enhances TNFRSF10A-triggered apoptosis even in TNFRSF10A-resistant breast tumor
cells, activating MAPK/ERK and AKT [300]. Furthermore, curcumin (33) can trigger
TNFRSF10A-induced apoptosis in TNFRSF10A-resistant breast cancer cell lines via regu-
lating apoptosis-related proteins such as MCL1, MAPK/ERK and AKT and genes such
as MCL1 [300,301]. Curcumin (33) was reported to increase the susceptibility of prostate
cancer LNCaP cells to TNFRSF10A by inhibiting NFKB stimulation through hindering
phosphorylation of NFKBIA/IκBα and its degradation [302]. Moreover, when a combina-
tion of curcumin (33) was administered in hormone-refractory prostate cancer cells and
TNFRSF10A, both NFKB and p-AKT are markedly decreased, causing apoptosis induc-
tion [303]. In 2005, a study showed that curcumin (33) sensitizes TNFRSF10A-triggered
apoptosis in human renal cancer cells through ROS-mediated and DDIT3-independent
upregulation of TNFRSF10B [304]. It was reported that curcumin (33) and TNFRSF10A
together enhance the induction of apoptotic cell death in chemoresistant ovarian cancer
SKOV3 and ES-2 cells by activating both the intrinsic and extrinsic apoptotic pathways [305].
Triazolyl curcumins (53,54) alone or in combination with TNFRSF10A induce apoptosis
in a dose-related mode. These compounds induce more apoptosis, compared to the TN-
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FRSF10A treatment alone; apoptosis increases by more than 80% when cells are treated
with these compounds [306].

Curcumin (33) was tested on ovarian carcinoma cells with differing TP53 status (wild
type (WT) TP53: HEY and OVCA429; mutant TP53: OCC1; null TP53: SKOV3). The
results indicate cell death by apoptosis via both the extrinsic and intrinsic pathways by
activating CASP3, CASP8 and CASP9, CYCS release and BID (BH3 interacting domain
death agonist) cleavage into truncated BID. This activity is TP53-independent and in-
volves MAPK14/p38 activation, downregulation of BCL2, BIRC5/survivin expression
and AKT signaling [307]. Curcumin (33) can also induce apoptosis in breast cancer cells
transformed by radiation in the presence of estrogen by promoting ROS [308]. ROS accu-
mulation leads to TP53-CDKN1A/p21- and CDKN2A/p16-RB1-mediated breast cancer
suppression [216]. Curcumin (33) could also trigger breast cancer cell apoptosis by acti-
vating ROS. Curcumin (33)-triggered ROS collection results in TP53-CDKN1A/p21 and
CDKN2A/p16-RB1-mediated breast cancer suppression [216].

As mentioned above, curcumin (33) triggers autophagy in human GC cell lines. Treat-
ment with the autophagy inhibitor 3-MA significantly promotes apoptotic cell death trig-
gered by curcumin (33). This treatment increases the population of the cells at the initiation
and end stages of apoptosis by BCL2 downregulation, BAX upregulation and CASP3
and CASP9 activation [255]. Moreover, curcumin (33) in combination with quercetin (25),
inhibits the growth of GC cells, MGC-803 via initiation of apoptosis through the mitochon-
drial pathway, following the release of CYCS and decreased phosphorylation of AKT and
MAPK/ERK [309].

Demethoxycurcumin (DMC) (55) and bisdemethoxycurcumin (BDMC) (56) are cur-
cuminoids discovered in the rhizome of many Curcuma species. The antineoplastic impact
of these compounds on human lung cancer NCI H460 cells was investigated. The results
indicate that BDMC (56) increases the activities of CASP3, CASP8 and CASP9, ROS levels
and Ca2+ production in NCI H460 cells. Moreover, it was suggested that BDMC (56) in-
duces apoptosis through multiple signaling mechanisms such as extrinsic, intrinsic and
ER stress pathways [310]. Another curcuminoid, DMC (55), suppresses cell growth and
triggers apoptosis in the same human lung cancer cell line via a mitochondrial-dependent
pathway. DMC (55) activates CASP3, CASP8 and CASP9 and promotes AIFM, ENDOG
and PARP expression [311].

Moreover, some analogs of curcumin (33) show anti-cancer activities against different
cancer cell lines. A mono-carbonyl analog of curcumin (33), WZ35 (57), triggers apoptosis in
NSCLC H1975 cells via the production of ROS, mitochondrial dysfunction and an ER stress
pathway [312]. Along these lines, curcumin (33) triggers both autophagy and apoptosis
in osteosarcoma MG63 cells. This study provided an important insight into the interplay
between autophagy and apoptosis in osteosarcoma cells and medical administration ap-
proaches using curcumin (33). When autophagy is inhibited by 3-MA, curcumin-induced
apoptosis increases; consequently, curcumin-triggered autophagy plays an anti-apoptotic
function in osteosarcoma cells [171]. A novel bioactive curcumin (33) analog (PAC: 3,5-Bis
[4-hydroxy-3-methoxybenzylidene]-N-methyl-4-piperidone) suppresses cell survival and
induces apoptosis in oral cancer Ca9-22 cells, involving MAPK1-MAPK3, MAPK14/p38-
MAPK/JNK, NFKB, CASP3, CASP9 and WNT cellular signaling pathways [313].

Resveratrol (32), a stilbenoid, triggers apoptosis via autophagy in human colon can-
cer HT-29 and COLO 201 cells. This compound increases the intracellular ROS level,
which correlates with CASP3 and CASP8 activation and the elevation of LC3-II; these
effects are diminished by the ROS scavenger N-acetyl cysteine (NAC) [314]. Autophagy
lags apoptosis and protects cells from death, whereas apoptosis is a major reason for
death in glioma U251 cells. It was suggested that suppressing resveratrol (32)-induced
autophagy significantly affects its antineoplastic effects. In other words, autophagy sup-
presses resveratrol-triggered apoptosis [315]. Resveratrol (32) triggers cell cycle arrest and
apoptosis. The CDKN1A/p21 expression is upregulated in a TP53-independent mode
but it downregulates CCNE (cyclin E), CCNA (cyclin A) and CDK2 (cyclin dependent
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kinase 2) expression. Moreover, the ratio of pro-apoptotic to anti-apoptotic proteins in-
creases, which is related to mitochondrial membrane depolarization and the enhancement
in caspase activity. Resveratrol (32) shows no impact on FAS, FASLG (Fas ligand), MAPK1-
MAPK3 and MAPK14/p38 expression; however, it negatively affects phospho-MAPK/ERK
and phospho-MAPK14/p38 expression [209]. Another experiment demonstrated that low
amounts of resveratrol (32) trigger death in the androgen-resistant prostate cancer DU-145
cell line; this is possibly an apoptotic response involving increased CASP3 activity via
HSPA8/HSP70 [316]. Resveratrol (32) has a strong effect on CASP3 and CASP7 activa-
tion in C6 rat glioma cells by a decrease in phosphorylation of AKT when administered
in combination with quercetin (25), whereas low amounts of resveratrol (32) (10 µM) or
quercetin (25) (25 µM) individually have no impact on apoptosis initiation [315].

As discussed above, Rottlerin (38) is an ACD inducer. In some studies, rottlerin-
induced autophagy is reported to be followed by apoptosis. For instance, this phytochemi-
cal triggers the intrinsic apoptotic pathway in CASP3-transfected breast cancer MCF-7 cells,
based on the detection of activated CASP3 and CASP9, and PARP cleavage [239]. Prolonged
exposure of breast cancer stem cells to rottlerin (38) results in apoptosis, which is correlated
with phosphorylated AKT and MTOR suppression, phosphorylated AMPK upregula-
tion and anti-apoptotic BCL2, BCL2L1, XIAP and BIRC2/cIAP1 downregulation. Thus,
rottlerin (38)-triggered autophagy results in apoptosis in breast cancer stem cells [240]. An-
other investigation showed that prolonged exposure of human fibrosarcoma HT1080 cells to
rottlerin (38) eventually causes caspase-independent apoptosis via a PRKCD-independent
pathway. Conversely, the pre-administration of a specific inhibitor of autophagy (3-MA) to
cells accelerates rottlerin (38)-triggered apoptosis. Consequently, it was suggested that rott-
lerin (38)-triggered autophagy possibly has several roles as a survival mechanism versus
late apoptosis [236].

In pancreatic cancer stem cells, rottlerin (38) induces early autophagy based on the
formation of autophagosomes, conversion of LC3-I to LC3-II, expression of ATG7 and
accumulation of BECN1. Rottlerin (38)-induced autophagy results in apoptotic cell death
via suppression of the PI3K-AKT-MTOR and AMPK pathways [317]. Moreover, it was
reported that suppression of AMPK by shRNA blocks rottlerin (38)-triggered autophagy,
representing that AMPK plays a critical function in rottlerin (38)-triggered apoptosis. These
discoveries firmly propose that rottlerin (38)-triggered autophagy possibly also has several
functions in apoptosis induction in prostate cancer stem cells [242].

Chrysophanol (58), an anthraquinone, triggers apoptosis in breast cancer MCF-7
and BT-474 cells by ROS production and blocking the PI3K-AKT and MAPK signaling
pathways [318].

Magnolol (35) triggers mitochondrial-mediated apoptosis in human GC cells, SGC-
7901, which engages mitochondria and PI3K-AKT-related pathways, as shown by an
enhanced ratio of BAX:BCL2, activation of CASP3 and inhibition of PI3K-AKT [234].

The chemical structures of flavonoids and phenolic compounds can be found in
Figures 10 and 11. The schematic role of these compounds on the proteins involved in the
apoptosis pathway is shown in Figure 16.

5.2.3. Terpenoids

In 2007, a research study demonstrated that Isobavachalcone (59), a naturally occurring
chalcone complex isolated from Psoralea corylifolia, remarkably reduces the levels of pro-
CASP3 and CASP9. Moreover, it increases the level of cleaved CASP3 and CASP9 in both
neuroblastoma IMR-32 and NB-39 cell lines. BAX is also induced by isobavachalcone (59)
application. Therefore, this compound induces apoptotic cell death via the mitochon-
drial pathway and exhibits no cytotoxicity against normal cells [319]. This compound
also triggers apoptosis- and autophagy-dependent cell death in myeloma H929 cells. Au-
tophagy suppression through knocking down BECN1 or applying the autophagy inhibitors
3-MA, bafilomycin A1 and CQ, significantly enhances isobavachalcone (59)-triggered cell
death, suggesting that the suppression of autophagy in isobavachalcone (59)-administered
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myeloma cells may change the pro-survival impact of autophagy to apoptosis. Isobavachal-
cone (59)-induced apoptosis is suggested to be through the mitochondrial pathway and the
proteolytic activation of PRKCD contributes to this effect [320].

