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Simple Summary: Our work provides novel transcriptomic biomarkers that can accurately predict
immune checkpoint inhibitors (ICIs) response in melanoma patients. Using a bioinformatics analysis
and supervised machine learning approach, we developed four random-forest classifiers based on
clinical, genomic, transcriptomic and survival data. The results of these models can enable further
insight into the potential role of these genes in immunotherapy. In addition, our findings were
based on a supervised approach, in which melanoma patients treated with ICI were used to retrieve
response-associated biomarkers, unlike several studies that used an unsupervised approach based on
drug targets to predict ICI response in non-ICI-treated melanoma patients. Apart from ICI response,
we also investigated the effect of these biomarkers on overall survival and patients’ prognosis, which
also revealed a high association with survival, marking these biomarkers as powerful in both ICI
response and patients’ prognosis. Thus, our work demonstrates a cornerstone in precision oncology
and further evaluates these biomarkers in clinical practice using personalized medicine for a better
prognosis and response outcomes.

Abstract: Immune checkpoint inhibitors (ICIs) became one of the most revolutionary cancer treat-
ments, especially in melanoma. While they have been proven to prolong survival with lesser side
effects compared to chemotherapy, the accurate prediction of response remains to be an unmet
gap. Thus, we aim to identify accurate clinical and transcriptomic biomarkers for ICI response in
melanoma. We also provide mechanistic insight into how high-performing markers impose their
effect on the tumor microenvironment (TME). Clinical and transcriptomic data were retrieved from
melanoma studies administering ICIs from cBioportal and GEO databases. Four machine learning
models were developed using random-forest classification (RFC) entailing clinical and genomic
features (RFC7), differentially expressed genes (DEGs, RFC-Seq), survival-related DEGs (RFC-Surv)
and a combination model. The xCELL algorithm was used to investigate the TME. A total of 212 ICI-
treated melanoma patients were identified. All models achieved a high area under the curve (AUC)
and bootstrap estimate (RFC7: 0.71, 0.74; RFC-Seq: 0.87, 0.75; RFC-Surv: 0.76, 0.76, respectively). Tu-
mor mutation burden, GSTA3, and VNN2 were the highest contributing features. Tumor infiltration
analyses revealed a direct correlation between upregulated genes and CD8+, CD4+ T cells, and B cells
and inversely correlated with myeloid-derived suppressor cells. Our findings confirmed the accuracy
of several genomic, clinical, and transcriptomic-based RFC models, that could further support the
use of TMB in predicting response to ICIs. Novel genes (GSTA3 and VNN2) were identified through
RFC-seq and RFC-surv models that could serve as genomic biomarkers after robust validation.
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1. Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of advanced
melanoma. These agents work by decreasing the inhibition of the immune cell, thus,
facilitating an immune response against the tumor. Such agents include pembrolizumab
and nivolumab (anti-PD-1), atezolizumab (anti-PDL-1) and ipilimumab (anti-CTLA-4).
These ICIs are approved by the US Food and Drug Administration (FDA) for the treatment
of advanced melanoma [1]. Although the ICIs published studies revealed favorable initial
response rates and lasting responses to immunotherapy, about 50% of patients do not
experience clinical response [2]. The need for validated biomarkers to detect the progress
of a clinically prominent antitumor immune response in treated patients is also there [3].

Different predictors of the response to immunotherapy have been proposed. PDL-1
expression on tumor cells pre-treatment is most intricately linked with response to PD-1
inhibitors [4]. The tumor microenvironment (TME) involves the infiltration of both immune
cells (tumor immune microenvironment [TIME]) and other mesenchymal cells [5]. The
characteristics of TME are linked to response and resistance to ICIs in melanoma [6]. It is
noted that the prediction of ICI response based on multiple genomic, immunogenic, and
clinical variables is a prominent goal of current cancer-related research.

Since the prediction of response to ICI therapy is an important factor in devising a
treatment plan for cancer patients, the introduction of machine-learning-based models
has been suggested to help in patient selection and improve patients’ prognosis. Machine
learning algorithms can predict responses to ICIs by integrating genomic, molecular, de-
mographic, and clinical data [7]. These models work by encompassing several variables
in a complementary manner to act as training parameters to predict patients’ responses
to treatment [8]. Our goal is to integrate a variety of demographic, clinical, genomic, and
transcriptomic variables to predict the ICI response and understand the primary resistance
mechanisms in melanoma patients using a machine learning classifier.

