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Simple Summary: Currently, there is no effective method to detect the prognosis for hepatocellular
carcinoma (HCC). This study used bioinformatics techniques to determine HCC molecular subtypes
and prognosis-related biomarkers. A total of 3330 intersectional differentially expressed genes (DEGs)
with the same differential direction in four datasets were identified by differential expression analysis.
Intersectional DEGs were involved in the cell cycle, FOXO signaling pathway, and complement and
coagulation cascades. Then, two subtypes were identified using a non-negative matrix decomposition
method. Subtype C2 displayed better overall survival than subtype C1. Moreover, 217 prognostic
related-genes were identified using the Cox regression and Kaplan-Meier curves. The area under
the curve >0.80 of prognostic relate-genes were selected to construct random survival forest and the
least absolute shrinkage and selection operator model and obtained seven feature genes (SORBS2,
DHRS1, SLC16A2, RCL1, IGFALS, GNA14 and FANCI). Risk score model and recurrence model
were constructed based on feature genes, and FANCI was inferred as a key gene by univariate
Cox model. High expression of FANCI was mainly involved in cell cycle, DNA replication and
mismatch repair. Interestingly, Single Sample Gene Set Enrichment Analysis was used to quantify
immune infiltration and showed that Th2 cells and T helper cells were significantly up regulated
in HCC compared to controls. Furthermore, we found the presence of two mutation sites as well
as methylation modifications occurred in FANCI. Overall, we identified two types of HCC and
identified that FANCI will serve as a potential biomarker for HCC prognosis and be important to the
diagnosis and treatment of HCC.

Abstract: Bioinformatics tools were used to identify prognosis-related molecular subtypes and
biomarkers of hepatocellular carcinoma (HCC). Differential expression analysis of four datasets
identified 3330 overlapping differentially expressed genes (DEGs) in the same direction in all four
datasets. Those genes were involved in the cell cycle, FOXO signaling pathway, as well as complement
and coagulation cascades. Based on non-negative matrix decomposition, two molecular subtypes
of HCC with different prognoses were identified, with subtype C2 showing better overall survival
than subtype C1. Cox regression and Kaplan-Meier analysis showed that 217 of the overlapping
DEGs were closely associated with HCC prognosis. The subset of those genes showing an area
under the curve >0.80 was used to construct random survival forest and least absolute shrinkage and
selection operator models, which identified seven feature genes (SORBS2, DHRS1, SLC16A2, RCL1,
IGFALS, GNA14, and FANCI) that may be involved in HCC occurrence and prognosis. Based on
the feature genes, risk score and recurrence models were constructed, while a univariate Cox model
identified FANCI as a key gene involved mainly in the cell cycle, DNA replication, and mismatch
repair. Further analysis showed that FANCI had two mutation sites and that its gene may undergo
methylation. Single-sample gene set enrichment analysis showed that Th2 and T helper cells are
significantly upregulated in HCC patients compared to controls. Our results identify FANCI as a
potential prognostic biomarker for HCC.
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1. Introduction

Primary liver cancer is the fourth leading cause of cancer-related deaths worldwide,
and it shows remarkable histological and biological heterogeneity [1,2]. Hepatocellular
carcinoma (HCC) is the most common type, accounting for >90% of primary liver cancers [3]
and with a 5-year survival rate below 5% [4]. The major risk factors for HCC include
infection with hepatitis C or hepatitis B virus, excessive alcohol consumption, smoking,
and diet [5]. Genetic risk factors may interact with these environmental risk factors, such
as mutations in the genes CTNNB1 (encoding β-catenin), TP53, and AXINI [6].

Although early HCC can be treated surgically, recurrence or metastasis may still
occur [7]. One major reason is intratumoral heterogeneity, which reduces the efficacy of
current therapies against other cancers [8]. Sorafenib can significantly improve overall
survival (OS) in patients with advanced HCC, but it is extremely expensive and therefore
inaccessible to many patients [9]. Identifying genes that help predict HCC prognosis may
facilitate personalized treatment and management.

Since HCC is so heterogeneous, tumors in different regions of the body may represent
different subtypes [10]. These subtypes can differ in metabolic and signaling pathways,
leading to differences in patient survival [11]. For example, one study has identified three
HCC subtypes whose tumor microenvironments differ in terms of immune cell composi-
tions [12], and these differences can influence cancer progression [13,14]. However, only a
few studies have identified HCC subtypes based on a direct transcriptomic comparison of
tumor and non-tumor tissues.

In this manuscript, we used bioinformatics to compare gene expression between tumor
and non-tumor tissue in order to identify HCC molecular subtypes and biomarkers to
aid the prediction of prognosis. In addition, we used single-sample gene set enrichment
analysis (ssGSEA) to determine the levels of immune infiltration and characterize the tumor
immune microenvironment. Our study identified two molecular subtypes of HCC patients
and detected key genes that may serve as potential biomarkers and therapeutic targets for
HCC.

