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Simple Summary: Diagnosis of posterior fossa tumors is challenging yet proper classification is
imperative given that treatment decisions diverge based on tumor type. The aim of this systematic
review is to summarize the current state of machine learning methods developed as diagnostic
tools for these pediatric brain tumors. We found that, while individual algorithms were quite
efficacious, the field is limited by its heterogeneity in methods, outcome reporting, and study
populations. We identify common limitations in the study and development of these algorithms
and make recommendations as to how they can be overcome. If incorporated into algorithm design,
the practical guidelines outlined in this review could help to bridge the gap between theoretical
algorithm diagnostic testing and practical clinical application for a wide variety of pathologies.

Abstract: Background: Posterior fossa tumors (PFTs) are a morbid group of central nervous system
tumors that most often present in childhood. While early diagnosis is critical to drive appropriate
treatment, definitive diagnosis is currently only achievable through invasive tissue collection and
histopathological analyses. Machine learning has been investigated as an alternative means of
diagnosis. In this systematic review and meta-analysis, we evaluated the primary literature to
identify all machine learning algorithms developed to classify and diagnose pediatric PFTs using
imaging or molecular data. Methods: Of the 433 primary papers identified in PubMed, EMBASE,
and Web of Science, 25 ultimately met the inclusion criteria. The included papers were extracted
for algorithm architecture, study parameters, performance, strengths, and limitations. Results: The
algorithms exhibited variable performance based on sample size, classifier(s) used, and individual
tumor types being investigated. Ependymoma, medulloblastoma, and pilocytic astrocytoma were
the most studied tumors with algorithm accuracies ranging from 37.5% to 94.5%. A minority of
studies compared the developed algorithm to a trained neuroradiologist, with three imaging-based
algorithms yielding superior performance. Common algorithm and study limitations included small
sample sizes, uneven representation of individual tumor types, inconsistent performance reporting,
and a lack of application in the clinical environment. Conclusions: Artificial intelligence has the
potential to improve the speed and accuracy of diagnosis in this field if the right algorithm is applied
to the right scenario. Work is needed to standardize outcome reporting and facilitate additional trials
to allow for clinical uptake.

Keywords: posterior fossa tumor(s); neuro-oncology; artificial intelligence (AI); machine learn-
ing; neuroradiology
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1. Introduction

Brain tumors are the second leading cause of death in children under 15 with an
estimated incidence of 2–3.5 per 100,000 [1,2]. Posterior fossa tumors (PFTs) comprise
50–74% of childhood brain tumors, with the majority being juvenile pilocytic astrocytomas,
medulloblastomas, ependymomas, and brainstem gliomas [3,4]. Central nervous system
tumors in the pediatric population frequently present with nonspecific symptoms, which
can lead to delays in diagnosis and treatment. One study found that the average time
to diagnosis in a cohort of pediatric brain tumor patients was 7.7 months after symptom
onset [5]. Given the rapid progression of some pediatric brain tumors, delays in diagnosis
are associated with significant morbidity and mortality. Since treatment varies based on
the type and grade of PFT, it is imperative to obtain an early diagnosis in this highly
morbid group of malignancies. Histopathological diagnosis remains the standard of care
for the diagnosis of PFTs. While accurate, this method is time consuming and requires
a tissue specimen as well as access to a trained neuropathologist. While conventional
magnetic resonance imaging (MRI) can be used to evaluate tumor location and impact
on surrounding structures, it is of limited diagnostic value. Radiological differentiation
between different PFTs is difficult and can be further complicated by tumor mimics such as
demyelinating disorders and Alexander disease [6].

Some progress has been made to improve the diagnostic accuracy of imaging with
the addition of advanced MR sequences such as diffusion-weighted imaging (DWI). Us-
ing apparent diffusion coefficient (ADC) ratios, radiologists in one study were able to
discriminate pilocytic astrocytomas from ependymomas with a sensitivity of 83% and
a specificity of 78% [7]. The discovery that individual radiomic and molecular features
correlated to distinct PFTs led to the application of artificial intelligence for the diagnosis
and subclassification of these tumors. Prior work has shown that artificial intelligence is
becoming an increasingly viable tool with the potential to improve diagnostic speed and
accuracy [8,9]. Machine learning has already been heavily implemented in the diagnosis of
brain tumors in both children and adults, with previous studies reporting algorithms that
can differentiate gliomas, meningiomas, and pituitary tumors based on extracted imaging
features with accuracies as high as 99% [10–12]. Additional work has shown the possibility
of using these methods to not only differentiate between tumor types, but also to subclassify
tumors by grade, stage, and even molecular features [12–14]. Similar methods are now
being explored to diagnose and classify PFTs. In this systematic review and meta-analysis,
we aim to identify and critique all the primary literature that applies machine learning to
the diagnosis and classification of pediatric PFTs. We analyze the algorithm architecture
and efficacy as well as study parameters, strengths, and limitations to assess the clinical
readiness of such technology, provide recommendations of best practices, and highlight
areas for improvement. This work serves as a case study on how machine learning classifi-
cation algorithms can be applied to clinical diagnosis with recommendations that can be
applied to other pathologies.

2. Materials and Methods

This systematic review of the literature was completed according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [15].
Standardized electronic searches were conducted in PubMed, EMBASE, and Web of Science
to identify relevant articles. Searches were conducted using conjugated “AND” and “OR”
statements with keywords related to machine learning, artificial intelligence, and pediatric
PFTs (Supplementary). Searches included all articles in the English language from database
inception to 31 July 2022.

2.1. Inclusion and Exclusion Criteria

All observational studies, clinical trials, case reports, and technical papers assessing
the use of machine learning to diagnose or classify PFTs based on molecular or radiomic
features were included. No limit was placed on sample size or timeframe. Review articles,
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abstracts, conference abstracts, and primary papers that did not study the application of a
machine learning algorithm (MLA) to the diagnosis or classification of a pediatric PFT met
the exclusion criteria. Papers that specifically subclassified pediatric PFTs by other criteria,
such as prognosis, response to treatment, etc., were also excluded.

Studies identified by the literature search were screened in two rounds, with the
evaluation of appropriateness determined by consensus of the authors. Initially, title and
abstract screening was conducted. Papers that met the exclusion criteria were excluded,
and then a similar process was repeated with a full text review. Authors resolved all
disagreements by consensus.