Figure 16. The schematic role of flavonoids and phenolic compounds on the proteins involved in
the apoptosis pathway. PI3K inhibition, AKT dephosphorylation, activating caspases, dissociation
of BAX from BCL2L1, increased PARP and generation of ROS are detectable changes in different
cells treated with flavonoids and phenolic compounds. Additionally, these compounds regulate
apoptosis-related proteins and genes such as MCL1, MAPK/ERK and AKT and genes such as MCL1
and ENDOG expression, while down-regulating CCNE, CCNA, BIRC2/cIAP-1 and CDK2. Moreover,
activation of TP53, MAPK14/p38-HSPB1 and SMPD is observed in these cell lines. Moreover, NFKB
and MIR21 are some other important targets. Moreover, these compounds suppress cell survival and
cell proliferative genes, including BCL2, CCND1, MT-CO2/COX-2, IL6 and MMP9. →: Indicates acti-
vation or an increase in the mentioned protein expression.
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Cucurbitacins (including cucurbitacin A, B, E, I and Q) have inhibited tumor growth
and induced apoptosis via the suppression of STAT3 activation [321]. Cucurbitacin
B (60) is a tetracyclic triterpene compound, which is a bitter principle of the family
Cucurbitaceae [322,323]. STAT3 siRNA induces either early or late stages of apoptosis in
Hep2 laryngeal cancer cells [324]. Moreover, in 2008, the cucurbitacin B (60) was reported
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to exhibit anti-cancer activity on the same cell line through inhibition of STAT3 phospho-
rylation and its activation [325]. As discussed above, ginsenoside compound K (22) was
considered an autophagy inducer. Moreover, this compound and TNFRSF10A can function
cooperatively against colon cancer HCT116 and HT-29 cells. Ginsenoside compound K (22)
enhances the pro-apoptotic impact of TNFRSF10A on colon cancer cells by inhibiting the ex-
pression of cell survival proteins, triggering expression of pro-apoptotic proteins (apoptosis
regulator BAX, tBID and CYCS) and autophagy-dependent and autophagy-independent
(TP53-DDIT3 pathway) upregulation of TNFRSF10B [173].

Frondoside A (23) was discussed as an autophagy modulator. This compound induces
apoptosis in human urothelial carcinoma cell lines, RT4 (WT TP53), HT-1197 (WT TP53),
TCC-SUP (TP53 mutant), and T-24 (TP53 mutant), which is related to the control of several
pro-apoptotic elements, including CASP3, CASP8, CASP9, PARP, BAX, and CDKN1A/p21,
externalization of phosphatidylserine and DNA fragmentation. Interestingly, caspase
suppression and inhibition of TP53 by gene silencing or pifithrin-α pretreatment do not
inhibit the apoptotic function of frondoside A (23) [175].

The taxane paclitaxel (17) induces apoptosis through the following: (a) control of AKT-
MAPK and ROS signaling in canine mammary gland cancer cells [326]; (b) MAPK14/p38
pathway inhibition in paclitaxel-resistant ovarian cancer cells [327]; (c) activation of MAP3K5/
Ask1-MAPK14/p38 and MAPK/JNK-MAPK/SAPK pathways and inhibition of AKT and
MAPK1/ERK2-MAPK3/ERK1 in U-937 human macrophage cells [328]; (d) downregulation
of NFKB and AKT in human ovarian cancer OVCAR-3 cells [329]; and (e) MAPK/JNK-
MAPK/SAPK signaling pathway activation in glioblastoma U373MG and leukemia
cells [328,330,331]. Paclitaxel (17) significantly suppresses the growth of NSCLC and
elevates the expression of MEG3 (maternally expressed 3) and TP53. Moreover, it was
proposed that the MEG3-TP53 pathway is engaged in the apoptosis of A549 cells induced
by paclitaxel (17) [332]. Finally, the combination of paclitaxel (17) and pro-CASP3-activating
compound-1, a pro-apoptotic agent, increases the antineoplastic activity of paclitaxel (17)
against NSCLC cells, A-549 and H322m via activation of MSMP/PC-3, and thus the apop-
totic pathway [333].

All the terpenoids mentioned in this part of the review are presented in Figure 8.
Figure 17 represents the schematic role of these terpenoids on the proteins involved in the
apoptosis pathway.

5.2.4. Other Natural Compounds

Allicin (45), a diallyl thiosulfinate, presents antineoplastic properties. The activation
of CASP3, CASP8 and CASP9 and subsequent induction of apoptosis upon treatment with
allicin (45) are observed in the human cervical cancer SiHa cell line [334]. Allicin (45) can
induce apoptosis in the colon cancer HCT116 cell line via the mitochondrial-dependent
pathway, as it results in an increase in CYCS and apoptosis regulator BAX protein level but
a reduction in the expression of the anti-apoptotic protein BCL2. Allicin-induced apoptosis
occurs via a mechanism associated with nuclei translocation of the transcription factor
NFE2L2/NRF2 (NFE2-like bZIP transcription factor 2) [335]. Moreover, overexpression
of NFE2L2 results in the abolishment of allicin-triggered cell apoptosis in cervical cancer
cells, showing that the anti-tumor role of allicin (45) is mainly increased by suppressing
NFE2L2 [336,337]. Allicin (45) induces apoptosis in GC cells, SGC-7901 through stimulation
of both extrinsic (FAS-FASLG-mediated) and intrinsic (mitochondrial-dependent) pathways
simultaneously [338]. An investigation indicated that allicin (45) induces apoptosis in breast
cancer cells (MCF-7 and HCC-70) mediated by CASP3, CASP8 and CASP9 activation and
loss of mitochondrial membrane potential (∆Ψm). These pro-apoptotic pathways (intrinsic
and extrinsic) are also accompanied by upregulation of CDKN1A/p21, PMAIP1/NOXA and
BAK1 expression, as well as downregulation of BCL2L1 [339].
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Figure 17. The schematic role of terpenoids on the proteins involved in the apoptosis pathway. These
terpenoids increase the level of cleaved CASP3, CASP8 and CASP9 and induce the expression of
pro-apoptotic proteins (BAX, truncated BID (tBID) and CYCS) and CDKN1A/p21. Moreover, inhibi-
tion of STAT3 phosphorylation, regulation of ROS and AKT-MAPK signaling and MAPK1/ERK2-
MAPK3/ERK1, as well as activation of PRKCD is observed in cells treated with these natural
compounds. Moreover, the compounds activate MAP3K5/Ask1-MAPK14/p38 and MAPK/JNK-
MAPK/SAPK pathways and increase the expression of MEG3 and TP53. →: Indicates activation or
an increase in the mentioned protein expression.
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Diallyl disulfide, another component of garlic, was reported to induce apoptosis
via the activation of CASP3, degradation of PARP, generation of hydrogen peroxide and
fragmentation of DNA in human leukemia HL-60 cells [340] and via CASP3 activation in
human bladder cancer T24 cells [341] and activation of pro-CASP9 and CASP3 in colorectal
adenocarcinoma HT-29 cells, especially in combination with sodium butyrate [342].

Chemical structures of natural compounds that are mentioned in this part as apoptosis
inducers are presented in Figure 13. In part B of Figure 14, the effect of these compounds
on the proteins involved in apoptosis is depicted.

Moreover, the anti-cancer activity of natural compounds by inducing apoptosis is
summarized in Table 2.
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Table 2. Natural apoptosis modulators and their effect on signal transduction pathways.

Cancer Type Compound Cell Line Target Reference

Pancreatic cancer

Matrine (6) BxPC-3, PANC-1 ↑ BCL2-BAX, FAS, CASP3,
CASP8, CASP9 [266]

Rottrelin (38) stem cells
(CD44+ CD24+ ESA+) PI3K-AKT-MTOR inhibition [317]

Cervical cancer Allicin (45) SiHa ↑ CASP3, CASP8, CASP9 [334]

Leukemia

Tetrandrine (9) U937 ↑ Caspases, PRKCD [151]

Diallyl disulfide HL-60 ↑ CASP3,
↓ PARP [340]

Murine colon cancer Tetrandrine (9) CT-26 ↑MAPK14/p38 [267]

Human prostate cancer

Subditine (49) LNCaP, PC-3 ↓ BCL2-BCL2L1 [268]

Curcumin (33)

LNCaP NFKB, NFKBIA/IκBα [302]

PC-3 ↓ p-AKT and NFKB [303]

PC-3
↓ BCL2, BCL2L1

↑ BAX, BAK1, BBC3/PUMA,
PMAIP1/NOXA, CASP3, CASP9

[291]

Quercetin (25)

DU-145, LNCaP ↓ AKT,
↑ Activation [275]

LNCaP ↓ BCL2L1
↑ BAX, caspases [277]

Resveratrol (32) DU-145 ↑ CASP3 activity by
HSPA8/HSP70 involvement [316]

Rottlerin (38) Cancer stem cells ↓ PI3K-AKT-MTOR
↑ AMPK [242]

Caffeine (50) PC12D, Hela, SH-SY5Y
↓ PI3K-AKT-MTOR-

RPS6KB/p70S6K
↑MAPK1-MAPK3

[270]

Human lung cancer

Camptothecin (5) H1299, H460 ↑ CASP9 [146]

Bisdemethoxycurcumin
(BDMC) (56) NCI-H460 ↑ CASP3, CASP8 and CASP9 [310]

Demethoxycurcumin
(DMC) (55) NCI-H460 ↑ CASP3, CASP8 and CASP9,

AIFM, ENDOG, PARP [311]

Curcumin analog
(WZ35) (57) H1975 ROS, ER stress,

mitochondrial dysfunction [312]

Cucurbitacins (A, B, I
and Q) A549 Inhibition of STAT3 [321]

Human laryngeal
cancer Cucurbitacin B (60) Hep-2 ↓ p-STAT3 [325]

Human renal cancer Curcumin (33) Caki ↑ ROS, TNFRSF10B [304]

Human tenon’s
capsule fibroblasts Hydroxycamptothecin(51) HTCFs ↑ EIF2AK3/PERK [271]

Human colon cancer

Camptothecin (5) HCT116, RKO ↑ BECN1, TP53 [144]

Curcumin (33) HCT116 ↓ NFKB [283]

Resveratrol (32) HT-29, COLO 201 ROS, CASP3 and CASP8 activation [314]

Allicin (45) HCT116 ↑ CYCS, BAX
↓ BCL2 [335]

Genistein (27) HT-29 ↑ CDKN1A, BAX-BCL2 [281]
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Table 2. Cont.

Cancer Type Compound Cell Line Target Reference

Ginsenoside compound
K (22) HT-29, HCT 116 ↑ BAX, tBID, CYCS [173]

Diallyl disulfide HT-29 ↑ CASP9, CASP3 [342]

Urothelial carcinoma Frondoside A (23) RT112 RT4,HT-1197,
TCC-SUP, T-24

↑ CASP3, CASP8 and CASP9,
PARP, BAX, CDKN1A,

DNA fragmentation
[175]

Glioma Resveratrol (32) U251 Inhibiting autophagy [315]

Ovarian cancer

Curcumin (33) SKOV3 ES-2 Activation of intrinsic and
extrinsic pathways [305]

Curcumin (33) HEY OVCA429OCC1,
SKOV3

AKT signaling. ↑ CASP3, CASP8
and CASP9, CYCS, BID, ↓ BCL2 [307]

Human pancreatic
cancer Curcumin (33) PANC1,BxPC3 ↑ BAX,

↓ BCL2 [229]

Human hepatocellular
carcinoma Resveratrol (32) Huh-7

↑ CDKN1A,
↓ CCNE, CCNA, CDK2,

p-MAPK/ERK, p-MAPK14/p38
[209]

Brain cancer Triazolyl curcumins
(53, 54) CRT-MG Increased cytotoxicity

and apoptosis [306]

Gastric cancer

Curcumin (33) MKN-28 ↓ BCL2, ↑ BAX, CASP3 and
CASP9 activation [255]

Curcumin (33) +
quercetin (25) MGC-803 ↑ CYCS, ↓ phosphorylation of

AKT and MAPK/ERK [309]

Quercetin (25) BGC-82 ↓ BCL2:BAX ratio, ↑ CASP3 [278]

Magnolol (35) SGC-7901 ↓ PI3K-AKT,
↑ BAX- BCL2 and CASP3 [234]

Allicin (45) SGC-7901 ↑ FAS, BAX, CYTC, CASP3,
CASP8, CASP9 [338]

Curcumin (33) SGC-7901 ↓ NFKB, BCL2, BCL2L1 [284]

Osteosarcoma Curcumin (33) MG63 MAPK/JNK pathway, inhibition
of autophagy [171]

Human breast cancer

Allicin (45) MCF-7, HCC-70
↑ CASP3, CASP8 and CASP9,

CDKN1A/p21 PMAIP1/NOXA,
BAK1 ↓ ∆Ψm, BCL2L1

[339]

Chrysophanol (58) MCF-7, BT-474 PI3K-AKT and MAPK [318]

Curcumin (33)

MCF-7 ↑ TP53, BAX [288]

MCF-7 ↓MIR21, AKT
↑ PTEN [286]

T-47D ↓ TP53, ESR1/ERα [290]

MCF-10F ↑ ROS [308]

Quercetin (25) Cancer stem cells
(CSCs)

↑ BAX,
↓ BCL2, PI3K-AKT-MTOR, [279]

Quercetin (25) BT-20, MCF-7 ↑ PARP cleavage, CASP3
and CASP7 [276]

Chrysin (29) MCF-7 ↑ ROS, CASP3 [192]

Rottlerin (38)

MCF-7 ↑ CASP9, CASP3, PARP cleavage [239]

cancer stem
cells (CSCs)

AKT-MTOR, AMPK, ↓ BCL2,
BCL2L1, XIAP and BIRC2/cIAP-1 [240]
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Table 2. Cont.