2. Materials and Methods
2.1. Data Acquisition

We retrieved the clinical data of immunogenomic studies on melanoma patients who
underwent ICI therapy through the cBioportal database (https://www.cbioportal.org) up
to May 2022, [9] an integrated web tool for clinical and cancer genomic data. A total of
8 datasets accounted for immunogenomic studies in the cBioportal database, 3 datasets were
on ICI-treated melanoma patients [10–12]. The retrieved clinical data included the following
variables: melanoma histological subtype, age, sex, ICI agent, tumor mutational burden
(TMB), the fraction of the genome altered (FGA), mutation count, and treatment response.
Tumor objective response was used to classify patients as responders if they showed com-
plete response (CR) or partial response (PR), and as non-responders, if they showed stable
disease (SD) or progressive disease (PD) according to the Response Evaluation Criteria
In Solid Tumors (RECIST 1.1) [13]. Additionally, the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/), was inspected for gene expression profiles
of melanoma patients treated with ICIs up to May 2022. Figure 1 illustrates data workflow.

2.2. Differential Expression Analysis (DEA)

The GSE91061 dataset of high-throughput sequencing was used to screen out the
differentially expressed genes (DEGs) associated with ICI responses between responders
and non-responders in 109 melanoma patients. DEA was performed using DESeq2 from
Bioconductor R package (v3.13), which uses Bayes shrinkage to estimate dispersion and
fold-change (FC) then fit a generalized linear model (GLM) for each gene based on a
negative binomial distribution, and tests for significance using the Wald-test [14]. We set
a p-value threshold < 0.05 corrected for multiple comparisons using the Benjamini and
Hochberg method. A cutoff point of |log2FC| > 0.5 was set to determine the up- and
down-regulated DEGs.

https://www.cbioportal.org
https://www.ncbi.nlm.nih.gov/geo/
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Figure 1. Workflow of the study. Four RFC models were built, a clinical and genomic model (RFC7)
based on 3 cBioPortal cohorts, transcriptomic model (RFC-Seq) based on RNA-Seq in GSE91061, RFC-
Surv based on survival-related genes and RFC16 based on genes in RFC-Seq and RFC-Surv models.
DEGs of GSE91061 based on ICI response were further used to understand TME, GO, and to build the
RFC-Seq model. The intersected genes between the top 100 immune-related genes identified via SVM-
RFE and survival-related genes from SKCM-TCGA were used to identify prognostic role of these
genes using Cox proportional hazard model and to build RFC-Surv model to predict response. Based
on genes used in RFC-Seq and RFC-Surv, RFC16 was built to predict response to ICI. ICI: immune
checkpoint inhibitors, DEGs: differential expressed genes, SVM-RFE: Support Vector Machine—
Recursive Feature Elimination, SKCM-TCGA: The Cancer Genome Atlas- skin cutaneous melanoma,
AUC: area under the curve.

2.3. Immune Infiltration Analysis

The xCELL algorithm, a web-based tool for enrichment analysis based on gene expres-
sion profiles, was used to estimate the immune scores of 64 immune components and stro-
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mal cells and provides an understanding of cellular heterogeneity across tumor tissue [15].
Hierarchical clustering was used to assess the correlation between the 21 most relevant im-
mune components and stromal cells and the DEGs with |log2FC| > 2.0 using the pheatmap
package from R gplots (v1.0.12; https://CRAN.R-project.org/package=pheatmap) and to
assess the effect of gene expression and the tumor immune microenvironment.

2.4. Gene Ontology (GO) Enrichment Analysis

To understand the functional landscape of the 723 upregulated and 303 downregulated
DEGs, we performed a GO enrichment analysis for biological processes (BP), molecular
function (MF), and cellular components (CC). Using the clusterprofiler package from
Bioconductor R, an adjusted p-value < 0.05 threshold was considered statistically significant
for GO enrichment terms.

2.5. Support Vector Machine—Recursive Feature Elimination (SVM-RFE)

The 1066 DEGs were fitted into an SVM model to predict ICI response, then RFE was
used to select the top 5 ranking genes in predicting ICI response. The RFE is a backward-
iterative approach that eliminates features that do not show a correlation with the target
variable, which enhances the accuracy of the model’s prediction. RFE calculates the ranked
weight of all features and sorts them based on their classification performance [16]. The
top-four-ranking upregulated genes and the top-four-ranking downregulated genes were
then fitted into a random-forest classifier to evaluate their prediction performance.

