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Simple Summary: Glioblastoma is a grade IV glioma of heterogeneous nature, which complicates
disease pathophysiology and biomarker research. The aim of this meta-analysis was to identify
long non-coding RNAs (lncRNAs) and protein-coding genes (PCGs) that are differentially expressed
in glioblastoma. Additionally, small RNA-seq of glioblastoma tissues was performed to identify
differentially expressed microRNAs (miRNAs) compared to normal tissue controls. The meta-analysis
identified 98 and 360 differentially expressed lncRNAs (DElncRNAs) and PCGs (DEPCGs), respec-
tively, in addition to five differentially expressed miRNAs (DEmiRNAs) identified by small RNA-seq.
Co-expression correlation network clustering of DElncRNAs/DEPCGs identified a functionally rele-
vant sub-cluster containing DANCR and SNHG6, with DElncRNAs overlapping with TCGA-GBM
output. Analysis of the pathways associated with these DElncRNAs and DEPCGs revealed an asso-
ciation with a novel cell death pathway, ferroptosis. Thus, our results confirm the involvement of
ferroptosis in glioblastoma pathophysiology and present several candidates for further research

Abstract: Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of pre-
dictive molecular biomarkers of disease progression would substantially contribute to better disease
management. In the current study, we performed a meta-analysis of different RNA-seq datasets to
identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs).
This meta-analysis aimed to improve power and reproducibility of the individual studies while
identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small
RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma.
Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a function-
ally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel
PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of
which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster
identified several glioblastoma-linked pathways, which were also previously associated with the
novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence
of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some
candidates for further analyses.

Keywords: glioblastoma; meta-analysis; ferroptosis; noncoding RNA; lncRNAs; miRNA

1. Introduction

Glioblastoma is the most common primary brain cancer of glial origin [1,2]. While
considered the most aggressive grade of gliomas (grade IV), the etiology of glioblastoma
remains largely unclear [3]. Conventional treatment modalities for newly diagnosed
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glioblastoma patients include surgery with adjunctive radiotherapy and chemotherapy
(e.g., temozolomide) [4]. Despite these modalities, the median patient survival for glioblas-
toma is less than 14 months [5]. Unfortunately, glioblastoma tumors exhibit substantial
genetic, epigenetic and transcriptional heterogeneity which adds to the challenge of early
diagnosis and therapy development [6]. Recently, non-coding RNAs such as long non-
coding RNAs (lncRNAs) and microRNAs (miRNAs) have been associated with different
aspects of glioblastoma pathogenesis such as tumorigenesis, proliferation, invasiveness,
drug resistance and survival [7,8]. LncRNAs are non-coding RNA transcripts of sizes larger
than 200 nucleotides [9]. They regulate gene expression by acting as transcription factor
and chromatin modifier guides, molecular scaffolds for enzymatic complexes, and decoy
inhibitors of RNA-binding proteins, transcription factors and miRNAs [10,11]. On the other
hand, miRNAs are a species of short non-coding RNAs (18–25 nucleotides) which regu-
late gene expression by binding to mRNAs’ untranslated regions and mediating mRNA
decay [12]. Consequently, examination of the interaction between these non-coding RNAs
and coding mRNAs could reveal novel disease pathways.

Transcriptome research using RNA-seq is regularly used to investigate novel coding
and noncoding disease biomarkers, leading to the creation of public databases containing
published omics data [13–15]. As such, meta-analyses aim to combine this raw data from
multiple studies to improve power, accuracy and reproducibility of individual studies [16].
In the current study, we performed a meta-analysis of glioblastoma RNA-seq datasets with
differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncR-
NAs), while investigating differentially expressed microRNAs (miRNAs) in glioblastoma
tissue samples and normal tissue controls by small RNA-seq. We also identified the over-
lap between meta-analysis identified PCG/lncRNAs with those identified in The Cancer
Genome Atlas Glioblastoma (TCGA-GBM) cohort. Thus, we conducted a transcriptomic
examination of de novo/non-recurrent glioblastoma with the aim of identifying novel
involvements/pathways. A schematic overview of the methodology employed in our
study is shown in Figure 1.



Cancers 2022, 14, 5788 3 of 21
Cancers 2022, 14, x FOR PEER REVIEW 3 of 22 
 

 

 

Figure 1. Schematic flow chart of the methodology used in this study. The workflows for lncRNAs, 

PCGs and miRNAs are denoted via blue, pink and green colors, respectively. Black circles indicate 

intersection/overlap output with databases. (I and II) Employed methodology for meta-analysis of 

glioblastoma tissue RNA-seq and small RNA-seq datasets, respectively. Four studies were selected 

for RNA-seq meta-analysis with identification of DElncRNAs and DEPCGs, and their overlap with 

experimentally verified databases and TCGA-GBM. No qualifying studies could be included in 

small RNA-seq meta-analysis and thus small RNA-seq (III) was performed on glioblastoma tissues 