Cancer Type Compound Cell Line Target Reference

Human fibrosarcoma Rottlerin (38) HT1080 PRKCD-independent pathway [236]

Triple-negative
breast cancer

Curcumin (33) MDA-MB-231 ↓ p-MAPK1-MAPK3,
EGFR inhibition [297]

Epigallocatechin
gallate (52) Hs578T ↓ BCL2

↑ CASP3, BAX [280]

Human multiple
myeloma Curcumin (33) MM RPMI 8226 ↑ TP53, BAX [289]

Head and neck
squamous cell cancer Curcumin (33) MDA 686LN ↓ NFKB, BCL2, CCND1, IL6,

MT-CO2, MMP9 [292]

Oral squamous cancer Quercetin (25) Cancer stem cell (CSCs) ↓MAPK14/p38-HSPB1 [278]

Human leukemia
Curcumin (33)

HL60

↑ SMPD, ceramide generation [293]

Ceramide generation, CASP8 and
inhibition of BCL2L1 [294]

K562 ↑ BECN1, LC3-II, promoting
apoptosis by autophagy [295]

Apigenin (26) HL60 ↓ PI3K-AKT, JAK-STAT [187]

Multiple myeloma Isobavachalcone (59) H929 Activation of PRKCD [320]

Leiomyosarcoma Curcumin (33) SKN, SK-UT-1 ↑MAPK1-MAPK3, LC3B-II,
↓ SQSTM1 [223]

EPCAM, epithelial surface antigen. Up and down arrows indicate increase or decrease, respectively.

5.3. The Effects of Natural Compounds on the UPR Signaling Pathway

The ER is engaged in protein synthesis and secretion and calcium (Ca2+) signaling [343].
Under ER stress many proteins including HSPA5, HSP90B1/GRP94, ER-associated degra-
dation, PDI (protein disulfide isomerase), ATF6, ERN1, XBP1, EIF2AK3 and EIF2A are
overexpressed in many forms of tumor cells [344,345]. ER stress conditions lead cancer
cells to utilize the UPR, as a survival strategy and for progression [346]. Moreover, the UPR
has a significant function in resistance to chemotherapy or radiation in tumor cells [347].
Numerous studies report that ER stress and activation of the UPR are related to pathological
processes, like cancer, neurodegenerative diseases and cardiovascular disease [348–350].

The use of natural product-isolated compounds can be an encouraging therapy for
different cancers [351,352] and modulation of ER stress can be an antineoplastic approach.
Thus, the interaction between natural products and the antineoplastic impact through ER
stress in malignant cells has been investigated in several studies [353].

5.3.1. Alkaloids

Piperine (61) is an amide alkaloid isolated from the fruits of black and long pepper
plants (Piper nigrum Linn and Piper longum Linn) [354]. Piperine (61) exposure generates
ROS and triggers apoptosis by induction of ER stress in colon cancer HT-29 cells. This
alkaloid promotes DDIT3 expression, which permeabilizes mitochondrial membranes and
increases the expression of MAPK/JNK in HT-29 cells. Moreover, piperine (61) increases
the expression of some proteins, which are related to ER stress like ERN1, DDIT3 and
HSPA5 and activation of MAPK/JNK and MAPK14/p38. These findings indicate that
piperine (61) triggers ER stress-mediated apoptosis in HT-29 cells [355].

According to the results of numerous investigations, camptothecin (5) is an important
anti-cancer agent. Camptothecin (5) results in the accumulation of ER stress-controlling
proteins, such as EIF2AK3, EIF2A, ATF4 and DDIT3 in androgen-sensitive prostate cancer
LNCaP cells by enhancing the MYC expression and ROS generation. Furthermore, the
transfection of EIF2A-targeted siRNA reduced triggering autophagy and diminished the
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levels of BECN1 and ATG7, indicating that camptothecin (5) upregulates ER stress-mediated
autophagy. MYC results in the upregulation of UPR sensor protein expression in LNCaP
cells, along with ROS generation, inducing autophagy through the Ca2+ and MAPK/JNK
signaling pathways [145].

Irinotecan (62), another alkaloid, is a derivative of natural camptothecin (5). Irinotecan (62)
individually or in conjunction with chemotherapy improves the survival rate of patients
with advanced CRC [356]. The effect of this compound (62) on human CRC cell lines,
LoVo and HT-29, is enhanced by curcumin (33) through induction of cell cycle arrest and
apoptosis mediated via the production of ROS and stimulation of the ER stress pathway.
The expression of HSPA5, DDIT3 and two markers of ER stress is attenuated by blocking
ROS production [357].

Another camptothecin (5) derivative, hydroxycamptothecin (51), stimulates the ex-
pression of UPR sensor proteins such as EIF2AK3, ATF6, ERN1, HSPA5, DDIT3, BAX and
MAPK/JNK and decreases the expression of BCL2. Moreover, according to quantitative
real-time PCR, the mRNA levels of DDIT3 and HSPA5 are increased. According to the
obtained results, the ER stress reaction and mitochondrial dysfunction are engaged in
hydroxycamptothecin-triggered apoptosis in human Tenon’s capsule fibroblast cells [271].

These alkaloids are presented in Figure 6. The schematic role of alkaloids on the
proteins engaged in the UPR and ER stress pathways is shown in Figure 18.

Figure 18. The schematic role of alkaloids on the proteins involved in the UPR and ER stress pathways.
Alkaloids result in the UPR and ER stress in different cell lines through effects on a variety of proteins.
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These compounds increase the expression of some proteins associated with ER stress, including
ERN1, DDIT3, HSPA5, EIF2AK3, MYC, EIF2A, ATF6 and ATF4. Activation of MAPK/JNK and
MAPK14/p38 and generation of ROS are other considerable changes in the treated cell. Activation of
MAPK/JNK and MAPK14/p38 and generation of ROS are other considerable changes in the treated
cell, including changes to the mRNAs level of DDIT3 and HSPA5 proteins. →: Indicates activation or
an increase in the mentioned protein expression.
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5.3.2. Flavonoids and Phenolic Compounds

Epigallocatechin gallate (52) is a flavan-3-ol by-product extracted from green tea. The
possible impact of epigallocatechin gallate (52) was investigated on HSPA5 in malignant
mesothelioma (MMe) cell lines. According to qRT-PCR analysis, this compound (52) causes
strong dose-dependent induction of EDEM, ATF4 and DDIT3, as well as a limited induction
of HSPA5/GRP78 expression. Moreover, a significant elevation was found in the ratio
of spliced to total XBP1. Moreover, western blot analysis of cell lysates demonstrated
a significantly higher expression of HSPA5/GRP78, XBP1 and DDIT3. This compound
results in the activation of CASP3 and CASP8. Epigallocatechin gallate (52) converts the
constitutive UPR of MMe cells to pro-apoptotic ER stress [358].

Casticin (63) is a major component obtained from Fructus viticis. This compound
(63) supports the sensitivity of tumor cells to TNFRSF10A by using multiple mechanisms.
Western blot analysis was used to assess the cells for TNFRSF10A receptor expression.
Casticin (63) enhanced TNFRSF10B expression, suggesting that TNFRSF10B upregulation
is a potential mechanism via which this compound (63) increases the apoptotic impacts of
TNFRSF10A in GC cells, BGC-823. Casticin (63) increases DDIT3, EIF2A and HSPA5 expres-
sion and acts as an ER stress inducer. Moreover, this compound upregulates TNFRSF10B
receptors in MGC-803 and SGC-7901 cell lines via acting on the ROS-ER stress-DDIT3
pathway [359].

Ampelopsin (64) is one of the most important flavonoids found in Ampelopsis grossedentata.
The expression of ER stress-dependent proteins, like HSPA5, p-ElF2A, spliced ATF6, DDIT3
and EIF2AK3 increases in breast cancer MCF-7 cells and MDA-MB-231, after treatment
with ampelopsin (64). Moreover, this compound triggers ROS generation in both of these
breast cancer cell lines [360].

Curcumin (33) was discussed above as an anti-cancer factor that can trigger cancer
cell death in different cancer cell lines through different pathways. This compound induces
ER stress and mitochondrial dysfunction, leading to apoptosis in AGS and HT-29 cell lines.
The expression of DDIT3, phosphorylation of MAPK/JNK, CYCS, BAX and FADD are
observed in HT-29 cells in the presence of curcumin (33) [359]. In 2013, the cytotoxicity
effect of curcumin (33) was investigated in the murine myelomonocyte leukemia WEHI-3
cell line. Based on the increase of DDIT3, ATF6, ERN1, CASP12 and the anti-apoptotic
protein BCL2, it was concluded that curcumin-triggered apoptosis is done via ER stress
signaling pathways. Moreover, curcumin (33) increases ROS production and cytosolic Ca2+

discharge and induces DNA damage but decreases the level of mitochondrial membrane
potential (∆Ψm) in WEHI-3 cells [361]. In 2017, it was shown that curcumin (33) promotes
ER stress-mediated apoptosis in PC3 prostate cancer cells. According to the results, in-
creased expression of ER stress-dependent proteins ERN1, PDI and CALR (calreticulin)
together with a set of chaperones, play a key role to activate and promote a pro-apoptotic
mechanism in PC3 cells. Moreover, the anti-cancer effect of curcumin (33) is related to ROS
generation, UPR induction and autophagy [362]. Roberts et al. reported that curcumin (33)
in interaction with sildenafil kills gastrointestinal (GI) cancer cells through ER stress, ROS
and reactive nitrogen species (RNS). The induced ER stress signal is related to the formation
of EIF2A, which is in part responsible for reducing MTORC1 and MTORC2 activity, increas-
ing BECN1-dependent PtdIns3K activity, and enhancing autophagosome and autolysosome
formation in an EIF2AK3-EIF2A-dependent manner [363]. Following curcumin (33) treat-
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ment, pro-apoptotic proteins BAD and BAX are upregulated and anti-apoptotic proteins
BCL2, BCL2L1 and XIAP are downregulated. Moreover, ROS, Ca2+, ER stress and CASP3
are increased but mitochondrial membrane potential (∆Ψm) decreases [364]. Moreover,
as mentioned, curcumin (33) alone or in combination with irinotecan (62) increases the
expression of ER stress-associated proteins such as PDI, HSPA5 and DDIT3 in LoVo and
HT-29 cells [357].

The anti-cancer activity of DMC (55) occurs through promoted expression of ER stress-
associated proteins HSPA5, DDIT3, ERN1, ATF6A, ATF6B, CASP4 and CAPS12 in human
lung cancer NCI-H460 cells. DMC (55) increases the level of ROS, and Ca2+ decreases the
mitochondrial membrane potential (∆Ψm) and promotes the activities of CASP3, CASP8
and CASP9 [311]. Furthermore, BDMC (56), a curcuminoid, significantly induces apoptotic
cell death. BDMC (56) increases ER stress-associated proteins expression such as HSPA5,
DDIT3, ERN1, ERN2/IRE-1β, ATF6, ATF6B and CASP4, which results in cell apoptosis in
the human lung cancer NCI H460 cell line [310].

