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Simple Summary: Recent advances in the state of the art for early cancer detection and therapy have
led to a paradigm shift in the way the disease is detected and treated. In particular, treatments have
become much more targeted and localized to minimize systemic body-wide side effects common
in traditional treatment methods such as chemotherapy. At the forefront of this revolution is the
utilization of plasmonic gold nanoparticles, which have gained increasing attention as a highly
effective nanoplatform ranging from drug delivery to plasmonics-enhanced treatments such as
photothermal therapy.

Abstract: In this paper, we highlight several advances our laboratory has developed in the pursuit
of cancer diagnostics and therapeutics by integrating plasmonics, photonics, and nanotechnology.
We discuss the development and applications of plasmonics-active gold nanostar (GNS), a uniquely
shaped nanoparticle with numerous branches that serve to greatly amplify the thermal generation
at resonant wavelengths. GNS has also been successfully used in tumor imaging contexts from
two-photon fluorescence to surface-enhanced Raman scattering (SERS) sensing and imaging. Finally,
GNS has been coupled with immunotherapy applications to serve as an effective adjuvant to immune
checkpoint inhibitors. This combination of GNS and immunotherapy, the so called synergistic
immuno photo nanotherapy (SYMPHONY), has been shown to be effective at controlling long-lasting
cancer immunity and metastatic tumors.
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1. Introduction

Cancer has become one of the most deadly diseases throughout the world, with
nearly 2 million new cases and over half a million deaths in the U.S. in 2022 alone [1,2].
Of the more deadly cancers, glioblastoma (GBM), is an especially devastating cancer of
the brain [3,4]. GBM patient survival rate is a rather dismal at 15 months, even after
treatments such as surgery, chemotherapy, and X-ray radiotherapy (XRT) [3,4]. Despite
enormous efforts, GBM is still a deadly disease with essentially 100% mortality, urging for
new treatment methods. Cancer detection has traditionally relied on techniques that can
penetrate thick tissue and produce images that delineate non-tumor tissue from normal
tissue based on its structure and density. Modalities such as computed tomography (CT)
and magnetic resonance imaging (MRI) are particularly effective in delineating tumor
masses from normal tissue, as cancer tissue often has an abnormal tissue density compared
with its local environment [5,6]. However, these modalities are often limited as they require
highly trained doctors and technicians who can interpret CT and MRI data to make a
diagnosis. Additionally, these methods require further interrogations of suspected tumors
via histopathology to ascertain the presence of cancerous growth [7].

To overcome these issues, optical modalities that probe the biomolecular composition
of the tissue itself have been developed to non-invasively diagnose cancer. Methods such
as absorption, fluorescence, and Raman spectroscopy are all modalities that can probe
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for the unique biochemical composition of cancer tissue, allowing for in vivo imaging
that provides a high molecular specificity [8–14]. The absorption and scattering optical
properties are distinct in different tissues and serve as the contrasting property of modalities
such as diffuse optical tomography (DOT) [9,15]. On the other hand, fluorescence arises
from the sum of different metabolic fluorescence molecules, which can serve as an effective
indicator for tumor tissues that have abnormal metabolic rates [10]. Raman spectroscopy is
the most specific as the spectral fingerprint of a molecule will have unique Raman peaks at
specific Raman shift values.

All of these methods can be utilized with minimal equipment and training, and
thus could be useful for rapid diagnostic imaging. However, intrinsic signal differences
between tumor and non-tumor tissue can be noisy. In the case of Raman spectroscopy,
other sources of signals such as fluorescence may overwhelm the weak Raman scattering
signal [16]. One way to overcome this limitation is to use a fluorescent or Raman dye
targeted to the tumor [17–19]. This can be achieved with methods such as antibody
targeting, but recently, nanoparticles have become an ideal choice as a delivery platform
as they can take advantage of the enhanced permeation and retention (EPR) effect in
which the leaky vasculature of tumor sites allows for nanoparticle accumulation to the
local tumor site [17,20]. Additionally, the use of gold, which is a biocompatible material,
allows for flexible chemical conjugation of drugs or dyes into these particles, allowing for
multifunctional uses of detection and treatment [18,21,22]. Gold nanoparticles, such as
gold nanoshells, have been used for photothermal ablation of prostate tumors in clinical
trials with no significant toxicities [23]. In addition, a first-in-human clinical study of
RNA interference-based spherical nucleic acids, which consist of gold nanoparticle cores,
was conducted in patients with recurrent glioblastoma and it revealed no grade 4 or
5 treatment-related toxicities [24]. Finally, these metallic nanoparticles have a unique
absorption signature that makes them ideal for targeted thermal therapy [20,25,26].