Figure 1. Schematic flow chart of the methodology used in this study. The workflows for lncRNAs,
PCGs and miRNAs are denoted via blue, pink and green colors, respectively. Black circles indicate
intersection/overlap output with databases. (I and II) Employed methodology for meta-analysis of
glioblastoma tissue RNA-seq and small RNA-seq datasets, respectively. Four studies were selected
for RNA-seq meta-analysis with identification of DElncRNAs and DEPCGs, and their overlap with
experimentally verified databases and TCGA-GBM. No qualifying studies could be included in small
RNA-seq meta-analysis and thus small RNA-seq (III) was performed on glioblastoma tissues (n = 17)
and normal tissue controls (n = 3) for identification of DEmiRNAs and overlap with predicted miRNA
targets of DElncRNAs and DEPCG. Downstream analyses performed on the filtered DElncRNAs,
DEPCGs and DEmiRNAs are detailed further with corresponding figures/supplementary files
including pathway analyses, protein-protein interactions (PPIs) and co-expression correlation.
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2. Materials and Methods
2.1. RNA-Seq and Small RNA-Seq Study Selection for Meta-Analysis

We searched glioblastoma-related RNA-seq datasets in GEO DataSet [17] using the
following search terms: (“Glioblastoma”[Mesh] OR (“glioblastoma”[MeSH Terms] OR
Glioblastoma[All Fields])). The search was performed on 1 February 2020. Filters were
applied to show only studies containing expression profiling by high-throughput sequenc-
ing or non-coding RNA profiling by high-throughput sequencing. Thus, we selected the
suitable datasets using the following criteria: (1) the study was performed in humans;
(2) the study in the dataset was designed using the case-control method; (3) the study
presented at least two samples per condition (case and control); (4) the assayed samples
were sampled from de novo or non-recurrent glioblastoma tumor tissues; (5) the study par-
ticipants/samples had not received any treatments (radio/chemotherapy); (6) the dataset
provided the FASTQ data. Finally, the studies from these datasets were selected (Figure 1).
The clinical information of glioblastoma patients and their controls have been reported in
the individual studies: study 1 [18], study 2 [19], study 3 [20] and study 4 [21]. From these
studies, only glioblastoma and paired control samples were included in our meta-analysis.

For small RNA-seq meta-analysis, similar filtering criteria as those employed in the
glioblastoma RNA-seq meta-analysis were applied while searching for glioblastoma-related
small RNA-seq datasets in the GEO database. This search was performed on 22 March 2022.
The following search terms were employed in our search: ((“Glioblastoma”[Mesh]) OR
glioblastoma AND (mirna OR microrna)) while selecting filters for studies performed in
humans and containing expression profiling by high-throughput sequencing or non-coding
RNA profiling by high-throughput sequencing. Then, the suitable datasets were selected
using the same criteria used for RNA-seq meta-analysis.

2.2. Quantification of Long Non-Coding RNA (lncRNA) and Protein Coding Gene (PCG)
Sequencing Abundance Using RNA-Seq Data

The sequencing data of the selected studies was downloaded by Prefetch and converted
into FASTQ files using the fastq-dump tool of the SRA Toolkit software v2.11.0 [22,23].
Then, the reference sequences of lncRNA and protein-coding transcripts were downloaded
from the most complete annotated non-coding RNA databases, NONCODE (v6; [24]), for
lncRNAs and Ensembl for PCGs (release 104; [25]), respectively. After merging the two
FASTA format files, 199,240 transcript sequences of 173,112 human lncRNA genes were
obtained from NONCODE. After removing the pseudogenes, quantification of the lncRNAs
and protein-coding genes was performed simultaneously by mapping the RNA-seq reads
of each study to the merged reference sequence (pseudoalignment) and calculating the
count values using Kallisto software v0.46.2 [26]. In addition to the default parameter
settings, the estimated average fragment length and the standard deviation of fragment
length were set to 200 and 20, respectively. Based on the annotation file Transcript2Gene,
transcript-level count values of lncRNAs were integrated using the R package tximport
v1.24.0 to calculate their corresponding gene-level count values.

Quality control was performed using the MetaQC module in the transcriptomic meta-
analysis R package MetaOmics, and the standardized mean difference (SMD) with its 95%
confidence interval (CI) was calculated. For dimension reduction, the MetaPCA module
was applied in MetaOmics to perform a meta-analytic approach of the principal component
analysis (PCA) algorithm of the four selected studies. To identify the significantly differen-
tially expressed lncRNAs and PCGs in glioblastoma tissues, the individual results of each
study were integrated by meta-analysis using the MetaDE module of MetaOmics for the four
selected studies. The normalization process used in this meta-analysis was performed using
a random-effects model (REM) for lncRNAs/PCGs with count ≥ 10 [23,27,28]. Differentially
expressed lncRNAs (DElncRNA) and differentially expressed PCGs (DEPCGs) were then
identified by selecting for lncRNAs/PCGs differentially expressed in at least three studies
(out of four), having valid Ensembl ID with FDR < 0.05 and having a z-value of ≥|4|.
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2.3. Identification of Overlap between DElncRNAs/DEPCGs and lncRNAs/PCGs in Publicly
Available Experimentally Verified Databases and TCGA-GBM Output

To further validate the DElncRNAs, a manual search of experimentally validated PCG
targets of DElncRNAs was performed by searching in two databases using the Ensembl
lncRNA ID: LncTarD v1 [29] and LncRNA2Target v3.0 [30]. For RNA-seq/microarray
experiments, targets were selected to have adjusted p values < 0.01. In case listed targets
had an adjusted p < 0.01, all listed targets were selected. After the manual search, overlap
between DEPCGs and search-identified PCGs was recorded.