WZ35 (57), a mono-carbonyl equivalent of curcumin (33), activates the ER stress
pathway by activating the collection of ROS in the H1975 human NSCLC cell line [312].
Moreover, another analog of curcumin, (1E, 4E)-1, 5-bis (2-methoxyphenyl) penta-1,4-dien-
3-one (referred to as B19) (65) is a new mono-carbonyl, which induces apoptosis through
activation of ER stress and the autophagy signaling pathway in human ovarian cancer
HO-8910 cells. The expression of the ER stress-related proteins, HSPA5, DDIT3, ATF6 and
XBP1 and CASP3 increases in the cells treated with B19 (65) [359].

The powerful anti-cancer activity of the chalcone flavokawain B (66) isolated from
Alpinia pricei Hayata was investigated in colon cancer HCT116 cells. Flavokawain B (66)
exercises its apoptotic function via ROS formation and both DDIT3 mRNA and DDIT3
protein upregulation, resulting in the regulation of the expression of BCL2 family members,
leading to the induction of mitochondrial dysfunction and apoptosis. Moreover, pretreat-
ment with the ROS scavenger NAC reduces the inhibitory impacts of flavokawain B (66),
indicating that ROS production is necessary for ER stress-mediated apoptosis [365].

Resveratrol (32), as discussed previously, is a stilbenoid that shows antineoplastic
activities toward different forms of cancers and blocks cancer development by focusing on
diverse molecules and pathways engaged in developing cancer [366]. Some investigations
demonstrated the ability of resveratrol (32) to trigger ER stress-dependent apoptosis in
diverse cancer cell forms. For example, resveratrol (32) triggers ER stress-dependent
apoptosis through suppression of the transcriptional activity of XBP1 via SIRT1 in human
multiple myeloma ANBL-6 cells. Resveratrol (32) suppressed expression levels of VEGFA,
while expression levels of PPP1R15A/GADD34 mRNA and DDIT3 mRNA are vigorously
triggered. This compound (32) also activates cell death signals through ERN1 stimulation
of MAPK/JNK and EIF2AK3 and ATF6 stimulation of DDIT3. Although ERN1 activation
leads to increased XBP1s, resveratrol (32) suppresses the transcriptional activity of XBP1s,
resulting in disabling cell survival functions and promoting cell death [367].

Resveratrol (32) triggers apoptosis in the malignant melanoma A375SM cell line by
enhancing ER stress and ROS production, simultaneously. In the presence of resveratrol
(32), the expression levels of MAPK14/p38, TP53 and BAX increase and the level of BCL2
decreases. Moreover, resveratrol (32) increases the levels of ER stress-related proteins
p-EIF2A and DDIT3. Resveratrol (32) may also induce ROS generation and ER stress to
enhance the apoptosis of melanoma cells [368].

Another investigation showed that resveratrol (32) enhances the toxicity of palmitate
via ER stress-dependent apoptosis and increases palmitate-triggered ER stress in the human
hepatoblastoma HepG2 cell line. Resveratrol (32) increases XBP1 splicing and DDIT3
expression but decreases ROS generation in palmitate-treated cells [369]. Bai et al. reported
that resveratrol (32) demonstrates a pro-apoptotic function in MIR200C-positive cells.
According to the analysis of the resveratrol (32) mechanism, ER stress-dependent proteins,
such as RECK, a membrane-bound protein or ER stress molecules, such as HSPA5 and
DDIT3, are increased in MIR200C-transfected cells. Collectively, based on these data, RECK
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increases the MIR200C expression, which sensitizes H460 cells to resveratrol (32). Thus,
resveratrol and MIR200C act synergistically as anti-tumor agents in human lung cancer
cells, NCI-H460 [370].

ER stress-mediated cell death induced by resveratrol (32), regulates the UPR events,
non-canonical autophagy and caspases in two human nasopharyngeal carcinoma cell lines,
NPC-TW039 and NPC-TW076. ER stress is a potent trigger of autophagy and resveratrol
(32) induces autophagy, mediated by ER stress, as demonstrated by elevated expression
of the UPR signaling molecules ATF6, DDIT3, ERN1 and p-EIF2AK3 [371]. Moreover,
mitochondrial dysfunction and ROS-mediated ER stress are involved in apoptosis in
human lung adenocarcinoma A549 cells, induced by a combination of resveratrol (32) and
arsenic trioxide. The expression of ER stress-related including HSPA5, CASP12 and DDIT3
is increased in this cell line [372].

A powerful analog of resveratrol (32), (Z)3,4,5,4′-trans-tetramethoxystilbene (TMS),
was investigated in human lung cancer A579 and H1975 cells. This compound induces
caspase-independent apoptosis and autophagy by directly attaching to ATP2A/SERCA,
a Ca2+ ATPase and leading to ER stress and AMPK activation. TMS remarkably en-
hances the cytosolic Ca2+ level. Moreover, the key members of the ER stress pathway,
EIF2AK3, EIF2A and DDIT3 are upregulated [373]. Another resveratrol derivative,
3,5,4′-trihydroxy-trans-stilbene (Res-006), was reported to trigger ER stress, mediated by
mitochondrial ROS in human hepatoma HepG2 cells. Co-administration of ER stress regu-
lator 4-phenylbutyrate or the ROS inhibitor NAC significantly reduces Res-006-induced
HepG2 cell death. The inhibitory effect of this compound on cell viability is more effective
than resveratrol [374].

Xanthones are a group of polyphenolic complexes with a xanthene-9-one backbone [375].
A xanthone named α-mangostin (67), isolated from mangosteen (Garcinia mangostana L.),
shows pro-apoptotic activity in the rat pheochromocytoma PC12 cells, which seems to be re-
lated to the ER stress pathway. Furthermore, this compound inhibits the ER ATP2A/SERCA
Ca2+-ATPase significantly. A relationship is observed between the ATP2A/SERCA ATPase
inhibitory and the apoptotic impacts of the xanthone by-product through the mitochondrial
pathway by induction of CYCS. Conversely, α-mangostin (67) was reported to activate
MAPK/JNK-MAPK/SAPK, which is one of the signaling molecules of ER stress [376].
Moreover, garcinone E (68), another xanthone found in mangosteen fruit, is able to trigger
ER stress in ovarian cancer HEY, A2780 and A2780/Taxol cells and activates the ERN1
pathway. This compound (68) significantly enhances the protein expression levels of ERN1,
XBP1, HSPA5, DDIT3 and CASP12 [377]. Moreover, gartanin (69), an isoprenylated xan-
thone of the mangosteen fruit, was reported to activate apoptosis through modulation of
the expression of ER stress chaperones and markers in the human prostate cancer LNCaP
and 22RV1cell lines. In this investigation, the ER stress pathway has shown a role in the
degradation of AR (androgen receptor). Gartanin (69) reduces the AR expression in prostate
cancer cells and suppresses AR function. Gartanin (69) modulates ER stress proteins includ-
ing ERN1, HSPA5, DDIT3 and EIF2AK3. It was found that DDIT3 knockdown partially
restores gartanin (69)-triggered AR degradation, which proposes a potential interaction
between UPR activation and AR signaling [378].

Honokiol (34), a biphenolic compound, was mentioned above as an autophagy in-
ducer [233]. Honokiol (34) triggers apoptosis through CAPN2-mediated HSP90B1/GRP94
cleavage in MKN45, SCM-1, AGS and N87 cells. Moreover, honokiol (34) increases PARP
cleavage and DDIT3 (a protein that mediates ER stress-triggered apoptosis) levels in
MKN45 cells. MKN45 and SCM-1 cells are more resilient to these reactions than AGS and
N87 cells [379].

Chrysophanol (58) (1,8-dihydroxy-3-methyl-9,10-anthraquinone), a natural anthraquinone
by-product, triggers ROS production and ER stress in breast cancer BT-474 and MCF-7 cell
lines. This compound activates pro-apoptotic proteins and increases the deprivation of
mitochondrial membrane potential (∆Ψm) and intracellular Ca2+ levels with the stimulation
of UPR regulatory proteins such as DDIT3, EIF2AK3, EIF2A and ERN1. Furthermore, ER
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stress-dependent protein expression is reduced by co-administration of chrysophanol (58)
and NAC in cells, which shows that ER stress and ROS production are major pathways in
the pro-apoptotic function of chrysophanol (58) in both breast cancer cell lines [318].

Chemical structures of flavonoids and phenolic compounds are presented in
Figures 10 and 11. Figure 19 shows the schematic role of the flavonoids and phenolic
compounds on the proteins involved in the UPR and ER stress pathways.

Figure 19. The schematic role of flavonoids and phenolic compounds on the proteins involved
in the UPR and ER stress pathways. Most of the compounds mentioned in this part result in an
increase in ER stress-related proteins, including HSPA5, EIF2AK3 and DDIT3. Moreover, they
activate ATF6, PPP1R15A/GADD34, XBP1 splicing, DDIT3 and EDEM genes. Moreover, these
compounds increase phosphorylation of MAPK/JNK, expression of CYCS, BAX and FADD, as well
as activation of caspases and upregulation of TNFRSF10B, triggering ROS generation. Suppression
of the transcriptional activity of XBP1 via SIRT1 was reported in some cell lines treated with these
compounds. In one case, the inhibitory activity of the compound against AR was observed. Moreover,
contrary to other compounds, resveratrol promotes cell death by inhibiting the transcriptional activity
of XBP1s, which leads to impairment of the cell survival functions. →: Indicates activation or an
increase in the mentioned protein expression.
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hepatocellular cancer Hep3B cells. Consequently, garcinol (70) results in downstream
apoptosis activation with an elevation in the BAX:BCL2 ratio. Moreover, a reduction in the
mitochondrial membrane potential (∆Ψm) and discharge of CYCS are detected. Moreover,
the activation of CASP3, CASP9 and their target PARP is observed. Taken together, this
compound activates not just the death receptor and the mitochondrial apoptosis pathways
but also the ER stress modulator DDIT3 [380].

Polyphyllin D (71), a powerful cytotoxic saponin extracted from Paris polyphylla,
induces a cytotoxic effect via a mechanism triggered by ER stress, accompanied by the
mitochondrial apoptosis pathway. Polyphyllin D (71) treatment results in the upregulation
of the mRNA levels of HMOX1, ATF3, STC2 (stanniocalcin 2) and DDIT3. According
to western blot analysis, there were increases in HSPA5 and PDI proteins. Moreover,
the expression of DDIT3 and CASP4 is increased upon polyphyllin D (71) treatment in
an NSCLC cell line (NCI-H460) [381].

Saxifragifolin D (72) is an oleanane form of pentacyclic triterpenoid derived from
Androsace umbellate. This compound induces ER stress in both breast cancer MDA-MB-
231 and MCF-7 cells. Moreover, saxifragifolin D (72) increases the expression of DDIT3,
MAPK/JNK and CYCS via activation of Ca2+ and ROS in the cytoplasm. In fact, according
to the obtained results, saxifragifolin D (72) suppresses breast cancer cell development
and initiates the interaction between autophagy and apoptosis via ROS-mediated ER
stress [382].

Dehydrocostuslactone (73) is a sesquiterpene lactone isolated from the Saussurea lappa
and Aucklandia lappa. Dehydrocostuslactone (73) triggers ER stress via EIF2AK3-DDIT3
and ERN1-MAPK/JNK signaling pathways in human NSCLC A549 and NCI-H460 cell
lines, through induction of ROS in the cytoplasm. This compound causes an increase in
cytosol calcium levels, EIF2AK3 phosphorylation, ERN1 and DDIT3 levels, XBP1 mRNA
splicing and CASP4 activity [383].