Here, we provide an overview of the development of the gold nanostar (GNS) and its
applications as a tumor imaging nanoplatform, ranging from its use as a diagnostic tool to
a highly specific tumor treatment modality.

1.1. Plasmonic Nanoparticles for Tumor Imaging and Treatment

Plasmonic-active nanosystems such as metallic nanostructures and nanoparticles have
recently seen a wide usage of applications ranging from diagnostics to therapy. Plas-
monics is a field associated with the induced oscillation of conduction electrons found
in metallic nanoscale structures using a source such as laser light. These electron oscil-
lations, or surface plasmons, produce a secondary electromagnetic field that augments
the incident electromagnetic field, resulting in a large electromagnetic field around the
nanostructure. Numerous plasmonic-active nanoparticles of different geometric shapes
and metallic compositions have been developed for tumor imaging. Gold nanospheres
have also been used and have seen applications ranging from photothermal generation
to drug delivery [27–29]. They have also been used as the core to larger nanoparticle con-
structs used in multimodal applications such as in ultrasound and photoacoustic imaging
coupled with fluorescence [30,31]. Other particles such as the gold nanoshell are specifi-
cally tuned to near IR absorption to allow for reaching maximal in-depth tissue for cancer
therapy [23,27,32–34]. Among the nanoparticles with different morphologies and shapes,
GNS is among the most effective nanoplatforms for its unique star-shaped geometry and
optical tunability [35–37]. The plasmonic E-field enhancement is concentrated around the
tips of each star, which act as a “lightning rod” that greatly exceeds the enhancement of
smoother particles such as nanospheres [38,39]. This electromagnetic (EM) field greatly
increases Raman scattering near the surface of the metal in what is known as surface-
enhanced Raman scattering (SERS), allowing for chemical species adsorbed on or near the
surface of the metal to have a very strong Raman signal. Our laboratory has developed a
variety of metallic nanoparticles for SERS applications in chemical analysis, sensing, and
diagnostics [40–43]. This EM field enhancement around the nanoparticle manifests in a
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highly absorbing nanoparticle that has a high photon-to-heat conversion [17]. Figure 1A
shows the GNS particle’s flexibility in absorption across different wavelengths, allowing
for possible tuning of the precise excitation laser for targeted photothermal therapy, which
minimizes off-target heating, while Figure 1B shows the transmission electron microscopy
(TEM) image of the GNS nanoparticles [35]. The two-photon luminescence (TPL) of GNS is
also greatly enhanced, which allows for label-free imaging and tracking of nanoparticles
in the vasculature [18,20,44]. Such a technique allows for GNS to act as a contrast agent,
which demonstrates the extravasation of nanostars in the brain.
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the particles are shown as white. Scale bar is at 50 μm (adapted from Ref. [18]). 

(A) (B) 

(A) (B) (C) 

Figure 1. (A) Absorption tunability of different sized gold nanostars with letters A–F corresponding
to nanostar sizes 45 nm, 52 nm, 57 nm, 72 nm, 94 nm, and 116 nm, respectively. (B) TEM image of
gold nanostar (adapted from Ref. [35]).