2. Material and Methods
2.1. Human Subject

In this study, six pairs of HCC and paired paracancerous normal tissue samples were
collected from six patients with pathological diagnosis of HCC at different clini-cal stages
from the Guangxi Medical University Cancer Hospital. Clinical follow-up found early
tumor progression in patients 2 (RFS 66 Days) and 5 (RFS 248 Days) after surgery. All
included patients consented to a sequencing and experimental protocol carried out for
all research procedures and the approval for these was provided by the ethics review
committee of the Guangxi Medical University Cancer Hospital (LW20221156).

2.2. Data Collection

In order to obtain the intersection genes and the main datasets that have more of the
same differentially expressed genes, we used more large samples for analysis in this study.
Gene expression profiles of 371 primary tumor samples, 3 recurrent tumor samples, and
50 normal tissue samples were downloaded from the liver hepatocellular carcinoma (LIHC)
dataset in The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/,
accessed on 17 September 2021) [15]. In the Gene Expression Omnibus (GEO) database
(http://www.ncbi.nlm.nih.gov/geo/, accessed on 17 September 2021) [16], we obtained
GSE14520 (Public on 1 December 2010), GSE76427 (Public on 26 May 2017), GSE25097
(Public on 5 July 2011), GSE138178 (Public on 13 July 2020), GSE84006 (Public on 21 June

https://portal.gdc.cancer.gov/
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2017), and GSE136319 (Public on 31 January 2021) datasets. GSE14520 included 225 HCC
tissues and 220 non-tumor tissues and was obtained based on the GPL3921 platform. The
GSE76427 dataset included 52 adjacent non-tumor tissues and 115 HCC tissues and was
obtained based on the GPL10558 platform, which obtained 93 males and 22 females, and
the range of ages were 14 to 93. GSE25097 was based on the GPL10687 platform and in-
cluded 268 HCC tissues and 243 adjacent non-tumor tissues. GSE138178 included 49 HCC
tissues and paired adjacent non-tumor tissues and was obtained using the GPL21827 plat-
form, which obtained 70 males and 28 females, and the range of ages was 30 to 86, while
GSE84006 containing 38 primary HCC tissues and paired adjacent non-tumor liver tissues
were obtained based on the GPL5175 platform, which obtained 66 male and 10 female,
and the range of ages were 39 to 68. Among them, gene expression profiles of GSE14520,
GSE25097, and GSE84006 were normalized using the “RMA” function in the Affy package.
Expression profile of GSE138178 was normalized using the “lumiExpresso” function in
the lumi R package. Gene expression profiles of GSE76427 and GSE136319 were used to
normalize by the “lumiExpresso” function in the lumi R package. Furthermore, normalized
the TCGA expression profile using the “varianceStabilizingTransformation” function of the
DESeq2 package.

DNA methylation data from 47 tumor and 47 non-tumor liver tissues from Peruvian
patients were obtained from the GSE136319 dataset based on the GPL13534 platform, which
obtained 62 males and 32 females, and the range of ages were 15 to 81. Expression profile of
GSE136319 was used to normalize by the “lumiExpresso” function in the lumi R package.
The study flowchart is shown in Figure 1.
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Figure 1. Study workflow. AUC, area under the receiver operating characteristic (ROC) curve;
DEG, differentially expressed genes; GMM, gaussian mixture model; KM, Kaplan-Meier; LASSO,
least absolute shrinkage and selection operator; NMF, nonnegative matrix factorization; OS, overall
survival; TCGA, The Cancer Genome Atlas; GEO, Gene Expression Omnibus; ssGSEA, single-sample
gene set enrichment analysis.
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2.3. Screening for Differentially Expressed Genes (DEGs) and Enrichment Analysis

The TCGA datasets and GEO datasets (GSE14520, GSE76427, and GSE25097) were
screened for differentially expressed genes (DEGs) between HCC and normal tissues using
the limma package in R [17]. Statistically significant DEGs (p < 0.05) were then identified,
and DEGs differentially expressed in the same up or down expressed direction across
the four datasets were considered as overlapping DEGs and analyzed for enrichment of
Gene Ontology (GO) functions (including molecular function, MF; cellular component, CC;
biological process, BP) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
using the clusterProfiler package in R [18]. Gene set enrichment analysis (GSEA) was then
performed, and the results were analyzed using the fgsea package in R.