Cryptotanshinone (74) is a constituent of the stem of Salvia miltiorrhiza Bunge, which is
shown to act as a powerful activator of ER stress. This compound results in the activation
of ElF2A, HSP90B1/GRP94, HSPA5 and DDIT3 in HepG2 hepatoma and breast carcinoma
MCF-7 cells. Moreover, cryptotanshinone (74) generates ROS, which has a critical function
in ER stress-triggered apoptosis [384].

Pimpinelol (75), a linear sesquiterpene lactone isolated from Pimpinella haussknechtii,
triggers ER stress in the human breast cancer MCF-7 cell line. This compound increases
protein aggregation and mRNA expression of ATF4, DDIT3, PPP1R15A/GADD34 and
TRIB3 (tribbles pseudokinase 3) [385].

Furanodiene (76) is a natural terpenoid derived from a well-known Chinese medicinal
herb, named Curcumae rhizome. This compound increases DDIT3 expression at the gene
and protein levels and induces both HSPA5 mRNA and HSPA5 protein in lung cancer 95-D
and A549 cells. Moreover, the synergetic activities of furanodiene (76) with paclitaxel (17)
in NIH-H1299 and 95-D cells were reported [386].

Parthenolide (77) is a sesquiterpene lactone derived from the feverfew plant. This
compound induces apoptosis through ER stress by stimulating EIF2A-ATF4-DDIT3 signal-
ing in lung cancer Calu-1, A549, H1299 and H1792 cells. Parthenolide (77) also upregulates
the expression of ATF4 and DDIT3 in a dose- and time-related mode. Knockdown of
DDIT3 reduces parthenolide-triggered TNFRSF10B and PMAIP1/NOXA expression and
apoptosis. In addition, knockout of ATF4 by siRNA reduces apoptosis, demonstrating that
the expression of DDIT3 mediates parthenolide (77)-triggered apoptosis [387].

Zerumbone (78) is a bioactive sesquiterpene refined from the Zingiber zerumbet Smith [388].
Zerumbone (78) in combination with celecoxib causes the activation of the UPR pathway.
Both compounds together activate the EIF2AK3-EIF2A arm of the UPR to induce the
expression of ATF4, DDIT3, ATF3 and TNFRSF10B at the gene and protein levels, in both
HCT116 TP53 null and SW480 cells. Conversely, ROS scavengers abolish zerumbone-
induced TNFRSF10B expression, which shows that the generation of ROS results in ER
stress and activates the UPR in TP53-deficient human colon tumor cells [389].
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The effect of a natural vitamin E derivative named α-tocopheryl succinate (79) was
investigated on ER stress and the UPR and the apoptosis triggered by this compound
in human GC cells, SGC-7901. α-Tocopheryl succinate (79) significantly increases the
expression of HSPA5 and DDIT3 and activates CASP4 and MAPK/JNK. This compound (79)
triggers the expression of endogenous ER stress-associated HSP90B1/GRP94 at both protein
and mRNA levels. Moreover, this compound triggers the activation of UPR components,
including EIF2AK3, ATF6, XBP1 and ATF4 in a concentration- and time-related mode.
In summary, α-tocopheryl succinate (79) induces apoptosis in human GC cells, which is
mediated by ER stress and the UPR [390]. Moreover, α-tocopheryl succinate (79) activates
DDIT3, HSPA5 and MAPK/JNK and upregulates the cleavage of CASP4 in SGC-7901
cells. Moreover, NAC decreases ER stress in SGC-7901 cells treated with this compound.
Consequently, ER stress-mediated apoptosis induced by α-tocopheryl succinate (79) is
related to ROS production [391].

4-nerolidylcatechol (80) is a catechol complex isolated from Pothomorphe umbellata L. This
compound triggers apoptosis through ER stress both in SK-MEL-28, BRAfi- and MEKi-
resistant melanoma cell lines. Increased HSPA5 and DDIT3 indicate the stimulation of the
UPR in all melanoma cell lines. Moreover, DDIT3 knockdown enhances cellular viability
after administration of 4-nerolidylcatechol (80), demonstrating that apoptosis is related to
DDIT3 [392].

7-acetylsinumaximol B (7-AB) (81) is a cembranoid initially isolated from aquaculture
soft coral Sinularia sandensis. The apoptotic intrinsic pathway is stimulated in the 7-AB-
induced cell death in the human GC cell line, NCI-N87. Moreover, 7-AB (81) triggers ER
stress, leading to the stimulation of the EIF2AK3-ElF2A-ATF4-DDIT3 apoptosis pathway.
Moreover, the expression of autophagy-dependent proteins is increased in NCI-N87 cells, in
the presence of 7-AB (81). Taken together, by activation of the EIF2AK3-EIF2A-ATF4-DDIT3
pathway, 7-AB (81) induces ER stress-autophagy crosstalk in GC cells, NCI-N87 [393].

Tocotrienols are a subgroup of vitamin E, which shows a cytotoxic effect on breast
cancer MCF-7 and MDA-MB-231 cell lines. γ-Tocotrienol (82) promotes DDIT3 and
MAPK/JNK expression, cleavage of CASP3 and CASP8 and upregulation of TNFRSF10B
at the gene and protein levels. Following the γ-tocotrienol (82) treatment, the level of
HSPA5/GRP78 increased at the gene and protein levels. Activation of MAPK/JNK and
MAPK14/p38, which is mediated by ER stress, increases the level of TNFRSF10B, whereas
silencing MAPK/JNK and MAPK14/p38 reduces the increase in TNFRSF10B and DDIT3
and partially blocks the apoptosis induced by γ-tocotrienol (82) [394].

Chemical structures of terpenoids with an effect on the UPR signaling pathway are
represented in Figure 8. The schematic role of terpenoids on the proteins engaged in the
UPR and ER stress pathway is shown in Figure 20.

5.3.4. Other Natural Compounds

The anti-cancer function of garlic-based and garlic extracts has been investigated in
different assays. An ethanol-based garlic extract stimulates apoptosis in several human
cancer cells (DU145, U2OS and 67NR) through an ER stress pathway. Moreover, in support
of elevated ER stress, an increased GST interaction with HSPA5 is detected [395]. Ajoene
(83), an allyl sulfur compound found in crushed garlic, induces an ER accumulation of
misfolded proteins and activates the UPR in human breast cancer MDA-MB-231 cells and
human esophageal cancer WHCO1 cells. Ajoene (83) induces time-related expression of the
ER stress sensor protein HSPA5 in MDA-MB-231 cells. The results show that this compound
targets protein folding in the ER of cancer cells [396]. Moreover, BisPMB (84), a synthetic
ajoene (83) analog, has superior cytotoxicity in WHCO1 cells, compared to ajoene (83).
BisPMB (84) increases the expression of the ER stress sensor HSPA5 in WHCO1 cells. This
compound also induces the expression of the ER stress marker DDIT3, which has a central
function in the cytotoxic action of BisPMB (84) [397].
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Figure 20. The schematic role of terpenoids on the proteins involved in the UPR and ER stress
pathways. Terpenoid treatment results in upregulation of the mRNA levels of HMOX1, ATF3, DDIT3,
HSPA5, HSP90B1/GRP94 and STC2. Moreover, typical ER stress-related proteins such as HSPA5, PDI,
DDIT, EIF2AK3, ERN1, ATF6, ATF4 and HSP90B1/GRP94 increased in the cells treated with these
compounds. Moreover, these compounds increase protein aggregation and mRNA expression of
ATF4, PPP1R15A/GADD34 and TRIB3. In some cases, the expression of TNFRSF10B and increasing
protein aggregation of PPP1R15A/GADD34 and TRIB3 are observed. →: Indicates activation or
an increase in the mentioned protein expression.
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Polyphenon E® is a standardized green tea extract. In the presence of polyphenon
E®, the gene expression of ERS markers, DDIT3 and unspliced (u)XBP1 but not HSPA5 is
triggered in human prostate cancer PC3 cells. While in PNT1a cells, gene expression of
HSPA5 and DDIT3 was observed relative to control and no change in the level (u)XBP1 was
evident. The increased expression of DDIT3 causes cells to resensitize to chemotherapy
compounds. Moreover, treatment with polyphenon E® increases the protein levels of
EIF2AK3 targets specifically and p-EIF2A. Moreover, ATF4 is slightly upregulated. In

BioRender.com


Cancers 2022, 14, 5839 51 of 80

PC3 cells, these proteins especially p-EIF2A is elevated significantly up to 48 h [398]. The
chemical structures of natural compounds mentioned in this part with the effect on the
UPR signaling pathway are presented in Figure 13. Moreover, these natural compounds
are summarized in Table 3. The schematic role of these compounds on important proteins
that participated in the UPR and ER stress pathways is represented in part C of Figure 14.

Table 3. Natural compounds with ER stress-mediated anti-cancer activity.

Cancer Type Compound Cell Line Target Reference

Lung cancer

Polyphyllin D (71) NCI-H460 ↑ DDIT3, HSPA5, PDI, CASP4,
ATF3, DDIT3, STC2 [381]

Dehydrocos-
tuslactone (73) NCI-H460 A549 ↑ EIF2AK3, DDIT3, ERN1,

MAPK/JNK, ROS, XBP1s [383]

Resveratrol (32) NCI-H460 ↑ DDIT3, HSPA5, RECK, MIR200C [370]

Bisdemethoxycurcumin
(BDMC) (56) NCI-H460 ↑ HSPA5; ERN1-ERN2; DDIT3;

ATF6; ATF6B; CASP4 [310]

Demethoxycurcumin
(DMC) (55) NCI-H460

↑ HSPA5, ERN2, DDIT3, ATF6,
ATF6B, CASP4, ROS

↓ ∆Ψm
[311]

WZ35 (57) HI975 ↑ p-EIF2A; ATF4; DDIT3 [312]

Resveratrol (32) +
arsenic trioxide A549 ↑ HSPA5, DDIT3, CASP12 [372]

TMS
Resveratrol (32) analog A579; H1975 ↑ EIF2A, EIF2AK3, DDIT3,

Ca2+, AMPK [373]

Furanodiene (76) A549, 95-D ↑ DDIT3, HSPA5, DDIT3 [386]

Parthenolide (77) A549, Calu-1, H1299,
H1792 ↑ ATF4, DDIT3, EIF2A, [387]

Human multiple
myeloma Resveratrol (32) ANBL-6

↑ ERN1, EIF2AK3, ATF6, DDIT3,
MAPK/JNK, PPP1R15A/GADD34

↓ XBP1s, VEGFA
[367]

Breast cancer

Cryptotanshinone (74) MCF-7 ↑ EIF2A, HSP90B1/GRP94,
HSPA5, DDIT3, ROS [384]

Pimpinelol (75) MCF-7 ↑ ATF4, DDIT3, PPP1R15A, TRIB3 [385]

Ajoene (83) MDA-MB-231 ↑ HSPA5 [396]

Chrysophanol (58) MCF-7; BT-474 ↑ ROS, EIF2AK3, EIF2A,
DDIT3, ERN1 [318]

Saxifragifolin D (72) MDA-MB-231, MCF-7 ↑MAPK/JNK, Ca2+, ROS, DDIT3 [382]

Ampelopsin (64) MDA-MB-231, MCF-7 ↑ HSPA5, p-EIF2AK3, p-EIF2A,
cleaved ATF6, DDIT3, ROS [360]

γ-tocotrienol (82) MDA-MB-231, MCF-7
↑ DDIT3, HSPA5, XBP1,

TNFRSF10B, TNFRSF10B,
MAPK/JNK¸CASP3, CASP8

[394]

Colon cancer

Curcumin (33) AGS, HT-29 ↑ DDIT3, MAPK/JNK-FADD [359]

Curcumin (33)+
sildenafil HCT116, HT-29 ↑ p-EIF2A; DDIT3 [363]

Curcumin (33)+
irinotecan (62) LoVo, HT-29 ↑ DDIT3, PDI, HSPA5 [357]

Piperine (61) HT-29 ↑ ERN1, DDIT3, HSPA5, ROS,
MAPK/JNK [355]
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Table 3. Cont.