As a demonstration of theranostics, we developed a specially designed multifunctional
gold nanostar with multiple functionalities in detection (SERS, MRI, CT, and TPL) and
photothermal treatment (PTT), allowing for pre-operative macroscopic imaging as well
as photothermal therapy for post-operative treatment [18]. Furthermore, our group has
specifically developed a surfactant-free fabrication of GNS unlike many other similar gold
nanoparticle synthesis methods [37,39]. This allows for an even greater biocompatibility for
in vivo applications. Additionally, the surface can easily be functionalized with a variety
of other reporters for imaging modalities such as MRI [18]. Figure 2A shows the different
possible functionalization and coating options for GNS. Figure 2B,C demonstrates the
ability for this particle to accumulate within cancer cells (BT-549).
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Figure 2. (A) Multifunctional gold nanostar. (B,C) Two-photon luminescent images of nanoprobes
incubated within BT549 cancer cells after 4 h and 14 h, respectively. The nucleus is stained blue, and
the particles are shown as white. Scale bar is at 50 µm (adapted from Ref. [18]).
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We have also demonstrated that GNS can accumulate selectively in brain tumors
through a disrupted blood–brain barrier (BBB) using intracranial GBM murine animal
models [19,44]. As shown in Figure 3, GNS is localized around the surrounding tumor
interstitial space, vasculature, and lumen, suggesting that GNS nanoparticles penetrated
through the GBM vasculature following laser excitation [44]. From this work, we also
demonstrated that hyperthermia (HT) generated from GNS-enhanced photothermal treat-
ment can increase GBM vasculature permeability to improve drug delivery into the tumor.
Hyperthermia, a treatment whereby heat is applied to a tumor to increase the temperature
above the physiologic body temperature (~37 ◦C), can dramatically enhance BBB perme-
ability, allowing for the passage of large molecules and immune cells into heated tissues.
Laser-induced HT can increase GNS nanoparticles’ extravasation into GBM by using TPL
imaging and a murine animal model (Figure 3) [44]. Figure 4A shows GNS with black accu-
mulated selectively in the brain tumor 24 h after intravenous (IV) injection. We performed
a PET/CT scan with 124I-labeled GNS, and the measured brain tumor uptake was up to
7.2% ID/g 48 h after intravenous (IV) injection (Figure 4B). Two-photon photoluminescence
(TPL) imaging confirmed that GNS accumulated selectively in the brain tumor, but not in
the surrounding healthy brain tissue after IV injection (Figure 4C,D). In addition, we inves-
tigated the GNS’s subcellular location in GBM by using electron microscopy imaging. The
experimental results showed that the vasculature of GBM was disrupted and permeable
for GNS nanoparticles with a size of 50 nm. GNS can be identified in the lumen, blood
vasculature, and tumor interstitial space, indicating that GNS nanoparticles leaked through
the vasculature in GBM (Figure 4E). GNS nanoparticles were also found in the intracellular
vesicles within the GBM cell (Figure 4F).
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in significant quantities around blood vessels after 48 h (adapted from Ref. [44]).