2.2. Data Extraction

Two authors independently extracted full texts of included articles into a standardized
extraction table. Disagreements were decided by a two-author consensus. Data collected
from each study covered study parameters including title and author, population size
by tumor type, tumor type(s) being studied, study location(s), study timeframe, and
ground truth used; algorithm parameters including type of input data, training set size,
validation set size, test set size, method of image segmentation (manual vs. automatic),
normalization used, presence/absence of texture analysis, deep learning model architecture,
presence/absence of feature selection, and number of features extracted in final algorithm;
algorithm performance statistics including sensitivity, specificity, accuracy, area under the
curve (AUC), F1-score, Dice coefficient, positive predictive value, and negative predictive
value; comparisons and analyses performed including comparison of the algorithm to a
neuroradiologist, neuropathologist, or other clinical standard of care as well as the outcome
of the comparison; and both algorithm as well as study limitations.

2.3. Gold Standard Comparison

For each paper that included a comparison of an MLA to a gold standard, the mini-
mum and maximum AUCs or accuracies were collected for each method. The following
calculations were conducted to compare the best- and worst-case efficacy of each diag-
nostic method: the difference between the maximum accuracy/AUC for the MLA and
the minimum accuracy/AUC for the gold standard was computed. The same calculation
was repeated with the maximum accuracy/AUC for the gold standard and the minimum
accuracy/AUC for the MLA.

3. Results
3.1. Search Results

The electronic literature search identified 433 studies, of which 86 were duplicates. Of
the 347 records that underwent title/abstract screening, 268 were excluded for irrelevance.
The full texts of 79 articles were reviewed, yielding 25 studies that met the inclusion criteria.
Of the 54 articles that were excluded, 28 had the incorrect study design, 24 did not diagnose
or classify a pediatric PFT, one did not feature an MLA, and one was not in the English
language (Figure 1).
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Figure 1. PRISMA flow diagram of study selection [15].

3.2. Algorithm Study Parameters and Design

Table 1 features study method data from all 25 studies of the MLAs applied to the
classification of pediatric PFTs. Twenty-two papers used imaging data to classify PFTs,
including both non-contrast and contrast-enhanced T1/T2-weighted MRI, DWI, and MR-
spectroscopy [16–37]. Three papers used molecular methods to classify these tumors based
on microscopy slides or methylation array data [38–40]. The majority of algorithms were
applied to retrospectively created datasets, and histologic diagnoses, as determined by
a clinical pathologist, were uniformly used as the ground truth. Most studies were con-
ducted with clinical data from a single site with two studies featuring clinical data from
up to seven sites [33,34]. Study populations varied significantly, ranging from cohorts of
23 patients to 617 patients [31,40]. Pilocytic astrocytoma and medulloblastoma were the
most well-represented PFTs across all reports with inclusion in 19 and 22 studies, respec-
tively [17–32,34–40]. Ependymomas, while included in most studies, had a small individual
sample size per study, with many analyses including fewer than 20 ependymoma patients
in training or validation datasets [16–18,21–23,27,29,30,32,36]. Less common pathologies,
such as embryonal tumors, gangliogliomas, atypical teratoid rhabdoid tumors, and others,
were heterogeneously studied and only featured in a small minority of reports [26,28,38].
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Table 1. Overview of studies applying machine learning to the diagnosis and discrimination of pediatric posterior fossa tumors. Provided is a summary of key study
attributes and machine learning methods applied.

Paper Tumor Type Imaging/Assay
Used

Prospective
vs. Retro-
spective

Study
Population

# of
Sites

Ground
Truth Training Set Validation

Set

Image Seg-
mentation

Method

Normalization
Used

Feature
Selection

Used

Number of
Features
Extracted

Texture
Analysis

Employed

Deep Learning
Architecture

Radiographic Algorithms

Arle et al.,
1997 [16]

AS, EP,
PNET

NC-T2MR,
MR-

spectroscopy
Prospective

10 AS,
7 EP, 16
PNET

1 Histologic
diagnosis 150 * 9 Manual No No 20 No NN

Bidiwala
et al., 2004

[17]
EP, MB, PA, CE-T1MR,

CE-T2MR Retrospective 4 EP, 15 MB,
14 PA 1 Histologic

diagnosis 32 1 (× 33) # Manual Yes No 36 No NN

Davies et al.,
2022 [18] EP, MB, PA

NC-T1MR,
NC-T2MR,
DWI, MR-

spectroscopy

Prospective 7 EP, 32 MB,
28 PA 1 Histologic

diagnosis 34 33 Manual Yes No 19 No

Multivariate
classifier

w/bootstrap
cross-validation

Dong et al.,
2021 [19] EP, MB CE-T1MR,

DWI Retrospective 24 EP, 27 MB 1 Histologic
diagnosis

~46 (90% of
cases)

~5 (~10% of
cases)

Semi-
automatic Yes Yes 188 Yes

Adaptive
boosting w/3

classifiers: kNN,
RF, SVM

Dong et al.,
2022 [20] EP, MB, PA

NC-T1MR,
NC-T2MR,
CE-T1MR,

FLAIR-MR,
DWI

Retrospective 32 EP, 67
MB, 37 PA 1 Histologic

diagnosis 106 30 Semi-
automatic Yes Yes 11,958 No SVM

Fetit et al.,
2015 [21] EP, MB, PA NC-T1MR,

NC-T2MR Retrospective 7 EP, 21 MB,
20 PA 1 Histologic

diagnosis 47 1 (×48) # Semi-
automatic Yes Yes 2D—454

3D—566 Yes

6 classifiers: NB,
kNN,

classification tree,
SVM, ANN, LR

Grist et al.,
2020 [22] EP, MB, PA

NC-T1MR,
NC-T2MR,
CE-T1MR,

FLAIR-MR,
DWI,

DSC-MR

Prospective 10 EP, 17
MB, 22 PA 4 Histologic

diagnosis - - Manual Yes Yes Not
reported No

4 classifiers:
NN, RF, SVM,

kNN
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Table 1. Cont.