Finally, we investigated the overlap of DElncRNAs and DEPCGs from our meta-
analysis with those identified from the TCGA-GBM database, as supplied by LncTard v1
and OncoDB v1.0 (oncodb.org), respectively [29,31]. In LncTard, differential expression
patterns of lncRNAs in the TCGA pan-cancer dataset were downloaded and only the
expression patterns of the TCGA-GBM cohort were considered. Furthermore, output was
filtered according to adjusted p value < 0.01. TCGA-GBM expression data were downloaded
from the data download portal of OncoDB wherein log2 fold change values of tumor and
matched normal (control) RNA-seq data had been calculated [31]. Gene overlap between
DEPCGs and TCGA-GBM PCGs was then recorded (Figure 1).

2.4. Pathway Analysis of DElncRNAs and DEPCGs

The LncRNAs2Pathways R package LncPath v1.1 was used to identify the functional
pathways of supplied lncRNAs, based on identifying the pathways of associated protein-
coding genes (PCGs) [32]. Shortly, the Ensembl IDs of the DElncRNAs were queried using
the LncPath function in the KEGG and Reactome databases [33,34]. Only pathways with
FDR < 0.05 were considered significant.

For pathway analysis and protein-protein interactions, DEPCGs were uploaded to
STRING v11.5 (Search Tool for the Retrieval of Interacting Genes/Proteins) online public
database (https://string-db.org/ (accessed on 3 March 2022 )) [35].

For visualization of the identified DEPCG-enriched pathways, the STRING network
produced by analysis of DEPCGs was imported into Cytoscape 3.9.0 [36]. Using the
String app v1.7.0 in Cytoscape, we imported the PPI network of DEPCGs, performed
STRING enrichment and visualized the identified KEGG and Reactome pathways using the
EnrichmentMap v3.3.3 app with an edge cut-off of 0.4 and p < 0.05. To simplify the resultant
STRING network, the Molecular Complex Detection (MCODE v2.0.0) app was used to
detect densely connected regions in networks and thus identify the biggest DEPCG clusters
containing ≥ 10 members [37]. The cluster-finding cutoff parameters were as follows: a
p-value cutoff of 0.05 and an edge (the degree of gene overlap that exists between two gene
sets) cutoff of 0.4.

2.5. Co-Expression Analysis of DElncRNAs and DEPCGs and Identification of Highly Connected Nodes

Using the normalized counts of DElncRNAs and DEPCGs, a lncRNA-mRNA co-
expression network was built to identify the relationships between DElncRNAs and DE-
PCGs. We filtered DElncRNAs and DEPCGs to build the network according to the Pearson
correlation coefficient (r) > |0.7| with p < 0.05. Visualization of the DElncRNAs/DEPCGs
correlation was performed using the Metscape v.3.1.3 app from Cytoscape software v.3.9.0.
Highly connected nodes that had ≥10 DElncRNAs/DEPCGs were identified by clustering
the co-expression network using MCODE.

2.6. Small RNA-Seq of Glioblastoma and Control Tissue Samples

Freshly frozen brain tissue samples from patients with glioblastoma (n = 17) and tumor-
adjacent normal tissue controls (n = 3) were collected from the Biobank Antwerp (University
Hospital of Antwerp (UZA), Antwerp, Belgium; ID: BE 71030031000) [38]. These tissue
samples were residual material collected within the opt-out system, as stated in the Belgian

https://string-db.org/
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law of 19 December 2008 whereby residual material may be used for translational research.
The study was approved by the local medical ethics committee (Contract number: BB20079).

Total RNA, including microRNAs (miRNAs), was isolated from the glioblastoma
tissues and normal controls using the miRNeasy Serum/Plasma kit (Qiagen, Hilden, Ger-
many) according to the manufacturer’s protocol. Total RNA was eluted in a volume of
30 µL RNase-free water. Concentration, purity and integrity of the RNA were determined
by spectrophotometry (Little Lunatic, Unchained labs, CA, USA) and the Agilent 2100 Bio-
analyzer/Agilent RNA 6000 Nano Kit (Agilent, CA, USA). Library preparation for small
RNA-seq and sequencing on Illumina HiSeq of total RNA was performed by GENEWIZ
Inc (GENEWIZ, NJ, USA).

Functional enrichment of the identified differentially expressed miRNAs (DEmiRNAs)
was performed by importing the Ensembl IDs (ENSG00000283203, ENSG00000207990,
ENSG00000207691, ENSG00000208003, and ENSG00000199158 for miR-1246, miR-182, miR-
183, miR-549a and miR-96, respectively) into g:Profiler [39]. G: Profiler is a web server
offering Gene Ontology (GO) and pathway enrichment analysis resulting from mining
high-throughput genomic data [40].

2.7. Prediction of Interacting miRNAs of DElncRNAs and DEPCGs in Publicly Available
Experimentally Verified Databases

DElncRNA-interacting miRNAs were investigated by supplying our DElncRNAs list
into DIANA-LncBase v3.0, which provides a free repository of experimentally supported
miRNA targets of lncRNAs [41]. DEPCG-interacting miRNAs were investigated by supply-
ing our DEPCG list into mirTarBase v9.0, which provides the most current miRNA–target
interactions by comparisons with other similar databases, such as TarBase, miRecords
and miR2Disease [42,43]. Overlap between database-identified interacting miRNAs and
differentially expressed miRNAs in glioblastoma tissue samples was identified (Figure 1).

3. Results
3.1. Four Glioblastoma RNA-Seq Datasets Were Selected for Meta-Analysis

Using keyword search and quality filtering, we identified four glioblastoma tissue-
related RNA-seq datasets, including: GSE59612, GSE62731, GSE86202 and GSE165595.
From the two-dimensional PCA plots of the four selected studies (Figure 2), little variation
was found between the glioblastoma tissue samples in each study; however, distinct varia-
tion from controls was revealed. After examining the quality control parameters calculated
by the MetaQC module, which included internal quality control (IQC), accuracy quality
control of gene (AQCg), consistency quality control of gene (CQCg) and standardized mean
rank (SMR), no studies were excluded from our analysis.