Cancer Type Compound Cell Line Target Reference

Zerumbone (78) HCT116-p53null,
SW480

↑ ATF4, DDIT3, ATF3, ATF4,
DDIT3, ATF3, EIF2AK3, EIF2A,

TNFRSF10B, TNFRSF10B
[389]

Flavokawain B (66) HCT116 ↑ DDIT3, DDIT3, ROS, BCL2 [365]

Gastric cancer (GC)

α-Tocopheryl
succinate (79) SGC-7901

↑ DDIT3, MAPK/JNK, EIF2AK3,
ATF6, XBP1, ATF4

HSP90B1/GRP94, HSPA5, CASP4
[390]

7-Acetylsinumaximol
B (81) NCI-N87 ↑ EIF2AK3, EIF2A, ATF4, DDIT3 [393]

α-Tocopheryl
succinate (79) SGC-7901 ↑ DDIT3, MAPK/JNK, HSPA5,

ROS, CASP4 [391]

Honokiol (34) MKN-45 SCM-1,
AGS, N87

↑ DDIT3, CAPN2, PARP and
HSP90B1/GRP94, cleavage [379]

Casticin (63) BGC-823 ↑ DDIT3, p-EIF2A, EIF2A, HSPA5 [359]

Casticin (63) SGC-7901 MGC-803 ↑ DDIT3, TNFRSF10B, ROS [359]

Malignant
mesothelioma

Epigallocatechin gallate
(52) MM98 ↑ HSPA5; DDIT3; ATF4;

EDEM; XBP1 [358]

Liver cancer Curcumin (33)+
sildenafil HEPG2 ↑ EIF2A, BECN1; ↓MTORC1 and

MTORC2 activity [363]

Murine Myeloma Curcumin (33) WEHI-3 ↑ ATF6; DDIT3; ERN1; CASP12;
BCL2, ROS, Ca2+, ↓ ∆Ψm [361]

Human melanoma

4-nerolidylcatechol (80) SK-MEL-28;
BRAi/MEKi ↑ HSPA5, DDIT3 [392].

Vincristine (3) B16 ↑ AMPK, TP53
↓MTORC1 [264]

Resveratrol (32) A375SM
↑ p-EIF2A, DDIT3, ROS,

MAPK14/p38, TP53, BAX,
↓ BCL2

[368]

Pheochromocytoma α-Mangostin (67) PC12 ↓ ATP2A/Ca2+ ATPase activity
↑MAPK/JNK, MAPK/SAPK

[376]

Human ovarian cancer

Garcinone E (68) HEY; A2780,
A2780/Taxol cells

↑ HSPA5, ERN1, XBP1,
DDIT3, CASP12 [377]

B19 (65) HO8910 ↑ PDI, HSPA5, DDIT3, ATF6,
XBP1, CASP3 [359]

Human
hepatoblastoma

Resveratrol (32) +
palmitate HepG2 ↑ XBP1s, DDIT3,

↓ ROS [369]

RES006
Resveratrol (32) analog HepG2 ↑ ROS [374]

Human
nasopharyngeal cancer Resveratrol (32) NPC-TW076;

NPC-TW039 ↑ ERN1, DDIT3, ATF6, p-EIF2AK3 [371]

Human prostate cancer

Gartanin (69) LNCaP; 22RV1 ↑ DDIT3, HSPA5, ERN1, EIF2AK3 [378].

Polyphenon E

PNT1a ↑ DDIT3, HSPA5 p-EIF2A
and ATF4 [398]

PC3 ↑ DDIT3, (u)XBP1 p-EIF2A
and ATF4 [398]

Garlic extract DU-145 DU145,
U2OS,67NR ↑ HSPA5 [395]
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Table 3. Cont.

Cancer Type Compound Cell Line Target Reference

Curcumin (33) PC3 ↑ ERN1; ROS; PDI; CALR [362]

Human hepatocellular
carcinoma Garcinol (70) Hep3B

↑ DDIT3, DDIT3, ROS, BAX,
CASP3, CASP9, PARP;
↓ ∆Ψm, BCL2

[380]

Human
esophageal cancer

Ajoene (83) WHCO1 ↑ HSPA5 [396]

BisPMB (84) WHCO1 ↑ HSPA5, DDIT3 [397]

Up and down arrows indicate increase or decrease, respectively.

6. Animal Studies

As discussed above, the anti-tumor activities of different natural compounds are
mediated through several cell signaling pathways. Numerous in vivo investigations have
been carried out to assess the impact of these compounds on animals.

In 1997, the first sign of autophagy induction by rottlerin (38) was described in
apoptosis-resistant rat and human gliomas. Rottlerin (38) decreases growth and induces
cytotoxicity in the rat (C6) and two human glioma cells (U138MG and T98G) [399].

The daily intake of 1–5 mg/kg body weight of resveratrol (32) declined to inhibit the
metastasis or growth of breast cancer in mice, even though in vitro results were promising.
Resveratrol (32) has no impact on organ histology, body weight or estrous cycling of the
tumor-bearing mice [400]. Conversely, another assay showed that oral administration of
trans-resveratrol (32) (20 mg/kg twice per day or added to the drinking water at 23 mg/L)
decreases hepatic metastatic intrusion of B16M cells, injected intrasplenically in rabbits,
rats and mice. However, oral administration of this compound does not suppress the
development of B16M, injected into the footpad of mice [401].

Tetrandrine (9) treatment in RT-2 gliomas in rats leads to slower development of
subcutaneous tumors, longer survival time and increased survival grade; a high dose
(150 mg/kg/day) is more potent than a low dose. Moreover, tetrandrine (9) is more
effective against small subcutaneous gliomas than large ones. Furthermore, tetrandrine (9)
affects intracerebral tumors and prolongs animal survival with no impact on the survival
rate [402]. The anti-tumor effect of tetrandrine (9) is also seen in cultured mouse CT-26 colon
cancer cells and when used subcutaneously. Animals treated early with tetrandrine (9) at
a higher dose (150 mg/kg/day) live significantly longer. The higher dose of tetrandrine (9)
and earlier treatment had more powerful impacts than a smaller dose (50 mg/kg/day)
and delayed treatment. Moreover, the tumor size for the group administered with the
higher dose of tetrandrine (9) was smaller than the group treated with a lower dose of this
compound (9). Induced apoptosis in tetrandrine (9) treatment is suggested to be related to
MAPK14/p38 signaling pathway activation [267].

Matrine (6) in nude BALB/c mice inhibits tumor development of pancreatic cancer
cells in a dose-related mode by inducing apoptosis through stimulation of CASP3, CASP8
and CASP9, reducing the BCL2:BAX ratio and upregulating FAS. However, matrine (6) has
no significant effect on the body weight of mice, compared to the controls [266].

Treatment with quercetin (25) (50 mg/kg daily intraperitoneal injection) results in
apoptotic and ACD in gastric xenograft tumors in BALB/c mice and results in a remarkable
reduction in tumor size. The average tumor size of quercetin-administered mice decreases
by ~70%, in comparison to the vehicle-administered control mice. Moreover, the accumula-
tion of LC3-II increases significantly in gastric xenograft tumors, in reaction to quercetin (25)
intake [181].

Some compounds can synergistically induce autophagy. For instance, resveratrol (32) and
spermidine (44) initiate autophagy via diverse mechanisms. These compounds activate
converging pathways that peak in concurring alterations of the acetylproteome. Both factors
support concurrent acetylation and deacetylation reactions in the nucleus and cytosol,
respectively. Both resveratrol (32) and spermidine (44) trigger autophagy in cytoplasts
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(enucleated cells). At doses of 1/10 of the obtained optimal dose of these agents (resveratrol
at 25 mg/kg or spermidine at 50 mg/kg), neither resveratrol (32) nor spermidine (44)
stimulate autophagy alone. Nevertheless, the combined form of low doses of both factors
is very effective in inducing autophagy in vivo in C57BL/6 mice. Comparable findings
are acquired when these factors are administered to WT mice, as demonstrated using LC3
lipidation and SQSTM1 degradation [250].

Curcumin (33) suppresses tumor formation in intracranial glioma-initiating cells
(GICs), following implantation into mice by inducing autophagy and increasing animal
survival significantly. Nearly, all mice that received curcumin (33) endured the investi-
gation course of 120 days, whereas all animals in the untreated groups died after three
months [403]. The combined form of curcumin (33) and 5-fluorouracil (5-FU) induces
an extremely strong anti-tumor function against esophageal squamous carcinoma, com-
pared to the use of each treatment individually. All animals were exterminated on day
28 and the tumor weights were evaluated. The suppression rates in curcumin (33), 5-FU
and combined curcumin (33) + 5-FU groups were 34.78%, 45.22% and 83.48%, respectively,
in comparison to the control. Moreover, it was suggested that the inhibitory impact of
curcumin (33) on the development of in vivo tumors could be via stopping the NFKB
signaling pathway and triggering cell apoptosis [285].

Neoalbaconol (14) is a terpenoid that suppresses tumor development in the NPC
nude mouse model by suppressing the PI3K-AKT-energy metabolic pathway. The tumor
volumes in the neoalbaconol (14)-administered group were significantly smaller than those
in the control group. Moreover, immunohistochemical examination of the tumor sections
shows downregulation of phosphorylated AKT, MTOR and the HK2 expression in the
neoalbaconol (14)-administered group [158].

In 2013, a substantial amount of rottlerin (38) was detected in the tumor and plasma
of mouse xenografts fed with this compound based on RP-HPLC. In addition, rottlerin
(38) was efficiently absorbed in the cells and tissues both in vivo and in vitro in pancreatic
cancer cells. The obtained results show that mice fed with rottlerin (38) grow smaller
tumors than the control group [404].

Mice with tumor xenografts of 100 mm3 and treated with salvianolic acid B (40)
(80 mg/kg, intraperitoneal injection, once daily, for 28 days), displayed a strong anti-tumor
activity against CRC. A combined mix of the autophagy inhibitor 3-MA and salvianolic
acid B (40) significantly increases tumor growth, compared to salvianolic acid B (40) alone,
indicating that this compound induces pro-death autophagy in vivo. Moreover, no signifi-
cant hepatic toxicity or weight loss is found in the group of salvianolic acid B (40) or the
combined group of 3-MA and salvianolic acid B (40) [245].

In 2017, the anti-tumor effect of trehalose (46) was investigated on mice-bearing Ehrlich
ascites carcinoma (EAC). Treatment with this disaccharide induces antineoplastic impacts
toward EAC, as demonstrated by a significant decrease in tumor volume, body weight,
number of viable tumor cells and the BCL2 expression as the anti-apoptotic gene. Trehalose
(46) also significantly increases life span, average survival time and expression of the
apoptotic gene CASP3. Moreover, co-administration of trehalose (46) and methotrexate,
normally applied as standard chemotherapy for several cancers, shows the maximum
antineoplastic effect on EAC [405].