2.4. Cox Regression and Kaplan-Meier Analyses

Cox regression and Kaplan-Meier curve analyses were performed to identify over-
lapping DEGs that were significantly associated with OS in both GSE14520 and TCGA
datasets. Genes with a hazard ratio >1 or <1 in both datasets based on the Cox regression
model were selected, and those genes that also showed a significant effect on survival
based on Kaplan-Meier analysis were defined as prognosis-related genes. The Kaplan-
Meier curves were used to estimate the conditional survival (CS) [19–21] of HCC patients,
under the assumption that the survival rate for 0–5 years was 100% for patients in the
GSE14520 dataset. The functional enrichment of OS-related genes was further verified
using metascape (https://metascape.org, accessed on 20 September 2021).

2.5. Construction of Random Survival Forest and Least Absolute Shrinkage and Selection Operator
Regression Models

A random forest model was constructed based on prognosis-related genes whose area
under the receiver operating characteristic curve (AUC) >0.80 (p < 0.01) using the “coxph”
function in the survival package. Prognostic genes with a relative importance >0.2 were
considered as final signature genes.

To further reduce model overfitting, we performed least absolute shrinkage and
selection operator (LASSO) regression based on the final signature genes using the glmnet
package [22]. After 10-fold cross-validation of the parameter selection in the LASSO model,
the results were further processed using the “ploidy history” function to obtain feature
genes, which were used to calculate the classification efficiency for the 5-year risk score
using the timeROC package [23].

2.6. Construction of the Gaussian Finite Mixture Model

In order to identify feature genes with a strong ability to diagnose HCC recurrence, we
constructed a Gaussian mixture model (GMM) using 127 combinations of expression pro-
files obtained from the TCGA and GSE14520 datasets. The optimal cluster was determined
based on the AUC calculated for each model.

2.7. Construction of the Feature Gene-Based Risk Score Prognostic Model

Feature genes associated with OS were determined by univariate Cox regression
analysis using the forestplot package in R. The risk score for each patient was calculated
using the “predict” function of the survival package in R [24]. HCC patients were divided
into low-risk and high-risk groups based on the median risk score. Time-dependent ROC
analysis of the GSE14520 and TCGA datasets was performed using the survival ROC
package in R. Nomograms were plotted using the rms package in R, and the consistency
index and 95% confidence interval were calculated using the survcomp installation package
in order to evaluate the predictive power of the model. The results were validated using
calibration curves.

https://metascape.org
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2.8. Non-Negative Matrix Factorization

Clustering analysis based on prognosis-related genes was performed using non-
negative matrix factorization (NMF) in the factoextra package in R (https://CRAN.R-
project.org/package=factoextra, accessed on 21 September 2021) and the k-mean clustering
algorithm. The average contour width was used to identify the optimal number of clusters.
Subtypes were compared in terms of survival analysis.

2.9. Subtype-Related Drug Sensitivity and Chemotherapeutic Response

To explore the distribution of clinical data (tumor stage, age, sex, and survival time)
between the two HCC subtypes in the TCGA and GSE14520 datasets, we used the dplyr
package in R. A submap algorithm was also used to predict the responsiveness of the
HCC subtypes to immunotherapy. The Tumor Immune Dysfunction and Exclusion (TIDE)
database (http://tide.dfci.harvard.edu/, accessed on 22 September 2021) was used to
predict the responsiveness of patients to immune checkpoint inhibitors, while the SubMap
module of the GenePattern database (https://cloud.genepattern.org/gp, accessed on
25 September 2021) [25] was used to identify similarities between the different subtypes in
the GSE14520 and TCGA datasets. p values greater than 0.05 indicated high similarity.

The therapeutic response of HCC patients in the GSE14520 and TCGA datasets to
anticancer drugs was evaluated based on the Genomics of Drug Sensitivity in Cancer
(www.cancerRxgene.org, accessed on 25 September 2021) using the pRophetic package in
R. The IC50 values of the samples were estimated by ridge regression. The mean value for
duplicate genes was determined using the allSolidTumors package in R.

2.10. Gene Expression-Related Stemness Index and Key Gene Expression

To calculate the mRNA expression-based stemness index (mRNAsi) in tumor tissues,
we constructed a predictive model using the one-class logistic regression algorithm [26].
The mRNA-based signature contained the expression profiles of 10,362 genes. A stemness
index model was then used to rank the 211 HCC samples using the Spearman correlation.
The HCC samples stratified by the stemness index were used in subsequent integrative
analyses. For external validation, the expression of key genes in the GSE138178 and
GSE84006 datasets was explored using the Oncomine (https://www.oncomine.org/, ac-
cessed on 27 September 2021) [27] and Tumor Immune Estimation Resource (TIMER)
(http://timer.cistrome.org/, accessed on 28 September 2021) databases, with selection
criteria defined as p < 0.001 and fold change >1.5.

2.11. ssGSEA

The relative levels of immune cell infiltration in HCC and control samples were
determined by ssGSEA using the GSVA package in R [18]. Correlations among the 24 types
of immune cells were then explored by immunity network analysis, while the correlation
of feature genes with immune infiltration was assessed by Pearson correlation analysis.
The CIBERSORT algorithm was used to quantify the proportions of immune cells in the
HCC samples.