In recent years, there has been growing interest in the development of various ap-
proaches of immunotherapy for cancer treatment. PTT-based treatment for cancer using
GNS effectively induces HT in localized areas where nanoparticles have accumulated (such
as around tumors). However, local treatment will potentially miss distant and not yet
found tumors, which may result in cancer remission. As such, PTT can be improved with
the introduction of immunotherapy as a combinatorial agent for better cancer therapy
effectiveness [26]. Immune checkpoint inhibitors have recently emerged as a promising
cancer treatment. Proteins such as Programmed Death Ligand 1 (PD-L1) are targeted in im-
munotherapies as they are responsible for the suppression of the immune system, notably
activated T cells, B cells, and myeloid cells [26,45–48]. The therapeutic anti-PD-L1 antibody
blocks this interaction with PD-L1 and its receptor PD-1 found on the surface of immune
cells, allowing for the activation of normal immune functions. Subsequently, this has led to
the promising benefit of long-term recognition of tumors by T cells, which will inevitably
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allow for the treatment of distant and metastatic tumors. To further augment this treatment
modality, we combined GNS-enabled PTT with immunotherapy in order to develop a novel
synergistic therapy. This two-stage treatment is referred to as Synergistic Immuno Photo
Nanotherapy (SYMPHONY) [26,49]. The first step in this treatment involved localized
PTT with NIR irradiation on GNS, which were absorbed into tumors through EPR. This
results in the thermal destruction of primary tumors. After this, antigen-presenting cells
(APCs) can record released tumor antigens including damage-associated molecular pattern
molecules (DAMPs) and heat shock proteins (HSPs) [50–52]. These APCs inevitably process
these tumor antigens and present them to T cells, which will attack primary and distant
cancer cells. The combination of GNS-PTT and immunotherapy acts in a synergistic manner
that ultimately results in long-term cancer cell recognition and metastatic tumor treatment.
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Figure 4. GNS selective accumulation in GBM after intravenous (IV) injection. (A) Mouse brain
sample image shows light-absorbing GNS in the brain tumor 24 h after IV injection. (B) PET/CT
shows 124I-GNS accumulation in the brain tumor 48 h after IV injection. Two-photon microscopy
shows GNS (white) only in the brain tumor (C), but not the healthy brain (D). Blue: nucleus. Red:
blood vasculature. Electron microscopy shows that GNS penetrated through brain tumor vasculature
(E) and were found inside the GBM cell (F) after IV injection (adapted from Ref. [19]).

We have continued this work on the study of in vivo interactions with nanoparticles
through intravital optical imaging through a dorsal skinfold window chamber animal
model [25]. Previously, we have shown immune cell accumulation within distant tumors
after the treatment of only the primary tumor, demonstrating the potential for an anti-cancer
vaccine-like effect where distant/metastatic cancer can be effectively treated. This treatment
scheme can be modelled using a dual flank tumor mouse model, where only one flank
is treated with PTT and then subsequently treated with anti-PD-L1 [26]. The other flank
tumor thus acts as the distant metastatic tumor model that is not photothermally treated
but is effectively eradicated by the resulting immune response following SYMPHONY.
Of particular note, neither PTT nor immunotherapy alone have shown effective long
lasting cancer withdrawal in these dual flank models, indicating that it is only through the
synergistic combination of GNS PTT and immunotherapy that a long-term vaccine-like
effect to cancer treatment can be achieved [26]. Figure 5A shows fluorescence imaging
that was used to demonstrate that stained immune cells selectively accumulated in the
untreated non-primary tumor of a dual flank tumor mouse model after SYMPHONY
treatment. Figure 5B shows a TPL image of the distant tumor site showing a wide mixture
of tumor cells, immune cells (monocytes and macrophages), and GNS.
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CX3CR1-GFP mice with the EGFP expression in immune cells. (A) 10× magnification fluorescence
images showing the accumulation of immune cells in the tumor under SYMPHONY photoim-
munotherapy. (B) TPL images showing the interaction between tumor cells (red), immune cells
(green), and GNS (white) in the distant tumor region (adapted from Ref. [25]).

1.2. Photothermal Therapy (PTT)

The GNS nanoparticles’ multiple sharp branches result in tip-enhanced plasmonics
for imaging and PTT [45,53,54]. Upon irradiation with a laser light source, the surface
electrons on the metal are thrown into oscillations and induce a strong EM force field.
These oscillating plasmons can be roughly modeled after the Drude model of electric
conduction at the nanometer scale. Previously, our group developed several models with
finite element software (COMSOL Multiphysics) to determine the bulk absorption profile
across different wavelengths [38,45,54]. This is particularly important as optical tuning
of GNS is possible by controlling the amount of gold or silver added in the synthesis
of the particles, and the peak absorption can be red or blue shifted depending on the
final size of the particles [35,37,39]. For example, adding more silver chloride reactant in
the synthesis notably red-shifts the peak absorption [39]. To this end, we developed GNS
targeted at the near-infrared (NIR) spectral range (700–1100 nm) within the so-called “tissue
optical window”, which corresponds to the wavelength range of least absorption by the
tissue [35,37,45].