Paper Tumor Type Imaging/Assay
Used

Prospective
vs. Retro-
spective

Study
Population

# of
Sites

Ground
Truth Training Set Validation

Set

Image Seg-
mentation

Method

Normalization
Used

Feature
Selection

Used

Number of
Features
Extracted

Texture
Analysis

Employed

Deep Learning
Architecture

Radiographic Algorithms

Li et al.,
2019 [25] EP, MB NC-T1MR,

NC-T2MR Retrospective
58 patients,
breakdown
unspecified

1 Histologic
diagnosis ~41 (70%) ~17 (30%) Manual Yes Yes 300 Yes

Bagging and
boosting w/9

classifiers: kNN,
SVM, NN,

classification and
regression trees,
RSM, ELM, NB,
RF, partial LSR

Li et al.,
2020 [24] EP, PA NC-T1MR,

NC-T2MR Retrospective
45 patients,
breakdown
unspecified

1 Histologic
diagnosis ~32 (70%) ~13 (30%) Manual No Yes 300 Yes SVM

Novak et al.,
2021 [26]

ATRT, EP,
LGT MB, PA DWI Retrospective

4 ATRT, 26
EP, 3 LGT 55
MB, 36 PA

5 Histologic
diagnosis - - Manual Yes Yes Not

reported No 2 classifiers: NB,
RF

Orphanidou-
Vlachou

et al., 2014
[27]

EP, MB, PA NC-T1MR,
NC-T2MR Retrospective 5 EP, 21 MB,

14 PA 1 Histologic
diagnosis - - Manual Yes Yes 279 Yes 2 classifiers:

LDA, PNN

Payabvash
et al., 2020

[28]

AAS, ATRT,
AXA, CPP,
EP, GBM,
GG, GNT,
HB, LGG,

lymphoma,
MB

metastases,
PA, SEP

DWI Retrospective

7 AAS, 6
ATRT, 1

AXA, 4 CPP,
27 EP, 6

GBM, 1 GG,
2 GNT, 44

HB, 10 LGG,
8

lymphoma,
26 MB 65

metastases,
43 PA, 6 SEP

1 Histologic
diagnosis 199 49 Manual Yes No 24 No 4 classifiers: NB,

RF, SVM, NN

Quon et al.,
2020 [31]

DMG, EP,
MB, PA

NC-T1MR,
NC-T2MR,

DWI
Retrospective

122 DMG,
88 EP, 272

MB, 135 PA
5 Histologic

diagnosis 527 (scans) 212 (scans) N/A Yes No Not
reported No Modified ResNet

architecture

Rodriguez
et al., 2014

[23]
EP, MB, PA

NC-T1MR,
NC-T2MR,

DWI
Retrospective 7 EP, 17 MB,

16 PA Multiple Histologic
diagnosis - - Manual Yes Yes 183 Yes SVM
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Table 1. Cont.

Paper Tumor Type Imaging/Assay
Used

Prospective
vs. Retro-
spective

Study
Population

# of
Sites

Ground
Truth Training Set Validation

Set

Image Seg-
mentation

Method

Normalization
Used

Feature
Selection

Used

Number of
Features
Extracted

Texture
Analysis

Employed

Deep Learning
Architecture

Radiographic Algorithms

Wang et al.,
2022 [29] EP, MB, PA

NC-T1MR,
NC-T2MR,

DWI
Retrospective 13 EP, 59

MB, 27 PA 1 Histologic
diagnosis 70 20 Manual Yes Yes 315 Yes RF

Zarinabad
et al., 2017

[32]
EP, MB, PA

NC-T1MR,
NC-T2MR,

MR-
spectroscopy

Retrospective 10 EP, 38
MB, 42 PA 1 Histologic

diagnosis - -
Automatic
w/manual

review
No Yes 17 No

Adaptive
boosting w/4
classifiers: NB,

SVM, ANN,
LDA

Zarinabad
et al., 2018

[30]
EP, MB, PA MR-

spectroscopy Retrospective 4 EP, 17 MB,
20 PA 4 Histologic

diagnosis 37 4 Manual No Yes 19 No 3 classifiers:
LDA, SVM, RF

Zhang et al.,
2021 [34] ATRT, MB CE-T1MR,

NC-T2MR Retrospective 48 ATRT, 96
MB 7 Histologic

diagnosis 108 36 Manual No Yes 1800 Yes

Extreme gradient
boosting w/5

classifiers: SVM,
LR, kNN, RF,

NN

Zhang et al.,
2021 [35] EP, MB, PA CE-T1MR,

CE-T2MR Retrospective 97 EP, 274
MB, 156 PA Multiple Histologic

diagnosis 395 132 Manual No Yes 1800 No

Extreme gradient
boosting w/5

classifiers: SVM,
LR, kNN, RF,

NN

Zhang et al.,
2022 [33]

EP, HGG,
SET

CE-T1MR,
NC-T2MR Retrospective

54 EP, 127
HGG, 50

SET
7 Histologic

diagnosis 173 58 Manual Yes Yes 1800 Yes

Extreme gradient
boosting

w/binary and
single-stage
multiclass

classifier: SVM,
LR, kNN, RF,

NN

Zhao et al.,
2022 [36] EP, MB, PA

CE-T1MR,
NC-T2MR,
DWI, MR-

spectroscopy

Prospective 17 EP, 48
MB, 60 PA 4 Histologic

diagnosis - 116 Manual Yes Yes 15 No

5 classifiers: NB,
LDA, SVM, kNN,

multinomial
log-linear model

fitting via NN
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Table 1. Cont.

Paper Tumor Type Imaging/Assay
Used

Prospective
vs. Retro-
spective

Study
Population

# of
Sites

Ground
Truth Training Set Validation

Set

Image Seg-
mentation

Method

Normalization
Used

Feature
Selection

Used

Number of
Features
Extracted

Texture
Analysis

Employed

Deep Learning
Architecture

Radiographic Algorithms

Zhou et al.,
2020 [37] EP, MB, PA

CE-T1MR,
NC-T2MR,

DWI
Retrospective 70 EP, 111

MB, 107 PA 4 Histologic
diagnosis 202 86 Manual Yes Yes 3087 Yes

Used tree-based
pipeline

optimization tool
to find optimal

architecture
using 8 classifiers
w/bagging and
boosting: NN,

decision tree, NB,
RF, SVM, LDA,

kNN,
generalized

linear models

Molecular Algorithms

Danielsson
et al., 2015

[38]

EP, ETMR,
DIPG, GBM,

MB, PA

Illumina
450K

methylation
array data

Retrospective

48 EP, 10
ETMR, 28
DIPG, 178
GBM, 238
MB, 58 PA

Multiple Histologic
diagnosis 472 18, 28

separately N/A No Yes 900 No

3 classifiers: RF,
LDA, stochastic

generalized
boosted models

Hollon et al.,
2018 [39]