2.12. Mutant Genes and DNA Methylation Analysis in HCC

The mutation data of overlapping DEGs in TCGA were visualized and analyzed using
the maftools package [28], and the position of genetic mutations was determined using
the lollipop package [29]. Differences in the total number of 450k probes and differentially
methylated positions between HCC and control samples in the GSE136319 dataset were
also identified. Associations among methylation, gene expression, and clinical phenotypes
as well as the correlation between key gene expression and methylation status in TCGA
HCC samples were assessed using the MEXPRESS tool [30].

https://CRAN.R-project.org/package=factoextra
https://CRAN.R-project.org/package=factoextra
http://tide.dfci.harvard.edu/
https://cloud.genepattern.org/gp
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2.13. Transcriptome Sequencing

The raw fastq data used Trimmomatic to remove linkers and low-quality reads, the
reads genome alignment using TopHat2 software, and the genes used StringTie count
quantification, then use the TMM normalization algorithm to normalize the reads, and
finally calculate the FPKM value. Finally, edgeR software was used for differential gene
analysis. Use ggplot2 for statistical graphing. The accession number for tran-scriptome
sequencing reported in this paper is HRA002748 (https://ngdc.cncb.ac.cn/gsa-human/
browse/HRA002748, accessed on 8 August 2022).

2.14. Statistical Analysis

This study involved the analyses using the BioInforCloud platform (http://www.
bioinforcloud.org.cn, accessed on 17 September 2021).

3. Results
3.1. DEGs in HCC and Their Functional Enrichment

To identify genes related to prognosis in HCC, we first performed differential analysis
using data from the TCGA, GSE76427, GSE25097, and GSE14520 datasets (Figure 2A,B).
Of the 4036 intersected DEGs overlapping across the four datasets, 2058 were upreg-
ulated, 1272 were downregulated, and 706 DEGs with different expression directions
(Figures 2C and S1). Functional enrichment analysis indicated that activated various HCC-
related pathways, such as the P53 signaling pathway, tryptophan metabolism, as well as
primary bile acid biosynthesis (Figure 2D). Overlapping DEGs may be involved in the
cellular amino acid catabolic process, carboxylic acid catabolism, and the other metabolic
processes (Figure 2E).

GSEA showed that DEGs positively correlated with the cell cycle, mismatch repair,
and DNA replication, but negatively correlated with mineral absorption, PPAR signaling,
as well as complement and coagulation cascades (Figure S2A). The AUC for predicting the
5-year OS of HCC patients in GSE14520 was 58% (Figure S2B). Cox regression and Kaplan-
Meier analyses also showed that 217 of the 3330 overlapping DEGs were closely associated
with HCC prognosis, while further enrichment analysis using Metascape revealed that
these prognostic genes were significantly enriched in small molecule catabolism, small
molecule biosynthesis, and the mitotic cell cycle (Figure S2C).

3.2. Identification of Diagnostic Genes in HCC

To evaluate the diagnostic value of prognosis-related genes in TCGA and GSE14520,
their AUC values were calculated, and 138 of the 217 prognostic genes with AUC >0.80 were
selected (Figure 3A). Those 138 genes were then subjected to univariate Cox analysis to
obtain 10 survival-related genes with relative importance >0.2 (Figure 3B). Subsequent
LASSO regression identified seven feature genes with an AUC of 0.744 for predicting
5-year OS: SORBS2, DHRS1, SLC16A2, RCL1, IGFALS, GNA14, and FANCI (Figure 3C–E).
The expression data of the seven feature genes were then integrated into three clusters of
127 combinations using the GMM model, and the cluster with the highest AUC was selected
to identify feature genes with strong power for predicting HCC recurrence. The average
accuracy of the seven feature genes in 1 of the 127 combinations was 0.9901, as determined
by the GMM classifier (Figure 3F). Further investigation of the independent prognostic
value of the feature genes by univariate Cox regression analysis indicated that FANCI
was significantly associated with poor OS (hazard ratio >1) in both datasets (Figure 3G,H),
suggesting that it may serve as a novel predictive biomarker of HCC recurrence.