After analyzing the homogenized data using the bias-resilient random-effects model
(REM), LncRNA abundance was quantified in the 84 samples from the four selected studies.
In total, 11,900 lncRNAs and 15,365 PCGs were identified from REM meta-analysis. We
further limited our downstream validation by selecting lncRNAs differentially expressed in
at least three studies (out of four), having Ensembl ID, FDR < 0.05 and a z-value (weighted
effect size) of ≥|4|. Consequently, we identified 98 DElncRNAs and 360 DEPCGs fulfilling
these criteria. Details of the selected datasets can be found in Table 1; the full selection steps
and identified DElncRNAs and DEPCGs are detailed in Supplementary file S1.
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Figure 2. Output from the MetaPCA analytical module of the MetaOmics package showing principal
component analyses (PCA) plots for the four selected studies (C: normal tissue controls, GBM: glioblastoma).

Table 1. Details of studies fulfilling the predefined criteria with quality control measurements as
supplied by the MetaOmics MetaQC module. IQC, internal quality control; AQCg, accuracy quality
control of gene; CQCg, consistency quality control of gene; SMR, standardized mean rank.

Study Dataset Platform Sample Size IQC AQCg CQCg SMR Reference

1 GSE59612 Illumina HiSeq 2000 22 glioblastoma tumor
tissue, 22 controls 5.6 61.25 145.18 1.67 [18]

2 GSE62731 Illumina HiSeq 2000 2 glioblastoma tumor
tissue, 2 controls 3.3 2.49 52.78 3.33 [19]

3 GSE86202 Illumina HiSeq 2500 3 glioblastoma tumor
tissue, 3 controls 1.3 2.66 17.74 3.67 [20]

4 GSE165595 Illumina HiSeq 4000 15 glioblastoma tumor
tissue, 15 controls 5.6 23.08 240.99 1.33 [21]

3.2. Two DElncRNAs (DANCR and SNHG6) and 222 DEPCGs Were also Differentially
Expressed in the TCGA-GBM Cohort

Overlap between the list of DElncRNAs and DEPCGs with the TCGA-GBM cohort
identified two DElncRNAs (DANCR and SNHG6) and 222 DEPCGs (detailed list available
in Supplementary file S1).



Cancers 2022, 14, 5788 8 of 21

Of these 222 DEPCGs, 14 were identified as experimentally validated targets of
DANCR during our manual search of experimental databases LncTarD and LncRNA2target
(ROCK1, ZWILCH, RPGR, GK, ZNF460, METAP2, CIP2A, ASAH1, ZNF528, C5orf15,
QTRT2, STX2, MAP3K2 and CNTRL). Literature-based functionality of these 14 DEPCGs
showed that several of these were previously implicated in glioblastoma pathogenesis
(Supplementary file S3).

3.3. Pathway Analysis of DElncRNAs Reveals Several Glioblastoma-Associated Pathways

Pathway analysis identified four KEGG and 37 Reactome significantly enriched path-
ways (FDR < 0.05) that were associated with DElncRNAs (Supplementary file S1). The top
pathways according to the normalized enrichment scores were glycoprotein-related path-
ways (O-glycan biosynthesis, O-linked glycosylation of mucins, termination of O-glycan
biosynthesis and HS-GAG degradation of glycoprotein), the Fanconi anemia pathway,
the glutamate neurotransmitter release cycle, interaction between L1 and ankyrins and
SRP-dependent cotranslational protein targeting to membrane, which have been previously
associated with glioblastoma [44,45]

3.4. DEPCGs Show a Highly Connected PPI Network with Several Enriched
Glioblastoma-Linked Pathways

Analysis of DEPCGs using STRING databases produced a highly connected protein-
protein interaction network (PPI) (Supplementary file S2). Functional enrichment of the
produced PPI network identified a number of significantly enriched KEGG and Reactome
pathways (FDR < 0.05) (Figure 3) e.g., nonsense-mediated decay (NMD), L13a-mediated
silencing of ceruloplasmin expression, EIF2AK4 response to amino acid deprivation, regu-
lation of expression of SLITs and ROBOs and selenocysteine synthesis.
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Figure 3. Enrichment map of KEGG (dark pink nodes) and Reactome (light pink nodes) pathways
of DEPCGs as indicated by STRING enrichment in Cytoscape. The thickness of a line indicates the
strength of the interaction between the proteins it connects.

Clustering of the PPI network into individual clusters containing ≥ 10 DEPCGs yielded
only one cluster that showed nearly identical functional enrichment as the parent PPI.
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Pathway enrichment overlap between DEPCGs and DElncRNAs revealed several
overlapping pathways (Table 2). From these, NMD and SRP-dependent cotranslational
protein targeting to membrane have been associated with glioblastoma. However, others,
such as influenza viral RNA transcription and replication, have not been directly associated
with glioblastoma.

Table 2. Significantly enriched pathways associated with both DElncRNAs and DEPCGs (FDR < 0.05)
as identified by LncPath R package and STRING database, respectively.