7. Clinical Trials

The first natural compounds to progress into clinical settings were vinblastine (1)
and vincristine (3). These compounds belong to the alkaloids family and are utilized
by different cultures for the cure of diabetes [406]. Vindesine (4) has similar effects to
vinblastine (1) and the anti-cancer function of vindesine (4) has been stated in blast crisis of
chronic myeloid leukemia, acute lymphocytic leukemia pediatric solid tumors, malignant
melanoma and metastatic renal, breast, esophageal and colorectal carcinomas [133]. In
a phase II trial, 50 patients with progressed solid tumors were attended to, 43 of whom had
obtained at least one earlier chemotherapy treatment, to investigate the effect of vinblastine
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(1) (3 mg/m2) weekly and rofecoxib (25 mg) daily. The median progression-free survival
for all the patients was 103 days and for the subjects who received the clinical treatment,
was 289 days. Moreover, the results from this trial show that the combined intake of daily
cyclophosphamide and weekly vinblastine (1), administered simultaneously with daily
rofecoxib, provides a medium anti-cancer function in a group of patients with progressed
solid tumors. The admissibility of this treatment is excellent. In addition, major adverse
reactions were not notable, indicating a favorable therapeutic index [407].

Cabazitaxel (85) (XRP6258) is a paclitaxel (17) derivative that was confirmed by the
US Food and Drug Administration (FDA) in 2010 as the first therapy for the hormone-
refractory metastatic prostate cancer [408]. In the phase I clinical study, the primary
evidence of anti-cancer activity of cabazitaxel (85) was observed. Twenty-five patients
with progressive solid malignancies were prescribed 102 courses of cabazitaxel (85) at
four dose levels, spanning 10 to 25 mg/m2. Three patients obtained incomplete reactions,
including two patients with castration-resistant prostate cancer (CRPC), one of whom had
formerly taken docetaxel, but two patients had a diseased state beyond 4 months. Moreover,
according to the results, the suggested phase II dose of this compound was 20 mg/m2 [409].
A phase II study was conducted on 71 patients with metastatic breast cancer to assess
the dose of cabazitaxel (85) for the phase III trial. Intravenous (i.v.) cabazitaxel (85) was
administered at 20 mg/m2 every 3 weeks. The median overall survival was 12.3 months
and the median time to progression was 2.7 months after a follow-up of 20 months. Patients
experienced hypersensitivity reactions (6%), vomiting (18%), sensory neuropathy (17%),
leucopenia (55%), diarrhea (30%), nausea (32%), fatigue (35%) and neutropenia (73%).
Conversely, 18 patients (30%) had a medical condition for at least 3 months. The objective
response rate was 14% in the treated patient population with two complete and eight partial
responses [410].

An open-label randomized phase III trial was carried out to examine the efficacy
and safety of cabazitaxel (85) in men with metastatic CRPC, who were under hormone
treatment with docetaxel but had progressive disease during and post-treatment. A total of
755 patients (377 mitoxantrone, 378 cabazitaxel [85]) were prescribed 10 mg oral daily pred-
nisone and were arbitrarily appointed to take either 12 mg/m2 mitoxantrone intravenously
for 15–30 min or 25 mg/m2 cabazitaxel (85) intravenously, for 1 h every 3 weeks. The most
frequent clinically significant grade 3 or greater adverse reaction was neutropenia (82%).
The non-hematological toxicities seen in the cabazitaxel (85) arm were peripheral neuropa-
thy, asthenia, fatigue and diarrhea. Therefore, therapy with cabazitaxel (85) plus prednisone
was concluded to be clinically effective and improved overall survival in the patients with
metastatic CRPC, with progressive disease in and post-docetaxel treatment [411].

The increased expression of ABCB1/MDR1, encoding an ATP-dependent drug efflux
pump, reduces the intracellular concentration of taxanes and results in resistance to these
drugs. The poor affinity of cabazitaxel (85) to ABCB1 because of the presence of extra
methyl groups makes this compound superior to paclitaxel (17). Thus, cabazitaxel (85)
seems to be efficacious in docetaxel-resistant cancers. Cabazitaxel (85) shows the anti-tumor
function in the preclinical and phase I, II and III clinical studies in docetaxel-resistant
cancers [412]. Cabazitaxel (85), as a third-generation taxane, is suggested for the treatment
of metastatic CRPC [413].

TPI 287 (86) is a synthetic taxane by-product. In contrast to taxane, TPI-287 (86) is
permeable through the blood–brain barrier [414]. A phase I study of TPI 287 (86), combined
with temozolomide for patients with metastatic melanoma, was conducted; a total of
21 patients aged 15 years or older with histologically approved metastatic melanoma
participated in the trial. There were two partial reactions and seven diseased states (9.5%
overall reaction rate and 42.9% disease control rate). Three patients had brain disease
despite the advanced extra-cranial disease. The highest acceptable dose of the blend was
125 mg/m2 (i.v.) of TPI 287 (86) and 110 mg/m2 of oral temozolomide. The rate-limiting
toxicity was neuropathy and five patients had grade III neuropathy [415].
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Camptothecin (5) progressed to clinical trials by the National Cancer Institute in the
1970s, but it was not approved because of serious bladder toxicity. Later, more effective
derivatives of camptothecin (5), topotecan (87) and irinotecan (62) (CPT-11; Camptosar)
were developed through extensive research. Camptothecin (5) by-products have demon-
strated anti-cancer function toward a broad spectrum of malignancies. Topotecan (87) is
applied for the therapy of small cell lung and ovarian cancers, while irinotecan (62) is
employed for the therapy of CRCs [4]. Veliparib (88) was supplemented with the weekly
topotecan (87) treatment for 58 patients with solid tumors. The results showed that hema-
tological toxicity was dose-limiting but both drugs could be administered at three-fourths
of their single treatment with the highest acceptable doses. The goal reaction rate was 10%
with four partial responses and one complete response. Twenty-two patients (42%) had
a diseased state, spanning 4 to 26 cycles. This treatment showed a compliant safety profile
and exhibited signals, indicative of possible action [416]. In another clinical trial, adult
patients (>19 years; median age of 61 years) with relapsed/refractory small cell lung cancer
received a combination of topotecan (87) and doxorubicin. The results showed hemato-
logical adverse reactions as the most frequent side effects. Moreover, no therapy-related
grade 5 toxicities were found. This combination seems to be safe in subjects with relapsed
small-cell lung cancer and it needs to be further investigated.

A combination of topotecan (87) (1.35 mg/m2) on days 1–5 of a 3-week cycle and
weekly doxorubicin (20 mg/m2) starting on day 6 was proposed as a safe dose for future
trials. The reaction rate was 20% (4/20); median progression-free survival and overall
survivals were 3.6 months and 6 months, respectively [417]. Gimatecan (89) is a lipophilic
oral camptothecin (5) analog that has been used for a clinical trial for recurrent glioblastoma.
In phase I of the clinical trial, oral gimatecan (89) was administered for 5 consecutive
days every 28-day cycle in ascending doses. The dose was increased using a modified
Fibonacci method. Weekly intake of oral gimatecan (89) results in ongoing systemic
vulnerability to possible efficacious concentrations of the dynamic complete lactone type
of the drug. The subjects under this treatment did not experience significant alopecia or
diarrhea. The frequency and severity of the hematological toxicities appear to increase
with dose escalation [418]. In 2013, a multicenter phase II trial was conducted to assess
the efficacy of gimatecan (89) in adults with recurring glioblastoma. In this trial, subjects
taking enzyme-triggering anti-seizure drugs were ruled out. According to the results,
6-month progression-free survival for the subjects with recurring glioblastoma undergoing
gimatecan (89) monotherapy, given on a 5 days every 28 days cycle, was not remarkably
superior to the historical 6-month progression-free survival for the subjects with recurring
glioblastoma who did not take the treatment. Therefore, gimatecan (89) in this treatment
regimen showed minimal efficacy [419].

Other clinical trials exploring the effectiveness of camptothecin (5) derivatives in
patients with high-grade gliomas were disappointing. Karenitecin (90) is another lipophilic
oral camptothecin (5) analog of preclinical function in glioma models. The effect of karen-
itecin (90) was investigated in subjects with recurrent malignant gliomas. The data showed
no objective response in 11 patients treated at or above the maximum tolerated doses
who had previously received only one or a few prior chemotherapy regimens. Thirty-two
patients (median age 52 years; median Karnofsky performance scale (KPS) score of 90) were
collected. Among them, 78% had glioblastoma and 22% had anaplastic gliomas. Moreover,
with a response rate of less than 2%, it appears that karenitecin (90) given on this schedule
is not efficacious for the treatment of subjects with recurrent malignant glioma [420].

Irinotecan (62) or camptothecins-11 is another camptothecin (5) derivative. A phase I
study was initiated to establish the highest permitted dose, major toxicities and pharma-
cokinetics of irinotecan (62). Sixty-four patients, fulfilling the standard phase I admission
requirements were enrolled (median age 51 years; primary sites: head and neck, colon, lung
and pleura; 60 of 64 had been formerly cured). Grade 3 to 4 non-hematological toxicities
including nausea and vomiting (9%), diarrhea (16%; three hospitalizations), alopecia (53%),
asthenia (14%), the elevation of hepatic transaminases (8%), and one case of skin toxicity
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were observed. The maximum-tolerated dose was given as a 30-min i.v. infusion every
3 weeks at 600 mg/m2. For safety reasons, the appropriate dose was presented as 350
mg/m2 every 3 weeks. Nonetheless, when close observation of GI toxicities is feasible,
a large dose of 500 mg/m2 can be prescribed in subjects with acceptable risk [421]. The
therapeutic capacity of irinotecan (62) was investigated for the therapy of metastatic CRC
in two large, randomized phase III trials. The effect of the combination of irinotecan (62)
and FU-leucovorin calcium (LV) was compared with FU-LV individually. Considerable
effectiveness was shown for the combined irinotecan (62) and FU-LV concerning reac-
tion rate, the median time to disease progression and median survival time. Thus, the
combined FU-LV and irinotecan (62) was confirmed as the forefront and reference ther-
apy for metastatic CRC [422]. In 2003, a multi-center phase II and the pharmacokinetic
study examined the impacts of irinotecan (62) (350 mg/m2 every 3 weeks), either prior
to (group A) or after relapse following radiotherapy (group B), in chemotherapy-naïve
subjects with glioblastoma. Fifty-two patients (25 patients in group A and 27 patients
in group B) were given 191 cycles of irinotecan (62). The used dose of irinotecan (62)
showed small clinical function as a single regimen in subjects with recently diagnosed and
reoccurring glioblastoma, following radiotherapy. This dose of irinotecan (62) resulted
in a median time-to-progression of 9 weeks in group A and 14.4 weeks in group B, with
6-month progression-free survival rates of 26% and 43% in groups A and B, respectively.
Although the response rate of irinotecan (62) was a limiting factor, it is still an attractive
drug for combination therapy against glioblastoma [423].

In 2004, irinotecan (62) was again investigated in a phase II study in adults with
reoccurring malignant glioma. The reaction rate in this study was 6% (1/18). One patient
out of 18 patients had a complete response, 28% (5/18) of these subjects progressed in
health condition while taking irinotecan (62), which means 5 patients showed radiographic
progression. Moreover, 5 subjects had stable disease, 6 patients were excluded from the
investigation because of the toxicity and 1 patient declined additional treatment. According
to the results, irinotecan (62) represented minimal efficacy in this investigation [424].

Natural compounds use different mechanisms to affect the autophagy pathway and
the distinction between the survival-supporting and/or death-promoting roles of them
on autophagy process need more deep study for therapeutic response. For example,
magnolol (35) that can induce autophagy can affect the morphological and cellular events
such as ATP level, cell blebbing and DNA fragmentation without leading to cell death in
itself [425]. Most of the natural compounds mentioned here for clinical trials are alkaloids.
As mentioned previously, alkaloids like vinblastine (1) and vincristine (3) act as autophagy
inhibitors [128,142], whereas camptothecin (5), another alkaloid, was reported to induce
autophagy [144]. Paclitaxel (17), an important anticancer agent, is a diterpenoid. This
natural compound inhibits the progression of cervical cancer by inhibiting autophagy [167].
However, cabazitaxel (85) is a derivative of paclitaxel (17) that has been used in different
phases of clinical trial. This compound was reported as an autophagy [426].