2.6. Survival-Associated DEGs

To evaluate the effect of ICI-predictor DEGs on melanoma prognosis, we recruited the
top 100 ranking DEGs in predicting ICI response from the SVM-RFE model. To select genes
with both prognostic and predictive values, the top 100 DEGs were cross-validated with
the survival-related genes in melanoma patients of the TCGA cohort, which were obtained
from the GEPIA2 database. The overlapping genes from the top 100 ICI-predicting DEGs
and survival-related genes were fitted into a Cox proportional hazard model (CPH) to
evaluate its effect on OS from 3 datasets which were obtained from GEO and cBioportal
databases, including GSE78220 (n = 27), Metastatic Melanoma, DFCI 2015 (n = 40) 11,
Melanoma, MSKCC 2014 (n = 21) 12. A best-cutoff point for age and the overlapping genes
was set by computing a cox model over the values between the first and third quartiles
(Q3-Q1) for each variable, choosing the most significant cutoff value, and separating the
variables into two groups. Multiple hypotheses were generated during the calculation of
the best-cutoff value; thus, we corrected the p-values for multiple comparisons using the
“BH” method. The survival and rms package from R were used to carry out the analyses.

2.7. Random Forest Classifier

Three machine-learning random-forest classifications (RFC) ensembles were built to
predict ICI responses in the GSE91061 and GSE78220 datasets of 133 ICI-treated melanoma
patients. The first RFC model (hereafter called RFC-Seq) was trained on the 8 top ranking
up- and downregulated DEGs from the SVM-RFE model with a training-testing ratio of
8:2, in which 108 patients contributed to the training set, and 25 patients contributed to
the validation set. The second RFC model (hereafter called RFC-Surv) was trained on the
8 survival-related genes from the CPH model, whereas the third RFC model (hereafter
called RFC16) was trained on 16 features from the RFC-Seq and RFC-Surv models. All
models’ performances were evaluated on the testing set using the mean bootstrap estimate
with a 95% confidence interval (95% CI), area under the receiver operating characteristics
curve (AUC/ROC), and 10-fold cross-validation in which the whole dataset of 133 patients
was split into 10 iterations with 9 folds of the data for the training and the remaining
fold for testing in each iteration, then calculating the mean score from each iteration. The
scikit-learn package from python was used for model construction and evaluation [17,18].
To assess the contribution of each gene in predicting ICI response, feature contribution was

https://CRAN.R-project.org/package=pheatmap
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calculated using the permutation importance which represents the decrease in the fitted
model score when the values of each feature are randomly shuffled, thus, a higher decrease
in the model’s score indicates a higher dependence on this feature in predicting the target.

2.8. Data Availability

The data used in this study are publicly available from the gene expression omnibus
(GEO) and cbioportal databases can be accessed through GSE91061 and GSE78220. The
study workflow is shown in Figure 1.

3. Results
3.1. Clinical Data and ICI Response Model

A total of 212 ICI-treated melanoma patients were recruited from the cBioPortal
database. Age at diagnosis was partially significant between R and NR (p-value = 0.04),
while TMB differed significantly (mean log2 (TMB+1): 3.14 versus 4.03, p-value < 0.0001).
FGA and sex were not significantly different between R and NR. A random-forest classifier
(RFC) was trained to predict ICI response based on 7 clinical features (hereafter called
RFC7), including log2 (TMB+1), FGA, mutation count, sex, age at diagnosis, ICI agent, and
histological subtype. The RFC7 model performed on the testing set with a mean bootstrap
estimate of 0.74 with 95% CI: [0.66–0.81], 10-fold cross-validation of 0.66, and AUC of 0.71
as shown in Figure 2F. Demographic and clinical characteristics are shown in Table 1. TMB
was the highest contributing feature in predicting ICI response, followed by mutation count,
FGA, and age as shown in Figure 2A. To evaluate the predictive performance of TMB alone
in ICI response, an RFC model was trained on TMB alone and performed on the testing
set with a mean bootstrap estimate of 0.67 and 95% CI: [0.50–0.84], 10-fold cross-validation
of 0.61, and AUC of 0.68, thus it did not show better performance compared to the RFC7
model as shown in Figure 2E.

Table 1. Demographic and clinical characteristics of patients included in the RFC7 model.