AS,
chordoma,
CPP, DMG,

EP, ET,
germinoma,
GG, HB, MB,

PA

Microscope
slides Prospective

33 patients,
breakdown
unspecified

1 Histologic
diagnosis 25 - N/A Yes No 13 No RF

Leslie et al.,
2012 [40]

AS, EP, GG,
MB, ODG,

other glioma

Microscope
slides Prospective

23 patients,
breakdown
unspecified

1 Histologic
diagnosis - - N/A Yes Yes Variable by

tumor type No SVM

AAS, anaplastic astrocytoma; ANN, artificial neural network; ATRT, atypical teratoid rhabdoid tumor; AXA, anaplastic xanthoastrocytoma; CPP choroid plexus papilloma; DMG, diffuse
midline glioma; ELM, extreme learning machine; EP, ependymoma; ET, embryonal tumor; ETMR, embryonal tumors with multilayered rosettes; GBM, glioblastoma multiforme; GG,
ganglioglioma; GNT, glioneural tumor; HB, hemangioblastoma; HGG, high-grade glioma; kNN, k-nearest neighbor; LDA, linear discriminant analysis; LGG, low-grade glioma; LR,
logistic regression; LSR, least square regression; MB, medulloblastoma; NB, naïve Bayesian; NN, neural network; ODG, oligodendroglioma; PA, pilocytic astrocytoma; PNN, probabilistic
neural network; RF, random forest; RSM, random subspace method; SEP, subependymoma; SET, supratentorial embryonal tumor; SVM, support vector machine. * Samples created from
original data. # One case was withheld from the training set and used for validation.
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Most algorithms were developed and executed using a common workflow. Imaging
data were segmented to identify regions of interest using a combination of manual and
semiautomatic methods. Eighteen of the papers then included a normalization step in
which imaging data were standardized to minimize noise [17–23,25–29,31,33,36,37,39,40].
Features were extracted from the relevant imaging modalities with some papers yielding
as few as 13 features while others generated over 11,000 [20,39]. Nineteen studies em-
ployed various methods of feature selection to decrease feature dimensionality for the
final analysis [19–27,29,30,32–38,40]. A machine learning classifier was then applied to
discriminate between tumor types based on extracted features. Some studies, such as Quon
et al. [31], used a single MLA as a classifier. Other papers, such as Li et al. [25] or Grist
et al. [22], employed ensembles to combine predictions from multiple algorithms. The
range of classifier algorithms used included (Table 2): k nearest neighbor (kNN), support
vector machine (SVM), neural network (NN), classification and regression tree, extreme
learning machine (ELM), naïve Bayesian (NB), random forest (RF), partial least square
regression (LSR), and linear discriminant analysis (LDA).

Eight papers did not fully define the training or validation set employed [22,23,26,
27,32,36,39,40]. Of those studies that did, most had a significantly larger training set than
validation set. Bidiwala et al. [17] and Fetit et al. [21] both utilized cross-validation given
their small sample sizes.

Table 2. Summary of common machine learning classifiers used in the classification of posterior
fossa tumors.

Classifier Algorithm Description

K-nearest neighbor Determines the probability a datapoint will fall into a group based on its distance from the
group’s members

Support vector machine Assigns datapoints to one of two or more categories based on their locations on a space where
the distance between the categories is maximized

Neural network Infers the category of input data through layers of weighted non-linear or linear operations

Extreme learning machine A feedforward neural network method with faster convergence

Classification tree Divides datapoints into categories based on the homogeneity of independent variables

Regression tree Divides data by iteratively partitioning independent variables to minimize mean square error

Random forest An ensemble method that aggregates outputs of regression trees or classification trees

Naïve Bayes Applies Bayes’ theorem to classify datapoints by independently considering the value of each
independent variable

Partial least square regression Identifies a subset of independent variables as significant predictors and then runs a
regression with these predictors

Linear discriminant analysis Identifies a linear combination of independent variables that divides datapoints
into categories

3.3. High-Yield Features

Individual features important for the discrimination of PFTs were dependent on the
dataset of origin. For generic T1- and T2-weighted imaging, extracted texture features were
highly discriminative [21,24,25,27,33,34]. Most discriminative features from DWI were
generated from ADC maps. These included ADC mean, ADC skewness, ADC energy, ADC
entropy, ADC low grey level zone emphasis, and others [19,20,22,23,26,28,29]. For MR-
spectroscopy, mean spectra and lipid peaks were the main discriminators [18,30]. For methy-
lation array data, individual CpG islands had the highest discriminative value [38]. For
classifiers generated from microscopy data, nuclear density, tumor-associated macrophage
density, nuclear compactness, and maximum radius were most important for discrimina-
tion [39].



Cancers 2022, 14, 5608 10 of 21

3.4. Algorithm Performance

Twenty-three studies reported general algorithm performance metrics citing mainly
AUCs, accuracies, sensitivities, and specificities (Tables 3 and 4, Supplementary Table S1) [16,
17,19–27,29–32,34–40]. Algorithms performed well only when differentiating between two
tumor types. Ependymoma and medulloblastoma were moderately well differentiated
by machine learning with reported accuracies of 68.6% to 87.2% and with a maximal
AUC of 0.92 [19,25,35]. Machine learning was also fairly accurate when differentiating
ependymoma and pilocytic astrocytoma [24].

Table 3. Summary of general performance metrics for algorithms developed to discriminate between
common pediatric posterior fossa tumors.

Study AUC Accuracy Sensitivity Specificity

Discrimination of EP vs. MB
Dong et al., 2021 [19] 0.75–0.91 68.6–86.3 - -

Li et al., 2019 [25] - 74.6–85.4 - -
Zhang et al., 2021 [35] 0.92 87.2 91.9 70.0

Discrimination of EP vs. PA
Li et al., 2020 [24] 0.87–0.88 87.0–88.0 90.0–93.0 80.0–83.0

Discrimination of EP vs. MB vs. PA
Bidiwala et al., 2004 [17] - - 72.7–85.7 86.4–92.9

Dong et al., 2022 [20] 0.94–0.98 80.0–84.9 80.0–84.9 -
Fetit et al., 2015 [21] 0.81–0.99 71.0–92.0 - -
Grist et al., 2020 [22] - 50.0–85.0 - -

Novak et al., 2021 [26] - 84.6–86.3 - -
Orphanidou-Vlachou et al., 2014 [27] - 37.5–93.8 - -

Rodriguez et al., 2014 [23] - 75.2–91.4 - -
Wang et al., 2022 [29] - 93.8 - -

Zarinabad et al., 2018 [30] - 81.0–86.0 - -
Zarinabad et al., 2017 [32] - 80.0–93.0 - -

Zhang et al., 2021 [35] 0.90 82.6–94.5 73.9–91.8 86.9–95.9
Zhao et al., 2022 [36] - 84.0–88.0 - -
Zhou et al., 2020 [37] 0.91–0.92 74.0–83.0 - -

AUC, area under the curve; EP, ependymoma; MB, medulloblastoma; PA, pilocytic astrocytoma.