https://ngdc.cncb.ac.cn/gsa-human/browse/HRA002748
https://ngdc.cncb.ac.cn/gsa-human/browse/HRA002748
http://www.bioinforcloud.org.cn
http://www.bioinforcloud.org.cn
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Figure 2. Differentially expressed genes (DEGs) in HCC and their enrichment in biological processes
and KEGG pathways. (A) DEGs in the GSE14520 dataset. Red indicates upregulated genes and
blue, downregulated genes. (B) Bar diagram of DEGs in the GSE14520, GSE25097, GSE76427, and
TCGA datasets. (C) Up- and downregulated DEGs overlapping across the datasets, as visualized
in a Venn diagram. (D) Overlapping DEGs enriched in various KEGG pathways. (E) GO terms of
overlapping DEGs, including BP, CC, and MF. The x-axis represents the number of DEGs involved in
GO terms, and the y-axis the significantly enriched GO terms. BP, biological process; CC, cellular
component; MF, molecular function; GO, gene ontology; HCC, hepatocellular carcinoma; KEGG,
Kyoto Encyclopedia of Genes and Genomes; TCGA, The Cancer Genome Atlas.
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3.3. Feature Gene-Based Prognostic Risk Score as a Prognostic Tool in HCC 

Figure 3. Univariate Cox and LASSO regression. (A) Evaluation of the diagnostic value of overlapping
differentially expressed genes based on AUC. The 14 genes shown (red, upregulated; blue, downreg-
ulated) had AUCs >0.95. (B) Survival-related genes identified by univariate Cox regression analysis
of 138 prognostic genes with AUC >0.80. (C) LASSO coefficient profiles of the 10 survival-related
genes. (D) Ten-fold cross-validation of parameter selection in the LASSO model. (E) Time-dependent
receiver operating characteristic curves of 5-year overall survival in HCC based on the seven feature
genes. (F) Pattern of the Gaussian finite mixture model correlated with the AUC scores. There were
three clusters of 127 combinations. (G,H) Univariate analysis of feature genes in the (G) GSE14520 and
(H) TCGA datasets. AUC, area under the receiver operating characteristic curve; HCC, hepatocellular
carcinoma; LASSO, least absolute shrinkage and selection operator; TCGA, The Cancer Genome
Atlas.
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3.3. Feature Gene-Based Prognostic Risk Score as a Prognostic Tool in HCC

HCC patients were divided into high- and low-risk groups according to the median
risk score (Figure 4A,B) and their AUC values for predicting 1-, 3- and 5-year OS were
greater than 0.65 for GSE14520 and TCGA data (Figure 4C,D). OS prediction was quanti-
fied using nomograms that integrated feature genes with clinicopathological risk factors
(Figure 4E). Calibration plots also showed that the nomograms performed well against an
ideal model (Figure 4F).
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Figure 4. The feature gene-based risk score serves as a prognostic tool in hepatocellular carcinoma
(HCC). (A,B) (a) Risk score, (b) survival status, and (c) expression of the seven feature genes in
high-risk and low-risk HCC patients from the (A) GSE14520 and (B) TCGA datasets. (C,D) Time-
dependent receiver operating characteristic curves of 1-, 3-, 5-year overall survival of patients in the
(C) GSE14520 and (D) TCGA datasets. (E) Quantification of overall survival using nomograms. Lines
are drawn upward to determine the points received from the predictor. The sum of these points
is reported on the “Points” axis. A line is then drawn downward to determine the 3- and 5-year
survival probability based on the seven feature genes. (F) Calibration plots showing the performance
of nomograms with an ideal model for 3- and 5-year survival. RFS, recurrence-free survival; TCGA,
The Cancer Genome Atlas.
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3.4. Identification of HCC Subtypes by NMF of Prognostic Genes

In order to identify HCC molecular subtypes, HCC samples from the GSE14520 and
TCGA databases were clustered by NMF based on the 217 prognosis-related genes
(Figure 5A–C). We were able to divide HCC patients into two molecular subtypes
(Figures 5C and S3A): subtype C1 with poor prognosis for HCC, and subtype C2 with
good OS (Figures 5E and S2C). We found that the silhouette width value was 0.85 in
GSE14520 (Figure 5D) and 0.88 in TCGA (Figure S3B), which suggested a good correlation
between the HCC samples and the two different subtypes.
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Figure 5. Identification of hepatocellular carcinoma (HCC) subtypes based on the GSE14520 dataset.
(A) Identification of the optimal number of clusters (k) and (B) visualization of cluster results using
the “factoextra” package. (C) HCC samples were clustered by non-negative matrix factorization.
(D) Silhouette width plots. (E) Evaluation of the different survival patterns between subtypes using the
CancerSubtypes package.