Database Overlapping DElncRNA/DEPCGs Associated Pathways (FDR < 0.05)

KEGG Ribosome

Reactome

Translation
Peptide Chain Elongation

Influenza Viral RNA Transcription And Replication
Nonsense-Mediated Decay Enhanced By The Exon Junction Complex

SRP-dependent co-translational protein targeting to membrane

3.5. Three DEmiRNAs Identified by Small RNA-Seq of Glioblastoma Tissue Overlap with Predicted
DElncRNA and DEPCGs-Interacting miRNAs

The glioblastoma-related small RNA-seq dataset search yielded 41 datasets. After
applying filtering criteria, none of these datasets qualified for inclusion in our analyses.
Search results and rejection criteria are detailed in Supplementary file S1. Subsequently,
analysis of small RNA-seq of glioblastoma tumor tissue and controls identified several
differentially expressed miRNAs, of which five were significantly differentially expressed
miRNAs (DEmiRNAs): hsa-miR-1246, hsa-miR-182-5p, hsa-miR-183 (-3p and -5p), hsa-
miR-549a and hsa-miR-96-5p (p < 0.05). Functional enrichment of DEmiRNAs identified
an enrichment in several GO: Biological Processes, which were all associated with the
traditional miRNA roles in post-transcriptional regulation as well as enrichment of the
KEGG pathway “MiRNAs in cancer” (Supplementary file S3).

From mirTarBase, 2050 unique miRNAs were identified as interacting miRNAs of
DEPCGs by one of the following methods: reporter assay, western blot, qPCR, microarray,
pSILAC, NGS, other validation methods or CLIP-Seq. From LncBase, 299 unique miRNAs
were identified as interacting miRNAs of DElncRNAs. Detailed output of mirTarBase
and LncBase search results of DEPCGs and DElncRNAs, respectively, can be found in
Supplementary file S1.

Overlap between DEmiRNAs and predicted interacting miRNAs of DElncRNAs and
DEPCGs identified three miRNAs: hsa-miR-182-5p, hsa-miR-183 (-3p and -5p) and hsa-miR-
96-5p, which were previously identified as experimentally validated targets of DANCR
and SNHG6.

3.6. Co-Expression Analysis Identifies 4 Clusters of DElncRNAs/DEPCGs

Analysis of co-expression of DElncRNA and DEPCGs revealed 15731 correlation
pairs having r ≥ |0.7| and p < 0.05 supplied in Supplementary file S1. Clustering of the
network using MCODE default settings into clusters containing ≥10 members yielded
four individual clusters of which the first cluster was further clustered into three main
sub-clusters (Supplementary file S3).

Pathway analysis of the individual clusters and sub-clusters revealed that only one
sub-cluster (Figure 4) (containing DANCR and SNHG6) was responsible for the majority
of the enriched pathway associations identified for DEPCGs and DElncRNAs, e.g., L13a-
mediated silencing of ceruloplasmin expression, regulation of expression of SLITs and
ROBOs and selenocysteine synthesis, EIF2AK4 response to amino acid deprivation and
NMD (Supplementary file S1).
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Figure 4. The DANCR/SNHG6 sub-cluster of DElncRNA-DEPCG (blue and pink circles, respec-
tively) co-expression correlation network produced was visualized using MCODE in Cytoscape,
supplemented with interacting DEmiRNAs (green circles) as supplied by mirTarBase and LncBase
databases. STRING enrichment analysis of this sub-cluster shows strong similarity with DEPCG
enrichment, thereby denoting sub-cluster relevance.

4. Discussion

Previous meta-analyses have elucidated previously unexamined relevance to specific
pathways as well as aided in the identification of candidate biomarkers [46,47]. Meta-
analyses have advantages over single studies of effect consistency with enhanced statistical
power [48]. Therefore, we performed a meta-analysis of publicly available RNA-seq
glioblastoma datasets of non-recurrent glioblastoma and control samples from the same pa-
tient. In this manner, 98 DElncRNAs and 360 DEPCGs were identified. We also performed
small RNA-seq of glioblastoma tissues and normal controls.

4.1. Meta-Analysis of Glioblastoma RNA-Seq Datasets
4.1.1. DElncRNAs

The top five identified DElncRNAs according to absolute weighted-effect size included
four DElncRNAs that had no previously characterized roles in glioblastoma; RNFT1-DT,
ENSG00000233184, ENSG00000268205 and ENSG00000268362, as well as glioblastoma
prognostic biomarker MROCKI (LINC01268) [49]. Due to the high differential expression
of these DElncRNAs, future studies determining their specific roles in glioblastoma could
reveal novel involvements.

Functional enrichment of the full 98 DElncRNAs revealed over 30 significantly en-
riched pathways previously identified in glioma, including pathways associated with O-
glycans (O-glycan biosynthesis, O-linked glycosylation of mucins, termination of O-glycan
biosynthesis and HS-GAG degradation of glycoproteins), the Fanconi anemia pathway, the
glutamate neurotransmitter release cycle, insulin receptor recycling, interaction between
L1 and ankyrins as well as transferrin endocytosis and recycling (Supplementary file S1).
O-glycans are found on glycoproteins, of which mucins are the main class, which regulate
protein folding, stability and trafficking, and also mediate many cell-cell interactions [50,51].
Many cancers express altered mucin-type O-glycans (reviewed in [52]) including glioma
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where aberrant glycosylation of tumor glycan-rich extracellular matrix promotes tumor
progression and treatment resistance [44]. On the other hand, the Fanconi anemia (FA)
pathway relates to DNA damage repair processes of lesions in the replication fork which
impede replication [53]. This pathway is reactivated in glioblastoma, mediating survival of
the mutated cells and thereby accelerating carcinogenesis [45,53]. Alternately, glutamate
is produced in glioma cells as a byproduct of glutathione synthesis, leading to tumor
expansion and invasion [54,55]. Insulin receptor recycling frees insulin receptors to en-
gage in downstream signaling regulating cell proliferation, which worsens glioblastoma
prognosis and mediates treatment resistance [56]. L1 cell adhesion molecule (L1cam) is a
neural adhesion molecule whose levels have been shown to associate with glioblastoma,
and its knockdown can suppress glioma stem cell growth [57,58]. Finally, transferrin is a
glycoprotein responsible for iron ion delivery that is overexpressed in glioblastoma, leading
to increased cell proliferation and worsening prognosis [59].