Variables N = 212 Responders (N = 65) Non-Responders (N = 147) p-Value *

Sex (females), n (%) 68 (32.1) 16 (24.6) 52 (35.4) 0.17
Age (years), median (IQR) 62 (70.3–49) 64 (72–57) 60 (69–47.5) 0.04 *
Histological subtype, n (%)

Acral Melanoma 5 (2.4) 1 (1.5) 4 (2.7) 1.00
Cutaneous Melanoma 154 (72.6) 37 (56.9) 117 (79.6) 0.001 *

Melanoma of Unknown
primary 7 (3.3) 1 (1.5) 6 (4.1) 0.68

Unknown 46 (21.7) 26 (40) 20 (13.6) 0.00
Immunotherapy Type, n (%)

Anti-CTLA-4 174 (82.1) 44 (67.7) 130 (88.4) 0.001 *
Anti-PD-1 38 (17.9) 21 (32.3) 17 (11.6)

Overall survival status, n (%)
Living-1 135 (63.7) 13 (20) 122 (83) 0.00 *

Diseased-0 77 (36.3) 52 (80) 25 (17)
Log2(TMB+1), median (IQR) 3.4 (4.5–2.2) 4.1 (5–3.1) 3.16 (4.3–1.9) 0.00 *

FGA, median (IQR) 0.3 (0.5–0.2) 0.3 (0.5–0.2) 0.4 (0.5–0.2) 0.21
Training set, n (%) 169 (80) - -
Testing set, n (%) 43 (20) - -

*: Statistical significance of p-value < 0.05.
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Figure 2. ICI prediction models: (A) Feature contribution of RFC7 model showing TMB as the
strongest predictor of response. (B) Feature contribution of RFC-Seq model showing GSTA3 as the
strongest predictor of response. (C) Feature contribution of RFC-Surv model showing VNN2 as the
strongest predictor of response. (D) Venn diagram showing the intersection between TCGA−SKCM
Survival−related Genes and SVM−RFE Top 100 DEGs ICI−predictors. (E) The ROC curve of the top
associated features from RFC7, RFC-Seq and RFC-Surv models. (F) The ROC curve of RFC7, RFC-Seq
and RFC-Surv models.
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3.2. Differentially Expressed Genes (DEGs) and RFC-Seq Model

A total of 22,187 genes were screened out for differential expression between R and
NR. The DEA resulted in 1066 DEGs, 763 of which were upregulated (log2FC > 0.5) while
303 genes were downregulated (log2FC < −0.5). Figure 3A shows a volcano plot for
the DEGs. The resulting DEGs were trained on the SVM-RFE model to select the top 4
upregulated and top 4 downregulated ranking DEGs. IGHD, SIGLEC8, CLDN14, and CLU
were the top-four-ranking upregulated DEGs, while CORO2B, EHF, GSTA3, and ANXA3
were the top-four-ranking downregulated DEGs in predicting ICI response, and they were
then fitted into the RFC-Seq. The RFC-Seq model was fitted into the resulting DEGs from
GSE91061 and GSE78220 datasets with a training-validation ratio of 8:2. The RFC-Seq
model performed on the testing set with a mean bootstrap estimate of 0.75 and 95% CI:
[0.54–0.93], 10-fold cross-validation of 0.67 and AUC of 0.87. Table 2 shows the evaluation
metrics for the RFC-Seq model. Figure 2F shows the ROC curve for the RFC-Seq model.
GSTA3 was the highest contributing feature as shown in Figure 2B, followed by CLDN14.
An RFC model was solely trained on GSTA3 to evaluate its performance in predicting ICI
response alone and performed on the testing set with a higher mean bootstrap estimate of
0.83 and 95% CI: [0.62–1.00], 10-fold cross-validation of 0.65, and AUC of 0.80, as shown
in Figure 2E. It showed better certainty in IC predicting; however, it did not show better
overall sensitivity or specificity.
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Figure 3. DEGs and the landscape of TME: (A) Volcano plot showing the DEGs based on response
to ICI in GSE91061 as blue dots denote upregulated genes (log2FC > 0.5) while red dots denote
downregulated genes (log2FC < −0.5). (B) Dendrogram of the DEGs and their association with
the TME.

Table 2. Evaluation metrics scores for each response model.

Model Mean Bootstrap Estimate 95% CI 10-Fold CV Precision Recall F1-Score AUC

RFC7 0.73 0.60–0.86 0.67 NR: 0.81
R: 0.57

NR: 0.91
R: 0.36

NR: 0.85
R: 0.44 0.71

TMB alone 0.67 0.50–0.84 0.61 NR: 0.76
R: 0.43

NR: 0.73
R: 0.46

NR: 0.75
R: 0.44 0.68

RFC-Seq 0.75 0.54–0.93 0.67 NR: 0.79
R: 1.0

NR: 1.0
R: 0.38

NR: 0.88
R: 0.55 0.87

GSTA3 alone 0.83 0.62–1.00 0.65 NR: 0.75
R: 0.43

NR: 0.79
R: 0.38

NR: 0.77
R: 0.40 0.80

RFC-Surv 0.76 0.54–0.91 0.68 NR: 0.78
R: 0.75

NR: 0.95
R: 0.38

NR: 0.86
R: 0.50 0.76

VNN2 alone 0.84 0.63–1.00 0.70 NR: 0.76
R: 0.76

NR: 0.89
R: 0.44

NR: 0.82
R: 0.53 0.82

RFC16 0.77 0.58–0.92 0.67 NR: 0.77
R: 0.60

NR: 0.89
R: 0.38

NR: 0.83
R: 0.46 0.88
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3.3. Tumor Immune Microenvironment and DEGs