The chemical structures of natural compounds that have been used in clinical trials
are shown in Figure 21.
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Figure 21. Chemical structures of natural compounds that have been used in clinical trials. Cabazi-
taxel (85), TPI 287 (86), topotecan (87), veliparib (88), gimatecan (89), karenitecin (90). The images
were prepared using ChemDraw Professional 15.0.

8. Drawbacks of Natural Compounds

Although natural compounds were proved to represent promising anti-cancer activi-
ties against different types of cancers, some disadvantages should be considered. Paclitaxel
(17), Taxol, is an important anti-cancer agent. Despite several clinical successes [427], there
is a major issue with the administration of Taxol, which is the availability of enough drugs
for therapy [428,429]. Only 2 mg of this complex can be extracted from each adult yew
plant, while each cancer subject requires 2.5 to 3 g of Taxol [430]. Moreover, according to
some studies, Taxol meets the threshold to trigger considerable mitotic arrest and apoptosis
in tumor cells because the intra-tumoral concentration of paclitaxel (17) is significantly
smaller than that in serum. Moreover, resistance to paclitaxel (17) is observed in some
cancer cells, with unknown underlying molecular mechanisms [431]. Vinblastine (1), an-
other natural compound with anti-cancer activities, has been used for the chemotherapy of
human neuroblastoma, but it shows dose-limiting side effects [432].

One study indicated that trace levels of curcumin (33) and its by-products are found
in the peripheral circulation and tissues far from the GI tract of patients with CRC who
ingested curcumin (33), which could be due to its low systemic bioavailability [433]. How-
ever, some work has shown that quercetin (25) can enhance the bioavailability of curcumin
(33) by increasing its uptake into human carcinoma cells, which might be related to an ALB
(albumin)-binding interaction [434]. On a cautionary note, a comprehensive review per-
formed by Nelson et al. in 2017 challenged the efficacy of curcuminoids, according to more
than 100 failed human clinical trials for several disease states. Therefore, curcuminoids
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relatively in the natural proto-form may not be adequately pharmacologically active. It has
been pointed out that no form of curcumin (33) seems to have the properties essential for
a good drug candidate [435].

Moreover, genistein (27) was shown to trigger autophagy and apoptotic death in tumor
cells. According to absorption, distribution, metabolism and excretion/ADME studies, this
compound has intrinsically small oral bioavailability due to metabolic enzymes and efflux
transporters. Thus, further investigations are needed to ameliorate its effectiveness in the
therapy of resilient cancers [436].

Some compounds consumed in the normal diet may not achieve fairly high concen-
trations to moderate pharmacological impacts. For example, concentrations of neither
resveratrol (32) nor spermidine (44) reach the required level to exhibit pharmacological
effects [250].

Clinicians should be conscious that high doses of resveratrol (32) necessary for the
most therapeutic impacts may not be used in the clinical setting, as was demonstrated in
a population study [437]. The use of resveratrol (32) was shown again to be constrained by
its low bioavailability and inadequate solubility [438,439].

Camptothecin (5), another natural compound with an anti-cancer effect, is also limited
to treating cancers because of poor solubility and severe side effects. Therefore, many
modifications and derivatives have been developed [440].

9. Conclusions

Autophagy is one of the most intriguing biological “machineries” that has emerged
from biological research in recent decades. In fact, this process plays several critical roles in
modulating principal features of tissue and cell metabolism, controlling their development
and homeostasis, and enhancing their potential to respond to stress conditions. The
complexness of the mechanisms involved in autophagy and several factors and effectors
that participated in this process have allowed us to hypothesize that autophagy can be
pharmacologically modulated, and that this pharmacological intervention may depict
a novel medicinal approach for a broad set of oncological, cardiovascular, metabolic,
immune, inflammatory, neurological, and even infectious diseases. Indeed, by virtue of
the intensive attempts that have currently been conducted by biomedical investigation
in this field, we currently understand that autophagy is indeed a “druggable process”.
Consistently, many molecules that act as inhibitors or promoters on different levels of
the “autophagic machinery” are the object of intense drug discovery studies. Certainly,
the pharmacological modulation of a process that plays such a ubiquitous and capillary
homeostatic role is not devoid of serious toxicological concerns. Therefore, looking for
the molecules that can indicate selectivity for the specific molecular targets involved in
autophagy and/or for tissue-specific drugs is a difficult and timely issue. However, it is
worth mentioning that numerous medications are only under examination in reassuring
clinical investigations [441].

Among various molecules with recognized modulatory effects on different molecular
targets involved in autophagy, a very remarkable section is depicted by the compounds of
biological sources, which have often given us important contributions to understanding
the biological meaning and mechanisms of autophagy. Alongside their importance in basic
research, these compounds could demonstrate an important pharmacological means to be
applied in therapy but could also offer a valuable pattern for the development of novel
molecules with ameliorated pharmacodynamic and/or pharmacokinetic features, aimed at
making autophagy an increasingly appropriate, effective and safe drug target. Hopefully,
in the coming years, selective modulators of autophagy and related pathways based on
natural compounds, which are able to activate or inhibit the process only in the target
tissues, will provide effective and safe therapeutic options for numerous diseases.
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Abbreviations

3-MA 3-methyladenine
5-FU 5-fluorouracil
ABCB1 ATP binding cassette subfamily B member1
ACAC acetyl-CoA carboxylase
ACD autophagic cell death
AIFM apoptosis-inducing factor mitochondria associated
AKT/Protein kinase B AKT serine/threonine kinase
AMP adenosine monophosphate
AMPK 5′-AMP-activated protein kinase
AP-1 activator protein 1
AR androgen receptor
ATF activating transcription factor
ATG autophagy related
ATG16L1 autophagy-related 16 like 1
ATP adenosine triphosphate
ATP2A1 ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting 1
AVOs acidic vesicular organelles
BAD BCL2 associated agonist of cell death
BAX BCL2 associated X, apoptosis regulator
BBC3/PUMA BCL2 binding component 3/p53 upregulated modulator of apoptosis
BCL2 B-cell lymphoma 2
BDMC bisdemethoxycurcumin
BID BH3 interacting domain death agonist
BIRC5 baculoviral IAP repeat containing 5
BNIP3 BCL2 interacting protein 3
BRAFi potent inhibitors of v-Raf murine sarcoma viral oncogene homolog B
CALR calreticulin
CAPN2 calpain 2
CASP3 caspase 3
CCNA cyclin A
CCNB cyclin B
CCND cyclin D
CCNE cyclin E
CDK2 cyclin dependent kinase 2
CDKN1A cyclin dependent kinase inhibitor 1A
CMA chaperone-mediated autophagy
CQ chloroquine
CRPC castration-resistant prostate cancer
CTL cytotoxic T lymphocyte
CTNNB1 catenin beta 1
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CYCS cytochrome c, somatic
∆Ψm mitochondrial membrane potential
DAPK death associated protein kinase 1
DDIT3/CHOP/GADD DNA damage inducible transcript 3
DMC demethoxycurcumin
EAC Ehrlich ascites carcinoma
EDEM ER degradation enhancing alpha-mannosidase like protein
EHMT2 euchromatic histone lysine methyltransferase 2
EIF2A/eIF2α eukaryotic translation initiation factor 2A
EIF2AK3/PERK eukaryotic translation initiation factor 2 alpha kinase 3
ER endoplasmic reticulum
ERN1/IRE1 endoplasmic reticulum to nucleus signaling 1
FADD Fas associated via death domain
FAS Fas cell surface death receptor
FASLG Fas ligand
FOXO1 forkhead box O1
GLB1 galactosidase beta 1
GSK3B glycogen synthase kinase 3 beta
HepG2 hepatocarcinoma cell line
HIF1A/HIF-1α hypoxia inducible factor 1 subunit alpha
HK2 hexokinase 2
HNSCC head and neck squamous cell carcinoma
HRAS HRas proto-oncogene, GTPase
HSPA5/GRP78/BiP heat shock protein family A (Hsp70) member 5
HSPA8/HSC70 heat shock protein family A (Hsp70) member 8
HSP90B1/GRP94 heat shock protein 90 beta family member 1
IL6 interleukin 6
KRAS KRAS proto-oncogene, GTPase
LAMP2 lysosomal associated membrane protein 2
LMS leiomyosarcoma
LV leucovorin calcium
MAP1LC3/LC3 microtubule associated protein 1 light chain 3
MAPK8/JNK1 mitogen-activated protein kinase 8/Jun N-terminal kinase
MCL1 MCL1 apoptosis regulator, BCL2 family member
MEG3 maternally expressed 3
MEKi mitogen-activated protein kinase inhibitor
MGMT O-6-methylguanine-DNA methyltransferase
MMP9 matrix metallopeptidase 9
MTA1 metastasis associated 1
MT-CO2 mitochondrially encoded cytochrome c oxidase II
MTOR mechanistic target of rapamycin kinase
MTORC1 MTOR complex 1
MTORC2 MTOR complex 2
NAC N-acetyl-L-cysteine
NFE2L2/nrf2 NFE2 like bZIP transcription factor 2
NKT natural killer T cell
NLR NOD-like receptor
NOTCH1 notch receptor 1
NPC nasopharyngeal carcinoma
NSCLC non-small cell lung cancer
OSCC oral squamous cell carcinoma
p-EGFR phosphorylated epidermal growth factor receptor
PARP poly(ADP-ribose) polymerase
PDE4A phosphodiesterase 4A
PDI protein disulfide isomerase
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PDPK1 3-phosphoinositide dependent protein kinase 1
PI3K class I phosphoinositide 3-kinase
PIK3C3 phosphatidylinositol 3-kinase catalytic subunit type 3

PMAIP1/NOXA
phorbol-12-myristate-13-acetate-induced protein 1/
(Latin for damage)

PPP1R15A/GADD34 protein phosphatase 1 regulatory subunit 15A
PRKCD/PKCδ protein kinase C delta
PtdIns3K class III phosphatidylinositol 3-kinase
PtdIns3P phosphatidylinositol-3-phosphate
PTEN phosphatase and tensin homolog
RECK reversion inducing cysteine rich protein with kazal motifs
RELA RELA proto-oncogene, NF-kB subunit
RELB RELB proto-oncogene, NF-kB subunit
RICTOR RPTOR independent companion of mTOR complex 2
RNA ribonucleic acid
RNS reactive nitrogen species
ROS reactive oxygen species
RPS6KA1 ribosomal protein S6 kinase A1
RPS6KB ribosomal protein S6 kinase B
SCC squamous cell carcinoma
SERPINB4 serpin family B member 4
SH3GLB1/Bif-1 SH3 domain containing GRB2 like, endophilin B1
siRNA small-interfering ribonucleic acid
SIRT1 sirtuin 1
SQSTM1/p62 sequestosome 1
SMPD sphingomyelin phosphodiesterase
STIM1 stromal interaction molecule 1
STK11 serine/threonine kinase 11
TAMs tumor-associated macrophages
TFEB transcription factor EB
TGM2 transglutaminase 2
TLR toll like receptor
TNBC triple-negative breast cancer
TNFRSF10A/TRAIL/

TNF receptor superfamily member 10a
Apo2L1
TRAF2 TNF receptor associated factor 2
Treg regulatory T cell
TSC2 TSC complex subunit 2
ULK1 unc-51 like autophagy activating kinase 1
UPR unfolded protein response
UV ultraviolet
UVRAG UV radiation resistance associated
VEGF vascular endothelial growth factor
WIPI1 WD repeat domain, phosphoinositide interacting 1
WIPI2 WD repeat domain, phosphoinositide interacting 2
WNT Wnt family member
XBP1 X-box binding protein 1
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