3.5. Sensitivity of HCC Subtypes to Immunotherapy and Chemotherapeutic Drugs

A comparison of clinical data distribution between the two HCC subtypes in GSE14520
and TCGA indicated that there was no significant difference in age between the two
subtypes, but men were more prone to both subtypes of disease than women. In addition,
subtype C1 showed shorter survival than subtype C2 (Figure 6A), as well as greater
responsiveness to CTLA4-R therapy, based on data from GSE14520 (nominal p value = 0.03;
Figure 6B) and TCGA (nominal p value = 0.09; Figure 6C). In contrast, subtype C2 in



Cancers 2022, 14, 5721 11 of 21

TCGA showed significantly greater responsiveness to anticancer drugs ZM.447439 and
AG.14699 than subtype C1 (Figure 6D).
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Figure 6. Drug sensitivity and immunotherapy response of hepatocellular carcinoma subtypes
C1 and C2. (A) Pie charts comparing the distribution of clinical data between the two subtypes
in the GSE14520 and TCGA datasets. (B,C) Responsiveness of subtypes to immunotherapy in
(B) GSE14520 and (C) TCGA, as determined by the Tumor Immune Dysfunction and Exclusion
and the SubMap module of the GenePattern database. (D) Responsiveness of subtypes in TCGA to
anticancer drugs ZM.447439 and AG.014699, as determined by a ridge regression model according to
data in the Genomics of Drug Sensitivity in Cancer. TCGA, The Cancer Genome Atlas.

3.6. Stemness Index and FANCI Expression

Ranking of the HCC samples according to stemness index values showed that their
clinico-demographic features significantly correlated with mRNAsi (Figure S4A). FANCI
positively correlated with the stemness index (Figure S4B), and it was upregulated in both
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the GSE138178 and GSE84006 datasets (Figure S4C,D). Further analysis of FANCI mRNA
expression in various cancer types using the Oncomine database showed that FANCI
was significantly upregulated in liver cancer compared to normal tissues (Figure S4E).
These results were confirmed by TCGA RNA-sequencing data in TIMER, which indicated
that FANCI levels were significantly higher in tumors than in adjacent normal tissues
(Figure S4F).

3.7. Enrichment of FANCI in Biological Pathways

To explore the role of FANCI in HCC prognosis, we performed time-ROC analysis,
which showed that the AUC for predicting 5-year OS was highest in the GSE14520 dataset
(Figure 7A), while the AUCs for predicting 1-, 3-, 5-year OS were greater than 0.60 in TCGA
(Figure 7B). The AUC for FANCI was higher than 0.90 in all four datasets (Figure 7C).
Enrichment analysis showed that FANCI positively correlated with the regulation of
fibrinolysis, epoxygenase P450 pathway, and protein activation cascade, while it was nega-
tively correlated with mismatch repair, centrosome separation, and translesion synthesis
(Figure 7D). In addition, FANCI positively correlated with the cell cycle, DNA replication,
and proteasome, while it was negatively correlated with FOXO, IL-17, and p53 signaling
pathways (Figure 7E). We also found that FANCI expression was higher in HCC tissues than
controls in the Human Protein Atlas database (https://www.proteinatlas.org/, accessed on
15 October 2021) (Figure 8A).Similarly, the results of transcriptome sequencing in 6 HCC
patients showed that FANCI was highly expressed in HCC compared to adjacent, especially
in patients 2 (RFS 66 Days) and 5 (RFS 248 Days) with tumor progression (Figure 8B–D).
Meanwhile, FANCI was identified in previous studies as a down-stream gene for Wnt
signalling that regulates early recurrence of HCC [31]. These results promptand that it may
positively regulate the Fanconi anemia pathway (Figure 8E).

3.8. Immune Cell Infiltration

To explore the potential clinical significance of immune cell infiltration in HCC, we
determined the infiltration levels in all four datasets (Figure 9A). T helper type 2 (Th2), T
helper, and pre-dendritic cells were significantly upregulated in HCC samples compared
to controls, while T cells and cytotoxic cells correlated significantly with subtype C1
(Figure 9B). Correlations among the 24 immune cell types in HCC tissues were also analyzed
(Figure 9C), and four clusters were constructed showing positive and negative correlations
with one another (Figure 9D). In addition, dendritic and Th12 cells correlated with the
seven feature genes, while a significant correlation was observed between Th2 cells and
FANCI (Figure 9E). The CIBERSORT algorithm also showed that most infiltrated immune
cells were T cells (Figure 9E).

3.9. Somatic Mutations and DNA Methylation

Somatic single-nucleotide variants were identified in 364 HCC patients based on
sequencing data showing at least 20-fold coverage. Mutations were found to inactivate
the tumor suppressor genes TP53 (31% of all patients), AXINI (8%), and RB1 (5%) (Figure
S5A). In addition, we found that FANCI was mutated at two sites in HCC patients, and
those mutations may affect protein function (Figure S5B). We further found that FANCI
mRNA levels negatively correlated with protein levels, implying that the gene is subject to
methylation (Figure S5D). Analysis of genes differentially methylated between HCC and
non-tumor tissues in Peruvian hepatocellular carcinoma patients in GSE136319 showed
that methylation modification was investigated (Figure S5C). Furthermore, the MEXPRESS
tool showed that the methylation level in the promoter region of FANCI was significantly
higher in HCC samples than in normal tissues in TCGA (Figure S6).