4.1.2. DEPCGs

Similarly, the top five DEPCGs according to weighted effect size included ATF6,
AHCTF1, ZCCHC10, ZNF234 and IFNGR2. Of these, only ATF6 and IFNGR2 have been
previously associated with glioblastoma viability and treatment resistance, while the re-
maining three have only been identified in other cancer types, which encourages further
investigations [60–65]. Moreover, several significantly enriched pathways were identified
by pathway-enrichment analysis of the 360 DEPCGs (Figure 3), such as nonsense-mediated
decay (NMD), ceruloplasmin expression, selenocysteine synthesis, SLIT/ROBO signal-
ing, as well as EIF2AK4 and Hedgehog signaling. NMD functions to eliminate truncated
mRNA transcripts resulting from premature termination codons (PTCs), protecting against
their dominant negative effect on the functional wild-type alleles [66]. Inhibition of NMD
regulates tumorigenesis and stemness properties in glioma stem cells [67]. Ceruloplasmin
is a copper-binding protein which regulates iron efflux [68]. In glioblastoma, ceruloplasmin
leads to excessive extracellular iron with subsequent oxidative stress, impacting blood-brain
barrier integrity [69]. Another enriched pathway was synthesis of selenocysteine which
is a selenium containing amino acid incorporated in anti-oxidant selenoproteins, such as
glutathione peroxidases, and has been shown to induce apoptosis of glioblastoma cells
in vitro [70,71]. On the other hand, Slits (ligands) and Robos (receptors) are glycoproteins
involved in several cell signaling pathways including axon guidance, cell proliferation,
cell motility and angiogenesis (reviewed in [72]). The effects of Slit/Robo signaling in
glioblastoma are not clearly characterized. On the one hand, Slit2 expression is suppressed
in glioma cells and intracranial mice xenografts with forced expression hampering glioma
cell migration and invasion [73]. On the other hand, Slit2 knockdown in mouse glioma
cells and patient-derived GBM xenografts decreased tumor growth and increased treat-
ment resistance [74]. In either case, Slit2 levels seem to influence glioblastoma growth
and treatment resistance; however, further research is needed to elucidate its exact role.
Alternately, EIF2AK4, eukaryotic translation initiation factor 2 alpha kinase 4, is activated
by metabolic stress signals to induce global protein translation inhibition and cell survival
control [75]. Normally, as tumor growth progresses, access to nutrients such as amino
acids decreases, which activates EIF2AK4 to induce downstream effects of increased tumor
cell survival and treatment resistance [76,77]. This was shown in our pathway analysis
by the identification of the involvement of amino acid metabolism and peptide chain
elongation pathways. Finally, the Hedgehog pathway is essential during development
for intercellular communication, organogenesis, regeneration and homeostasis [78]. The
exact mechanisms of Hedgehog pathway tumorigenic activity are reviewed in [79,80].
In glioblastoma, Hedgehog pathway inhibitors were shown to decrease cancer stem cell
growth and drug resistance [81,82].
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4.2. Small RNA-Seq of Glioblastoma Tissues and Normal Controls

In the current study, small RNA-seq identified five differentially expressed microRNAs
(DEmiRNAs): miR-1246, miR-182-5p, miR-183 (-3p and -5p), miR-549a and miR-96-5p.
Functional enrichment of these DEmiRNAs was uninformative. However, each of these five
DEmiRNAs has been previously identified in glioblastoma. Increased exosomal miR-1246
expression was found to promote a pro-oncogenic immunosuppressive microenvironment,
while it was associated with a higher glioma recurrence rate in postoperative patients [83].
Previous studies also linked miR-182-5p to glioblastoma tumorigenesis, angiogenesis and
metastasis [84,85]. Alternatively, mir-183 is a TGFβ-induced miRNA which also contributes
to the immunosuppressive glioma microenvironment [86,87]. In fact, miR-183-5p has been
proposed to be a prognostic biomarker of glioblastoma progression [88,89]. Similarly, mir-
549a was previously shown to be of prognostic importance in tumors of glial origin [90].
Finally, miR- 96-5p was found to be upregulated in glioma cells, with effects on proliferation
and metastasis [91]. Upregulation of miR-96 was also found to promote radioresistance
in T98G glioblastoma cells [92]. Interestingly, miR-182, miR-183 and miR-96 are located
within less than 4.5 kbp of one another and comprise the miR-183/96/182 cluster [87].
This miR-183/96/182 cluster was associated with the progression from low- to high-
grade glioma (glioblastoma) while knockdown of this cluster in glioblastoma inhibited
cell survival [87,88].