The thermal treatment of tumors can be achieved conventionally using microwave or
high-intensity focused ultrasound. However, such methods are not suitable for deep-seated
tumors and off-target heating is often a problem. To circumvent this issue, we utilize GNS
to take advantage of the EPR effect and only allowed GNS to accumulate around the tumor
tissue. As gold nanoparticles are relatively inert, off-target accumulation is not a concern
and PTT will only occur in tissue directly irradiated by the laser. This NIR window is
particularly important as targeting this range allows for maximal tissue penetration by
the traveling photons and minimal absorption around the surrounding tissue. By using
the accumulated GNS as the heat nanogenerators selectively absorbed inside tumors via
the EPR effect, rather than heating the entire tissue itself, off-target heating can be greatly
reduced. In Figure 6, we used a Monte Carlo Photon Propagation model to directly visualize
a 2D slice of the absorption of tissue under specific excitation conditions [55]. We used the
optical properties of gray matter in glioblastoma (ua = 0.82 cm−1, us = 5.70 cm−1, g = 0.9)
as the tissue model under 1064-nm excitation [56]. With the addition of GNS, an additional
absorption sink is added into the Monte Carlo model and acts as new localized heat source,
where we demonstrate the dramatic increase in photon absorption in the tumor tissue area.
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the simulation.

1.3. Synergistic Immuno Photo Nanotherapy (SYMPHONY)

We used a bladder cancer murine animal model to demonstrate the proof of prin-
ciple that a combination of photothermal therapy with immunotherapy could generate
synergistic effects from the immune response triggering and tumor immune suppression
reversion to treat not only primary tumors, but also a distant tumor, used as a model
for cancer metastasis [26]. The principle of our SYMPHONY photoimmunotherapy is
shown in Figure 7A. Our GNS nanoparticles can accumulate selectively in the tumor due
to EPR. Moreover, the unique shape of GNS allows the nanoparticle to be highly efficient in
converting NIR light to heat and generate local high temperatures enough to selectively kill
cancer cells. In conjunction with the photothermal treatment, the anti-PD-L1 antibody is
also administered. This immunotherapy antibody is a highly specific molecule that inhibits
important molecular pathways that cancer cells use to suppress the immune response. As
shown in Figure 7B, tumors in the control group without any treatment grew quickly and
the mice died soon. For the mice with our SYMPHONY photoimmunotherapy, both the
primary tumor with the laser treatment and the distant tumor without laser treatment had
a significant growth inhibition (Figure 7C,D). The therapeutic efficacy of our SYMPHONY
treatment was most readily seen from the 80% tumor response rate and 20% complete cure
rate, indicating an effective long-term anti-cancer immune response. Preliminary murine
studies have shown that our novel two-pronged therapeutic approach was effective at
destroying the primary tumor where GNS-PTT was applied, as well as at distant untreated
cancer sites. It also triggered an anti-tumor immune memory that prevented tumor growth
in cured mice when they were re-challenged with a second injection of cancer cells (a
vaccine effect not observed in PTT or immunotherapy alone).
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2. Conclusions

Nanoplasmonics is a rapidly growing field for diagnostics and therapeutic applications.
Theranostics applications using the multifunctional abilities of GNS can be used in a variety
of ways ranging from non-invasive optical imaging to thermal treatment in combination
with immunotherapy. GNS can also be selectively functionalized and loaded with different
contrast agents for augmenting traditional cancer imaging techniques such as PET, MRI,
and CT. This ability to detect cancer naturally leads to the GNS particle’s strength as a
mediator for photothermal therapy, which can be selectively tuned to efficiently heat the
target tumor tissue after taking advantage of the EPR effect. Finally, GNS can be used
in conjunction with immunotherapy in the treatment of distant tumors by acting as an
immunoadjuvant. Such an anticancer “vaccine” effect is possible, as distant tumors are
effectively destroyed in SYMPHONY studies, wherein only one of the dual flank tumors on
mice is treated. Future studies will look into this combinatorial effect between photothermal
therapy and immunotherapy, with particular emphasis on the characterization of immune
cells involved in the treatment of recurring and distant metastatic tumors.
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