Table 4. Summary of the reported diagnostic accuracies of commonly employed machine learning
algorithms for posterior fossa tumors.

Algorithm Accuracy (Mean +/− SD)

Overall EP MB PA
PNN 89.7 +/− 3.8 - - -
Naïve Bayes 85.7 +/− 2.5 87.4 +/− 6.3 88.9 +/− 4.3 90.7 +/− 3.5
LR 82.5 +/− 7.5 85.4 +/− 11.2 85.5 +/− 9.5 88.6 +/− 8.4
ANN 82.5 +/− 13.4 91.5 +/− 4.9 88.5 +/− 10.6 86.5 +/− 13.4
Classification tree 79.0 +/− 5.7 90.0 +/− 7.1 87.5 +/− 3.5 82.0 +/− 4.2
SVM 78.2 +/− 10.7 84.3 +/− 7.1 88.7 +/− 5.9 90.5 +/− 7.0
RF 77.7 +/− 12.3 81.6 +/− 12.0 93.6 +/− 1.3 95.8 +/− 5.8
kNN 69.4 +/− 13.1 86.2 +/− 6.2 87.5 +/− 7.3 85.5 +/− 6.4
LDA 60.5 +/− 21.4 - - -

Diagnostic accuracies are reported as the mean +/− the standard deviation (SD) of all reported accuracies for
each machine learning classifier. Both global and tumor-specific accuracies are reported. A ‘-’ indicates that no
data were available on the diagnostic accuracy of the specified algorithm for the specified tumor type. ANN,
artificial neural network; EP, ependymoma; kNN, k-nearest neighbor; LDA, linear discriminant analysis; LR,
logistic regression; MB, medulloblastoma; PA, pilocytic astrocytoma; PNN, probabilistic neural network; RF,
random forest; SVM, support vector machine.

As expected, algorithms tasked with the head-to-head classification of more than two
tumors had more variable results. Thirteen studies investigated algorithms that could differ-
entiate ependymoma, medulloblastoma, and pilocytic astrocytoma. Of these, the accuracy
ranged from 37.5% to 94.5% depending on the algorithm [17,20–23,26,27,29,30,32,35–37].
Of all the MLAs, PNN had the highest average performance when differentiating these
three tumor types with an average accuracy of 89.7% [27]. Individual algorithms outper-
formed the average with Dong et al. [20] achieving an AUC of 0.94 to 0.98 and Zhang
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et al. [35] reporting consistently high accuracies across multiple trials, ranging from 82.6%
to 94.5%. Hollon et al. [39] utilized a machine learning analysis of 10x microscopy slides
to discriminate between 11 tumor types with AUCs of 0.96 to 0.97 and accuracies ranging
from 89.4% to 100.0% depending on the method used. Danielsson et al. [38] similarly
achieved an accuracy of 98.3% applying machine learning methods to differentiate between
six tumors based on Illumina 450K methylation array data.

The most commonly reported 3-way classifier was between medulloblastomas, pilo-
cytic astrocytomas, and ependymomas (Figure 2). Twelve studies investigated the ability
of 50 total algorithms to classify pilocytic astrocytoma [17,20–23,26–30,35,37]. Diagnostic
accuracy ranged from 76.7% to 96.9% [23]. Sensitivities and specificities varied by algo-
rithm, but most algorithms reported both sensitivities and specificities in the 70% to 100%
range [17,21,27]. Most of the surveyed MLAs reported similar accuracies in the diagnosis
of pilocytic astrocytoma. RF and NB algorithms had the highest mean diagnostic accuracies
of 95.8% and 90.7%, respectively, while classification trees had the worst performance with
an average diagnostic accuracy of 82.0% [21,26,28].
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Figure 2. Aggregated algorithmic performance metrics overall and by tumor type. AUCs, accuracies,
sensitivities, and specificities are reported for every algorithm developed to discriminate between
ependymoma, medulloblastoma, and pilocytic astrocytoma. Parameter means are represented by
an “×” and outlier values are illustrated with a “•”. If a paper trialed multiple algorithms, each
algorithm was individually counted as a separate entry.

AUC, area under the curve; EP, ependymoma; MB, medulloblastoma; PA, pilocytic
astrocytoma.

Thirteen studies of 64 algorithms quantified their diagnostic performance in the classi-
fication of medulloblastoma [17,19–23,26–30,35,37]. MLAs had the best performance in the
diagnosis of medulloblastoma with reported accuracies in the 80% to 98% range [21,23].
While some algorithms reported up to 100% sensitivity, others performed poorly with
a minimum reported sensitivity of 36.5% [21,27]. Specificities varied by algorithm from
61.4% to 100% [21,27]. While no single MLA definitively outperformed in the diagnosis of
medulloblastoma, RF algorithms exhibited the highest mean accuracy of 93.6% [26,28,29].
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Fourteen studies of 65 algorithms also quantified the ability of MLAs to correctly
diagnose ependymoma [17,19–23,26–30,35,37,40]. Machine learning performed relatively
poorly when discriminating ependymomas from other PFTs. While a minority of the
developed algorithms achieved accuracies greater than 90%, most reported accuracies
around 80% [23,27,35]. Most ependymoma diagnostic algorithms were highly specific but
poorly sensitive. One algorithm reported a sensitivity as low as 6.7% with most sensitivities
in the 30% to 70% range [21,27,37]. ANNs and classification trees were the most accurate
algorithms when diagnosing ependymoma with mean accuracies of 91.5% and 90.0%,
respectively [21]. RFs performed inconsistently with an overall accuracy of 81.6% and a
standard deviation of 12.0 [19,21,26,28,29].

Leslie et al. [40] reported additional diagnostic accuracies of 85%, 96%, 61%, and 75%
for astrocytomas, gliomas, oligodendrogliomas, and gangliogliomas, respectively.