https://www.proteinatlas.org/
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Figure 7. Time–ROC analysis and correlation of FANCI with biological and KEGG pathways. (A,B)
Effect of FANCI on the 1-, 3-, and 5-year overall survival in the (A) GSE14520 and (B) TCGA datasets.
(C) Effect of FANCI on the AUC values in different datasets. (D) Correlation of FANCI with biological
processes (red, positive correlation; green, negative correlation). (E) Correlation of FANCI with
KEGG pathways (red, positive correlation; green, negative correlation). AUC, area under the receiver
operating characteristic curve; KEGG, Kyoto Encyclopedia of Genes and Genomes; ROC, receiver
operating characteristic curve. TCGA, The Cancer Genome Atlas.
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Figure 8. Potential regulatory mechanism of FANCI in hepatocellular carcinoma (HCC). (A) Expres-
sion of FANCI in HCC and normal tissues obtained from the Human Protein Atlas database. (B) DEGs
in 6 HCC patients. Red indicates upregulated genes and blue, downregulated genes. (C) Expression
of FANCI in HCC compared to adjacent obtained from 6 HCC patients. (D) Expression of FANCI in
6 HCC patients, respectively. (E) Role of FANCI in the Fanconi anemia pathway.
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Figure 9. Infiltration and correlation between immune cells. (A) Levels of immune cell infiltration
in the different datasets. (B) Correlations among the 24 types of immune cells in the two HCC
subtypes C1 and C2. Red and purple represent positive correlations, while green and yellow indicate
negative correlations. (C) Correlations among the 24 types of immune cells in HCC tissues. Blue
sections indicate positive correlation, while orange sections negative correlation. (D) Immunity
network analysis. Immune cells were grouped into four clusters depending on correlation. Circles
represent the prognostic effect of each cell type, and the color of the line indicates stronger correlation.
(E) Correlations of immune cell types with the seven feature genes. (F) Estimated proportions of
24 immune cell types and survival status in both subtypes. HCC, hepatocellular carcinoma.
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4. Discussion

HCC is one of the most common tumors in the world, but it remains a fatal disease
due to its poor prognosis, highlighting the need to identify HCC biomarkers. Studies
have shown that the cachexia of cancer affects the quality of life of many patients with
advanced cancer [32]. Cachexia is prevalent in patients with HCC and associated with
worse prognosis, which develops in approximately 25% of HCC patients during the disease
course [33]; however, cachexia is considered a covariate also need to further study. In this
manuscript, we used bioinformatics to determine prognosis-related molecular subtypes of
HCC using four public datasets. Our analysis identified two subtypes of HCC (C1 and C2)
and seven feature genes that may serve as potential biomarkers and therapeutic targets
for HCC. Among them, FANCI showed good prognostic performance and was positively
associated with the cell cycle, DNA replication, and mismatch repair.

The identification of novel HCC biomarkers remains critically important. For instance,
MITD1 has been reported as a novel liver cancer biomarker involved in cytokinesis [34].
We found that the DEGs overlapping across four databases were involved mainly in the cell
cycle, FOXO signaling pathway, mismatch repair, as well as complement and coagulation
cascades. Consistent with our results, another study identified DEGs in HCC that were
significantly enriched in mismatch repair and complement and coagulation cascades [35].
Juglanthraquinone, a natural compound, can induce apoptosis in HCC cells by activating
the Akt/FOXO signaling pathway [36].

In the present study, random forest survival and LASSO regression models identified
SORBS2, DHRS1, SLC16A2, RCL1, IGFALS, GNA14, and FANCI as feature genes that
may be involved in HCC occurrence and may influence prognosis. Earlier studies showed
that IGFALS might be a useful diagnostic and therapeutic target for HCC [37] and that
SORBS2 can accurately predict the prognosis of HCC patients [38]. Expression of SORBS2 in
TCGA GBM cohorts is associated with worse outcome [39]. IGFALS has also been identified
as a tumor suppressor gene, which is silenced by methylation in HCC [40,41], and IGFALS
was associated with disease-free survival of gastric cancer [42]. For their part, DHRS1 [43],
SLC16A2 [44], and GNA14 [45] are significantly underexpressed in HCC tissues compared
to normal tissues and have shown potential as prognostic biomarkers of HCC. In addition,
RCL1 has shown strong potential for predicting overall and disease-free survival of HCC
patients [46], while FANCI has been identified as a reliable marker of hepatitis B virus-
associated HCC [47]. Previous studies have indicated that RCL1 could independently
predict breast cancer prognosis [48] and copy number variants of RCL1 are associated with
a range of neuropsychiatric phenotypes [49]. Above all, our study showed that SORBS2,
FANCI, DHRS1, and IGFALS can be mutated in HCC, and the effects of these mutations
should be explored in future work.