4.3. Overlap with Glioblastoma-Relevant Databases

Overlap of our DElncRNA and DEPCGs with The Cancer Genome Atlas glioblastoma
(TCGA-GBM) patient cohort output yielded two lncRNAs (DANCR and SNHG6) and
222 DEPCGs (Supplementary file S1). DANCR is an oncogenic lncRNA which induces
several cancer-promoting effects, such as promotion of angiogenesis and epigenetic si-
lencing of tumor-suppressors; it also regulates cancer-promoting signaling pathways such
as the Wnt/β-catenin, JAK/STAT, Notch, and PI3K/AKT pathways (reviewed in [93]).
Due to its pan-oncogenic effect, DANCR has been considered to be a candidate cancer
therapeutic target [94,95]. In glioma, DANCR knockdown leads to decreased proliferation
and migration [96]. The oncogenic effects of DANCR seem to be caused mainly by its role
as a competing endogenous RNA (ceRNA), which binds miRNAs competitively, thereby
influencing miRNA capacity to inhibit mRNA translation [95]. In glioma cells, DANCR
was shown to act as ceRNA to miR-634, a miRNA shown to increase glioma cell sensitivity
to temozolomide [97,98]. DANCR was also shown to promote cisplatin resistance via
ceRNA-mediated inhibition of sponging miR-33a-5p, miR-33b-5p, miR-1-3p, miR-206, and
miR-613 with resultant activation of the AXL/PI3K/Akt/NF-κB signaling pathway [99].

Similarly to DANCR, SNHG6 was shown to promote glioma progression via a sim-
ilar ceRNA activity by interfering with glioma-relevant miRNAs: miR-543 and miR-101-
3p [100,101]. SNHG6 was also shown to promote glioma malignant progression by inducing
histone modifications in tumor suppressor genes [102].

Of the 222 DEPCG overlapping with TCGA-GBM, 14 were identified to be DANCR-
regulated by searching of LncRNA2Target and LncTard databases. Literature-based func-
tionality of these 14 DEPCGs showed that several of them were previously implicated
in glioblastoma proliferation, invasiveness and treatment resistance (Supplementary file
S3), thereby explaining some of the pro-tumorigenic effects of DANCR. For the remain-
ing seven DEPCGs (ZWILCH, RPGR, ZNF460, ZNF528, QTRT2, C5orf15 and CNTRL),
no previous functional associations were found with glioblastoma progression, despite a
number of them being associated with other cancer types [103–107]. Future investigations
into potential previously unaddressed roles of these genes could reveal new players in
glioblastoma pathogenesis.

Due to the study selection process and applied filtering criteria, the data from the
Ivy Glioblastoma Atlas (IVY GAP) [108] and Chinese Glioma Genome Atlas (CGGA) [109]
were not included in our assays (both not being in case-control format). However, in
CGGA, the co-expression correlation between the two TCGA-GBM overlapping DElncR-
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NAs (DANCR and SNHG6) and three DEmiRNAs (miR-96, miR-182 and miR-183) was
assayed through the ‘Analyze’ portal on the CGGA website (http://www.cgga.org.cn/,
accessed on 22 November 2022). In the CGGA RNA-seq datasets, DANCR expression
showed a significant medium correlation to SNHG6 expression (R = 0.446 and 0.449 for
dataset mRNAseq_693 and mRNAseq_325, respectively, p < 0.001 for both) (Supplemen-
tary file S3). Using the CGGA miRNA array dataset, a significant strong correlation was
identified between the three miRNAs (miR96/miR182: R = 0.721, p < 0.001, miR96/miR183:
R = 0.745, p < 0.001 and miR182/miR183: R = 0.937, p < 0.001) which is unsurprising as
they form the miR-183/96/182 cluster (Supplementary file S3). This confirms the strong
interaction between DANCR and SNHG6, as well as between the DEmiRNAs in the miR-
183/96/182 cluster in CGGA, as was replicated by our analyses.

4.4. Co-Expression Correlation Network Construction and Functional Enrichment

A co-expression network was also constructed to identify DElncRNA/DEPCG highly
interacting pairs with possible functional associations. A strong correlation was found
between DANCR and SNHG6 expression (r = 0.76 and p < 0.001), which confirms the
similar correlation observed in CGGA datasets.

In addition, clustering of the co-expression network and pathway analysis of the identi-
fied clusters and sub-clusters revealed that the sub-cluster containing DANCR and SNHG6
was responsible for a majority of the pathway enrichments of the 360 DEPCGs. Interestingly,
both DANCR and SNHG6 are targets of the miR-183/96/182 cluster in the DIANA-LncBase
database, which suggests a possible DElncRNA/DEmiRNA interplay in glioblastoma. In
addition, two novel DElncRNAs (ENSG00000278133 and ENSG00000277801) were found
to belong to this cluster. The high degree of interactions between these two DElncRNAs
with the DEPCGs sub-cluster members suggests a possible novel relevance in glioblastoma,
thereby necessitating future research.

Seven DEPCGs in the DANCR/SNHG6 sub-cluster were also differentially expressed
in TCGA-GBM, while being involved in ≥20 of the identified enriched pathways of the
sub-cluster. These genes were ribosomal proteins RPS11, RPL5, RPL10, RPL24, RPL14,
RPL36A and RPL32. Only RPS11 and RPL36A were previously found to be beneficial in
glioma as prognostic predictors [110–114]. Therefore, it may be useful to examine the exact
roles of the remaining unexplored DEPCGs in glioblastoma.