3.5. Comparison to Neuroradiologist

The efficacies of the developed MLAs were compared to those of a trained neurora-
diologist in seven cases (Figure 3). Algorithms developed by Bidiwala et al. [17], Davies
et al. [18], and Fetit et al. [21] all outperformed the neuroradiologist at both best-case and
worst-case reported accuracies/AUCs. Of note, Davies et al. [18] was the only study to
compare a radiologist to a radiologist augmented by MLA. Results were equivocal for Arle
et al. [16], Quon et al. [31], and Zhou et al. [37]. At the maximum reported accuracy/AUC,
these algorithms outperformed the standard of care, but at the lower end of reported func-
tioning, these algorithms were inferior to the standard of care at its optimal performance.
Payabvash et al. [28] could not be assessed compared to a neuroradiologist because overall
accuracy/AUC was not provided for each MLA being evaluated.
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Figure 3. Difference in maximal accuracy or area under the curve (AUC) between machine learning
algorithms (MLAs) and neuroradiologists for classification of posterior fossa tumors. The upper
value represents the difference between the maximal accuracy/AUC of the MLA and the minimum
accuracy/AUC of the radiologist. The lower value represents the difference between the maximal
accuracy/AUC of the radiologist and the minimum accuracy/AUC of the MLA. Positive values
suggest that the MLA outperformed the radiologist and negative values suggest that the radiologist
outperformed the MLA [16–18,21,31,37].
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3.6. Observed Limitations

The limitations of the studied MLAs were divided into methodologic limitations and
algorithmic limitations (Table 5). Methodologic limitations relate to study design, the
generation of data, and the training of the algorithm. Most major limitations observed
were methodologic. Nineteen algorithms (76%) used retrospectively collected data and
18 algorithms (72%) were trained or validated on small samples of fewer than 50 patients,
many with incomplete radiographic or molecular datasets [17,19–21,23–29,31–35,37–39].
Unequal distribution of tumor types in training sets and the use of the same dataset for
both algorithm training and validation were notable limitations. More generally, nine
studies provided inadequate descriptions of methods, omitting necessary information such
as the training or validation set size, final number of included features, or specific classifier
modifications [22,23,26,27,31,32,38–40].

Table 5. Common limitations of machine learning algorithms for the classification of posterior
fossa tumors.

Limitation N (%)

Retrospective data collection 19 (76%)
Small training or validation sets 18 (72%)

Unequal distribution of tumor types in training cohorts 17 (68%)
Methods lacking sufficient detail 9 (36%)

Performance varies significantly by tumor type 9 (36%)
Institutional differences in imaging/molecular acquisition 8 (32%)

No inclusion of relevant clinical variables 6 (24%)
Training and validation completed on the same dataset 4 (16%)

Algorithm-specific limitations were less commonly described. Nine algorithms (36%)
exhibited significantly worse performance with the classification of a specific tumor his-
tology [17,18,20–22,27,31,35,38]. Performance was commonly inferior in the diagnosis of
ependymoma due to its limited sample sizes in the training and validation sets [22,27].
Additionally, 24% of studies failed to correlate algorithm output with clinical variables to
further improve performance [23–27,31].

4. Discussion

In this systematic review, we explored the published literature for MLAs developed to
classify pediatric PFTs. Twenty-five studies were identified that applied machine learning
approaches to imaging, microscopy slides, and DNA methylation data. In theoretical
testing, the MLAs were adept at differentiating PFTs in the pediatric population. Under
optimal conditions, individual algorithms achieved AUCs of 0.99 and accuracies up to
100% [21,39]. While medulloblastoma was predicted with the highest accuracy, pilocytic
astrocytoma, ependymoma, glioma, ganglioglioma, and oligodendroglioma were also
classified with high performance in some cases [17,20–23,26–30,35,37,40].

Algorithms were heterogeneously crafted and studied. For example, where Arle
et al. [16] extracted 20 features to classify 33 tumors using a single NN, Zhang et al. [35]
extracted over 1800 features from 527 patients using an ensemble of six different classifiers.
Given the vast number of available features to be extracted from multiple data streams,
classifier combinations to be applied, and methods of performance analysis to be employed,
success in this space depended on the algorithm creators’ ability to select the proper data
and methods for the desired goal.

4.1. Algorithm Selection

The machine learning approaches employed a variety of classification algorithms to
discriminate between PFTs. Surprisingly, while there was some variation, all of the clas-
sifiers yielded fairly high accuracies in the individual diagnosis of ependymoma, medul-
loblastoma, and pilocytic astrocytoma. Instead, there were significant differences observed
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in the overall accuracy of the MLAs. It is possible that the variation in accuracies reported
by studies employing the same MLAs explains some of this discrepancy. Furthermore,
algorithm accuracies were only reported on a per-tumor basis in a minority of studies.
Studies reporting positive results may be more likely to publish these tumor-specific per-
formance metrics.

LDA, kNN, and RF algorithms had the lowest accuracies with significant variation
in the reported results. LDA, while simple to implement, is often critiqued as not being
expressive enough to appreciate complex differences between groups [41]. kNN methods,
while commonly used, are highly sensitive to dataset size and quality, which may serve
to explain the poor performance in the small, unbalanced PFT datasets used in the model
training. Additionally, kNN algorithms depend on a knowledgeable operator given the
difficulty of choosing a proper k for a given training set [42]. RF models, lauded as a fast
ensemble method of classification, are unable to extrapolate datapoints outside the range
of the training set and respond poorly to noisy datasets [43]. All three poorly performing
algorithms commonly rely upon a broad, high-quality training set, which may have been
lacking in these cohorts. While these MLAs have their merits, caution should be employed
when applying these methods on small, unbalanced datasets.

The highest-performing 3-way classifiers utilized PNN and NB algorithms. While
computationally demanding, PNNs are some of the most effective MLAs in terms of
their accuracy and outlier handling [44]. Additionally, PNNs have a history of success in
the classification of brain tumors [45]. PNNs are also well-suited to training on a large
dataset, compared to other MLAs. NB classifiers are intuitive, scalable, efficient, and robust
to outliers. While they assume independence between all features, a higher degree of
independence can be insured through the use of feature selection [46]. Both techniques
offer the advantages of high accuracy despite the presence of outliers, which may explain
their applicability in PFT diagnostics.

With moderate classification accuracies, SVMs were the most frequently employed
classifier in this cohort. Given that SVM methods perform well on high dimensionality and
unstructured data, such as that derived from imaging, an SVM classifier is a good fit for
the PFT classification problem [47]. These benefits come with the associated challenges of
long training times and difficulty choosing a proper kernel function [48]. SVM models are
additionally known to underperform when trained on datasets that contain significantly
more variables than data specimens, which may explain the lackluster results in these
cohorts [49].