Mutations in FANCI of familial colorectal cancer that regulate DNA repair and were
associated with the Fanconi anemia repair pathway [50]. Furthermore, FANCI mutations
were found that mainly involved in breast cancer and ovarian cancer [51,52]. Therefore,
suggesting that FANCI is mutated in cancers, and may play a vital role.

Since tumors in different regions may represent different subtypes [10], the iden-
tification of HCC subtypes may improve the prognosis of HCC patients and provide
new therapeutic strategies. The histological subtypes of primary liver cancer are mainly
HCC and intrahepatic cholangiocarcinoma confined to the liver [53]. HCC has recently
been stratified into three subtypes differing in metabolic and signaling pathways, in-
cluding altered kynurenine metabolism, Wnt/β-catenin-associated lipid metabolism, and
PI3K/AKT/mTOR signaling [11]. Another study defined three other major HCC subtypes:
mitogenic and stem cell-like tumors with chromosomal instability, CTNNB1-mutated tu-
mors displaying immune suppression, and metabolic disease-associated tumors [54]. The
clustering of immune cells in the HCC microenvironment led to yet another classification
of subtypes as immunocompetent, immunodeficient, or immunosuppressive [12]. In the
present work, we identified two molecular subtypes of HCC patients that were associated
with different prognosis. Comparison of their clinico-demographic features showed that



Cancers 2022, 14, 5721 17 of 21

subtype C1 had significantly shorter OS than subtype C2, consistent with the results of
the TCGA groups. In addition, men were more prevalent than women in both subtypes,
consistent with a previous study where men showed higher risk of non-alcoholic fatty liver
disease and HCC than women [55].

Compared to healthy liver samples, most of the immune cell subpopulations required
for antitumor immune response are reduced in HCC samples, whereas gene signatures
defining T helper and Th2 cells are significantly increased [56]. In addition, underexpression
of tumor antigens in HCC cells reduces T cell activation and tumor infiltration, resulting
in a less efficient control of tumor growth, leading to worse clinical outcomes [57]. In the
present research, ssGSEA showed that Th2 and T helper cells were significantly upregulated
in the four datasets, and cytotoxic and T cells strongly infiltrated tumor tissue in both HCC
subtypes.

Our analysis demonstrated that the expression of the seven feature genes positively
correlated with dendritic, natural killer, and Th17 cell infiltration. The tumor microenvi-
ronment disrupts the maturation and activation of dendritic cells, resulting in dendritic
cells with immunosuppressive potential in HCC and breast cancer [58]. Moreover, dysfunc-
tion of natural killer cells contributes to HCC development [59], while overexpression of
Th17 cells has been associated with worse prognosis of HCC patients [60]. Interestingly,
here, we found a significant correlation between FANCI and Th2 cells. Since Th2 cells
are associated with immune evasion [61], we hypothesize that FANCI may promote HCC
development by evading HCC immune cells.

However, the present study had some limitations. Although our analysis used multiple
datasets, it did not feature HCC patients in terms of diversity, so validation with a large
sample size in the HCC population is also needed to obtain the generalizability of the
key results. Moreover, the corresponding information of datasets did not mention, such
as amino acid levels. We screened the seven feature genes based on the bioinformatics
analysis, which are highly expressed in HCC, and their roles should be further studied
both in vitro and in vivo. Further studies are also needed in animal or cell experiments
to validate the effect of FANCI on postoperative recurrence. In fact, all our bioinformatic
findings need to be confirmed in preclinical studies and, ultimately, prospective clinical
trials.

5. Conclusions

We defined two molecular subtypes of HCC that are associated with different prog-
noses, and we identified FANCI as a good prognostic indicator in HCC.

Key Points:
Two subtypes of HCC were identified based on tumor and non-tumor data using

non-negative matrix decomposition.
Genes from four HCC datasets were significantly enriched in the cell cycle, FOXO

signaling, as well as complement and coagulation cascades.
FANCI in HCC positively correlated with the cell cycle, DNA replication, and mis-

match repair.
FANCI was able to predict the survival of HCC patients, making it a potential prog-

nostic biomarker.
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overlapping across the four datasets; Figure S2: Gene set enrichment analysis and survival analysis
of hepatocellular carcinoma (HCC) samples; Figure S3: Identification of hepatocellular carcinoma
(HCC) subtypes based on the TCGA dataset; Figure S4: Clinico-demographic features associated
with the mRNA expression-based stemness index (mRNAsi) and FANCI expression in hepatocellular
carcinoma (HCC); Figure S5: Genomic landscape of hepatocellular carcinoma and DNA methylation
changes; Figure S6: Correlation of FANCI expression and methylation status in hepatocellular
carcinoma samples from The Cancer Genome Atlas, as determined by the MEXPRESS tool.
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