4.5. Literature-Based Associations of the Identified Pathways: Deducible Involvement of Ferroptosis?

Literature-based research of the DElncRNA and DEPCG-enriched pathways led to
the identification of their shared association with the novel cell death pathway, ferropto-
sis [115]. Ferroptosis is a recently discovered intracellular iron-dependent form of cell death
characterized by the overproduction of reactive oxygen species (ROS) and accumulation
of lipid peroxidation, leading to cell death [116]. As glioblastoma cells have higher ROS
and iron accumulation than healthy tissues, they are especially susceptible to death by
ferroptosis [117,118]. As a result, ferroptosis induction inhibits glioblastoma tumor growth,
improves patient survival and increases the efficacy of radio- and chemotherapy, thereby
providing adjuvant antitumor options [119,120].

Ferroptosis was shown to be regulated by DElncRNA-enriched pathways, protein O-
glycosylation as well as glutamine, glutamate and transferrin [121–124]. On the other hand,
ferroptosis was previously shown to be influenced by DEPCG-enriched pathways, induced
by glutathione peroxidase suppression (selenocysteine-containing enzyme) and SMG9 (a
component of the NMD machinery) and inhibited by ceruloplasmin and Hedgehog path-
way activation [125–131]. EIF2AK4 was also identified in a ferroptosis-associated gene sig-
nature in glioma [132], while concurrent dysregulation of ferroptosis and the SLIT/ROBO
signaling pathway has been associated with low-grade endometrial cancer [133]. Con-
sequently, the identified DElncRNAs/DEPCGs seem to suggest an association between
glioblastoma and ferroptosis in our analyzed datasets.

http://www.cgga.org.cn/
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As the DANCR/SNHG6 sub-cluster possesses similar enrichments to the identified
DEPCG pathways, we investigated whether these sub-cluster members had identifiable
associations with ferroptosis. Both DANCR and SNHG6 were previously associated with
ferroptosis [134,135]. Some of the DEPCG members of the sub-cluster have also been
shown to regulate ferroptosis (Supplementary file S3). However, the majority of the sub-
cluster members had no previous connections to ferroptosis. Consequently, due to the
high interaction between this sub-cluster and its enriched pathways, this sub-cluster could
identify future candidates for glioblastoma biomarkers or treatment modulators.

To further confirm this connection, we also investigated whether the DEmiRNAs had
previous associations with ferroptosis. All DEmiRNAs in the miR-183/96/182 had been
previously associated with ferroptotic processes in the literature [136–138]. However, the
exact involvement of these DEmiRNAs in ferroptosis processes in glioblastoma is currently
under-researched. Therefore, future studies could reveal a role for these DEmiRNA in
modulation of glioblastoma responsiveness to treatment.

4.6. Limitations

Our study does have some limitations. Firstly, only four glioblastoma datasets were
included in our analysis, due to the study selection criteria. Quality assessment (MetaQC)
of the included studies resulted in the inclusion of all four studies in our analyses, despite
the low sample size in certain instances. However, we attempted to overcome this limitation
by overlapping our findings with larger glioblastoma datasets, such as TCGA and CGGA.
Secondly, glioblastoma can be sub-classified into proneural, neural, mesenchymal, and
classical according to differential gene expression profiles, as well as the mutation status
of certain key genes including platelet-derived growth factor receptor (PDGFRA), neu-
rofibromatosis type 1 (NF1) and epidermal growth factor receptor (EGFR) [139,140]. Also,
recent WHO updates to CNS tumor nomenclature have limited glioblastoma classification
to IDH-wildtype adult-type diffuse gliomas [2]. Unfortunately, only two of our included
studies contained detailed information about the subclass of the assayed glioblastoma
tumors and thus these classifications could not be included in our analyses. We attempted
to overcome this heterogeneity by employing a random-effects model (REM), which com-
bines the effect size of the individual studies using a simple linear model with sampling
error, while assuming a possible random effect on the effect size of each study [141,142].
However, repeat analyses of previously published datasets after reclassification, according
to the current guidelines, could offer novel insights and warrant further research. Thirdly,
the limited residual glioblastoma tissue available impacted the number of possible wet-lab
validations. Therefore, we recommend the validation of the promising DElncRNA and
DEPCG candidates in independent glioblastoma sample cohorts. Finally, our study ana-
lyzed RNA-seq of glioblastoma tissues, which involves an invasive sampling procedure
that is unsuitable for regular treatment monitoring. Further studies addressing the need
for circulating glioblastoma biomarkers are thus of particular interest, with a specific focus
on ncRNA due to their relatively higher stability [143,144]. Consequently, further research
addressing the usefulness of the identified DElncRNAs and DEmiRNAs as candidate
biomarkers and their utilization for routine monitoring is required.

5. Conclusions

In this study, we have presented DElncRNAs/DEPCGs which were identified by
overlap with a TCGA-GBM cohort and experimental databases, or by inclusion in the most
pathway enriched sub-cluster in our co-expression network (also interacting with three
of the identified DEmiRNAs). We reviewed the literature for the DElncRNAs/DEPCGs
associations with glioblastoma. For some DElncRNAs/DEPCGs, no previous connections
to glioblastoma were found, which could provide starting points for future studies. Using
literature association of identified DElncRNAs/DEPCGs, we also found a reproducible
involvement of ferroptosis. Several identified DElncRNAs, DEPCGs and DEmiRNAs were
previously associated with ferroptosis, while the majority still require further investigation.
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In summary, our study identified a number of candidates for further investigation, while
demonstrating a recurring association of ferroptosis with identified glioblastoma pathways.

A summary of the main findings of our study can be found in Figure 5.
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