4.2. Objective of Machine Learning Application

Machine learning has generated much excitement as a potential driver of cost reduc-
tion and improved diagnostic accuracy in clinical practice. Diagnostic interpretation by a
radiologist has previously been shown to be highly operator-dependent, a problem that is
further magnified in the diagnosis of PFTs, which have many overlapping radiographic fea-
tures [50]. Multiple studies have shown that machine learning approaches have improved
diagnostic efficacy when compared to their human counterparts [51–53]. Imaging-based
MLAs applied to glioma diagnosis have shown the potential to improve clinical decision
making regarding the diagnosis and management of adult glioma patients [54]. In fact, an
artificial intelligence-driven, MRI-based brain tumor diagnostic program has already been
integrated into clinical practice with some success [11]. The implementation of a similar
platform in the diagnosis of pediatric PFT patients could preclude the need for an invasive
biopsy and decrease time to diagnosis. While surgical resection is typically standard of care
for these patients, neoadjuvant chemotherapy is sometimes performed [55]. An increased
confidence in the diagnosis would allow for the better tailoring of treatment; for example,
the importance of obtaining a surgical gross total resection is much greater for improved
outcomes in ependymoma compared to medulloblastoma. Finally, the application of MLAs
in this space allows for a diagnosis to be obtained in resource-poor settings where a trained
neuroradiologist, neurosurgeon, and neuropathologist are not always available.
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4.3. Translation to Clinical Practice

An algorithm is ready for the clinical environment if it can perform with the equiv-
alent efficacy to the clinical alternative and has demonstrated reliability when applied
prospectively in clinic; however, comparison to a clinical standard is often difficult. Given
that the standard of care is a pathological diagnosis, little clinical benefit is generated from
algorithms that can make a comparable diagnosis based on a tissue sample. Instead, the
true clinical value of MLAs is derived from improvements made in the diagnostic accuracy
of non-invasive data sources such as imaging. Only seven of the algorithms identified in
this review made any performance comparison to a neuroradiologist [16–18,21,28,31,37].
Of these, only three definitively outperformed the radiologist. For example, even at the
worst-case performance, the algorithm developed by Bidiwala et al. [17] showed a 14%
greater accuracy compared to the highest reported accuracy of a neuroradiologist [18,21].
The remaining four studies were more equivocal and developed algorithms that could
outperform the radiologist under ideal conditions, but then underperformed in the di-
agnosis of certain tumor subtypes or when specific classifiers were applied [16,28,31,37].
Given the heterogeneity of developed algorithms in this space, no generalization can be
made regarding algorithm performance as compared to a radiologist. However, it seems
that under specific conditions, a minority of the posterior fossa classification algorithms
can consistently improve the diagnostic accuracy compared to trained neuroradiologists.
Unfortunately, no analysis is possible for the molecular diagnostic algorithms given that
none of these algorithms were compared to a clinical alternative. In addition, these methods
still require a biopsy and no study examined other factors that may justify clinical use, such
as improved cost or efficiency compared to diagnosis by a neuropathologist.

Regarding the second standard, a lack of application in the clinical environment is
the true barrier to clinical integration of these algorithms. Not a single algorithm from
the 25 studies identified in this review was trialed in the clinic. While six algorithms had
prospective data collection, they did not apply patient data in real time to yield a diagnosis,
as would be expected in a real clinical workflow. Davies et al. [18] took the added step of
assessing algorithm performance as an adjunct to a neuroradiologist’s decision making,
but this still occurred outside of the clinic. A common critique of MLAs is that the results
of theoretical research studies are poorly reproduced when algorithms are used in real
time on actual patients [56]. Given the baseline resistance to the clinical uptake of any new
technology, such clinical studies are imperative to convince clinicians of the safety and
efficacy of these algorithms.

4.4. Algorithm Limitations

Limitations in the study and efficacy of these MLAs can be divided into (1) those that
are inherent to machine learning methods and (2) those that can be improved with proper
study design. Many of the uncontrollable limitations come from the feature extraction
stage. Proper feature extraction depends on high signal-to-noise ratios generated from high-
resolution imaging. ADC sequences, a common MR-generated sequence used in algorithms
classifying PFTs, have inherently lower scan resolution which translates to greater noise,
especially when compared to T1- and T2-weighted sequences [31]. Increased noise is diffi-
cult to control for and makes the extraction of clinically meaningful imaging characteristics
more difficult. Feature extraction from imaging is also limited by the quality of the predom-
inantly manual region of interest delineation and segmentation processes [31]. Seventeen of
the included studies featured manual image segmentation with minimal quality control for
proper results. Manual segmentation is time consuming and highly operator-dependent,
introducing bias into any cohort [57,58]. However, automatic segmentation is not always
preferred as it is often ambiguous how the segmentation algorithm defines the region of
interest. Finally, the inherent variation between the scans captured by different machines
with different calibration methods makes uniform analysis challenging [59]. This limitation
is especially relevant to studies that spanned different centers, such as those completed
by Zhang et al. [33] or Quon et al. [31], which must contend with sequences captured by
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different machine makes and models. MLAs rely on minor differences in characteristics
between cases to make classification decisions so these minor variations between machines
have the potential to alter results.

Many of the methodological limitations commonly observed in machine learning
classifiers of PFTs are correctable. The most salient limitation is the small sample sizes
used to train and validate these algorithms. Only eight studies reported a training set
of over 100 samples and an even fewer three studies reported similarly large validation
sets [20,28,31,33–38]. This scale (~100 samples) is significantly smaller than that used by
the training sets for deep learning models, which typically require at least ~1000 to ~10,000
samples in the supervised setting. Algorithms trained on small sample sizes commonly
overfit data, yielding an overestimated accuracy [60]. Furthermore, Bidiwala et al. [17] and
Fetit et al. [21] employed a cross-validation method in which one sample was withheld
from the training set, the model was trained, and then validation was completed on
the single remaining sample. This process was then repeated for all samples and then
the results were aggregated. While this is an understandable approach when dealing
with small sample sizes, as these authors were, it can also lead to highly inconsistent
results and is prone to overfitting [61]. Similarly, 36% of the studied algorithms varied
in accuracy by tumor type. On average, these algorithms performed the worst with the
classification of ependymoma. This is most attributable to the relative under-representation
of ependymoma samples in these unbalanced datasets with 10 studies each featuring fewer
than 20 ependymoma samples. While this is not surprising given that ependymomas only
represent 8% to 15% of PFTs, the improved representation of rare tumors in these cohorts
would improve the overall accuracy of the generated algorithms [62]. Oversampling would
provide one potential methodologic solution to address the rare tumor problem. However,
algorithm developers must strike a balance to not oversample to an extent that there is
overgeneralization of the minority class [63].

Potentially the most actionable limitations relate to data use and method report-
ing. Most of the included studies (76%) were retrospective, which limits generalizability.
Authors frequently used incomplete radiographic or molecular data as inputs. While main-
taining a low bar for data inclusion increases sample sizes and generalizability, accuracy
would be improved if only complete cases were included. Nine papers additionally lacked
sufficient detail in their methods to determine the training or validation set size, number of
clinical sites involved, or method of feature extraction [22,23,26,27,32,35,38–40]. Machine
learning approaches are commonly critiqued as being “black boxes” to their users [64]. The
ambiguous definition of the methods and inconsistent reporting of performance metrics
serves to further reinforce this criticism and will continue to impede progress if changes
are not made.

4.5. Posterior Fossa Algorithm Recommendations of Best Practice

We make the following suggestions of best practices for the development of PFT classifi-
cation algorithms based on our analysis of the algorithm performance and limitations. From
a procedural standpoint, most algorithms followed the commonly accepted framework
of image acquisition, normalization, feature extraction, dimensionality reduction through
feature selection, and classification [65]. Preprocessing and filtering prior to extraction
increase the resolution of the extracted imaging features and the subsequent dimensionality
reduction removes noise and random error, increasing accuracy [34,65–67]. The majority
of the classification algorithms identified in this review applied such techniques, which
partially explains the high accuracies reported across many algorithms. This process should
continue to be employed. While radiomics-based MLAs have classically applied a single
classifier on one set of inputs, Zhang et al. [33] highlighted the value of ensemble classifiers
that can identify the combination of models with the highest efficacy. As an individual
algorithm’s efficacy varied by tumor type, it is necessary to trial multiple combinations of
classifiers to identify the ideal system for the specific problem [17,19–23,26–30,35,37,68].
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Additionally, algorithms should be trialed prospectively in the clinic with large train-
ing and validation sets that equally represent all included tumor types. This recommen-
dation holds especially true for ependymoma, which, while rare, was consistently under-
represented in the PFT cohorts being analyzed [16–18,21,27,30]. While no one-size-fits-all
cohort size can be recommended, a minimum sample size should be chosen to ensure that
results are adequately powered. In situations where available data are limited, such as
with ependymoma, other machine learning methods can be employed, including model
pretraining, semi-supervised learning, or self-supervised learning [69,70]. Standardized
results reporting is also necessary to facilitate algorithm comparison and assessment. Each
study should report, at minimum, AUC, accuracy, sensitivity, and specificity on both an
aggregated as well as a per-tumor basis. One approach to ensure standardized perfor-
mance analysis involves the curation of a benchmark dataset on which different models
can be compared fairly and reproducibly, as has already been implemented with other
radiographic data [71,72]. Such a dataset should be derived from multiple centers and
contain representative and balanced data, with clear training, validation, and testing sub-
sets. Finally, to address the concern for poor transparency in algorithm development and
function the following steps can be taken: (1) local features can be aggregated to give
a sense of the overall model, (2) methods such as the “predictive, descriptive, relevant”
framework described by Murdoch et al. [73] or the NTRPRT guideline developed by Chen
et al. [74] can be utilized to ensure that algorithms are maximally interpretable, and (3) un-
certainty measures can be included in model predictions to flag when the model is prone
to misclassifications and highlight when human intervention may be required [75,76].

Algorithms developed from MR imaging, microscopy slides, and molecular data were
all similarly efficacious [17,21,38–40]. While algorithms that improve the cost or speed of
tissue diagnosis still have clinical value, algorithms developed from imaging data should
be prioritized as computed tomography (CT) and MR are significantly less invasive than
tissue collection.

4.6. Limitations & Future Directions

This systematic review has some limitations. Papers were only sampled through 31
July 2022, so any additional algorithms classifying PFTs published since have not been
included. While potentially clinically useful, this analysis excluded algorithms classifying
PFTs by molecular subtypes or prognosis to facilitate the easy comparison of identified algo-
rithms. Algorithm critiques were based solely on the published description of the algorithm
at the time this paper was written. Additional data or documentation covering algorithm
operation or performance published elsewhere may not be included in this analysis.

The algorithms reported in this paper offer many different approaches to the classi-
fication and diagnosis of PFTs based on imaging or molecular features. While some of
these methods are compared to a clinical standard, such as a neuroradiologist, many are
not. Additional work is needed to make these comparisons to the standard of care and,
more importantly, to study the efficacy of these algorithms in the clinical environment. It is
postulated that the true clinical integration of machine learning will manifest as a symbiosis
between the physician and the developed algorithms instead of the algorithm replacing the
physician [77]. Thus, further work is also needed to investigate how physicians interact
with these algorithms and how neuroradiologists or neuropathologists can apply these
methods to further improve diagnostic accuracy. As previously discussed, a significant
barrier to the clinical implementation of machine learning classification algorithms is the
methodologic limitations in algorithm design and testing. While proposed solutions are
resource-intensive, they seek to make this complex technology more digestible to the typ-
ical physician, who is not well-versed in machine learning methods. Multi-institutional
collaborations in the field could allow for resource pooling, access to larger sample sizes,
and increased exposure of MLAs to industry stakeholders.
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5. Conclusions

Overall, machine learning has the potential to improve diagnostic speed and accuracy
for pediatric PFTs. Developed algorithms focused on the classification of medulloblastoma,
pilocytic astrocytoma, and ependymoma with inconsistent results. Individual algorithms
reported exceptional performance metrics while others yielded suboptimal outcomes.
While a minority of algorithms consistently outperformed the current clinical standard of
care, most were nonsuperior or lacked such a comparison. Common limitations include
poor methods of reporting, use of small sample sizes, under-representation of certain tumor
types such as ependymoma, and methodological limitations inherent to the development
of MLAs. The advancement of these algorithms to clinical use will necessitate adherence
to consistent data reporting standards, training, and validation in larger sample sizes,
prospective trials in real-time clinical workflows, and the study of algorithms as an adjunct
to the current standard of care rather than as a replacement.
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