The correlation matrix between 21 immune components and 144 DEGs in ICI re-
sponders revealed a significant inverse correlation between 31 upregulated genes includ-
ing OLIG1, UBAP1L, CLDN14, WNK4, and myeloid-deprived suppressor cells (MDSCs)
(r = −0.5, 0.6, and −0.7, respectively, p-value < 0.05). 31 upregulated DEGs showed signifi-
cant direct correlation with B-cells and CD4+ cells, including: CCR6, CCR7, CR2, CD97A,
CD40LG, CD5, FCRL5, TLR10, SPIB, and CCL21 (r > 0.9, p-value < 0.0001). CD8+ cells
were significantly correlated with 28 upregulated DEGs, including DTX1, CR2, FCER2,
and LILRA4 (r > 0.7, p-value < 0.001). Six downregulated DEGs showed a significant
direct correlation with neutrophils (r > 0.6, p-value < 0.05), including EHF, SFN, ANXA3,
TACSTD2, S100A14, and S100A8. While 2 downregulated DEGs showed a direct correlation
with melanocytes including WNK4 and CCD140 (r > 0.6, p-value < 0.05). Figure 3B presents
a dendrogram heatmap for the correlation between the tumor immune microenvironment
and DEGs. Figure 4 shows a heatmap of the genomic and immune landscape between
responders and non-responders.

3.4. Gene Ontology (GO) Enrichment Analysis

The enrichment analysis of GO in the 723 upregulated DEGs showed significant enrich-
ment in BP including: “T-cell activation”, “mononuclear cell differentiation”, “lymphocyte
differentiation”, “regulation of T-cell activation”, and “leukocyte cell–cell adhesion”. MF
was significantly enriched in “MHC protein complex binding”, “immune receptor activ-
ity”, “MHC- class II protein complex binding”, and “cytokine receptor activity”. GO
terms for CC were significantly enriched in “vacuolar membrane”, “lysosomal mem-
brane”, “immunological synapse”, and “MHC protein complex”. While GO terms in BP
for the 303 downregulated DEGs were significantly enriched in: “keratinization”, “skin
development”, “keratinocyte differentiation”, and “epidermal cell differentiation”. While
“structural constituent of skin epidermis” and “cornified envelope” were the only GO terms
enriched in MF and CC, respectively. Figure 5A,B show GO for BP, MF, and CC for the
upregulated and downregulated DEGs, respectively.

3.5. Survival-Associated DEGs and RFC-Surv Model

Of the 1066 DEGs, the top 100 DEGs in predicting ICI response from the SVM-RFE
model are shown in Figure 1. A total of 500 survival-related genes were identified from the
GEPIA2 database in melanoma patients from the SKCM-TCGA cohort. The following eight
genes CCL5, IL4I1, VNN2, PARP15, LCK, ZNF831, CD86, and FCRRL6 were overlapping
between the SKCM-TCGA and top 100 ICI-predicting DEGs as illustrated in Venn Diagram
Figure 2D. The eight overlapping genes were included in the univariate cox regression
model in addition to age and sex. All the genes were significantly associated with survival
(p < 0.05) as shown in Table 3. Those genes were then studied for confounding effects using
the multivariate cox regression. None of the genes showed an independent association
with OS when accounting for covariates (p-value > 0.05). Figure 6A shows a Kaplan–Meier
plot for the OS between high and low groups of OS-related genes and a forest plot for the
CPH model in Figure 6B. To further test their prediction in ICI response, those genes were
fitted into the RFC-Surv model and performed on the testing set with 0.76 mean bootstrap
estimate, 95% CI: [0.54–0.91], 10-fold CV of 0.68 and AUC of 0.76. VNN2 showed the highest
feature importance, followed by FCRL6, IL4I1, PARP15, and ZNF831, as shown in Figure 2C,
and the expression of all genes was higher in responders compared to non-responders
(Mann–Whitney test p-value < 0.05) as shown in Figure 7. To evaluate VNN2 performance
in predicting ICI response alone, it was fitted into an RFC model and performed on the
testing set with a higher mean bootstrap estimate of 0.84 and 95% CI: [0.63–1.00], 10-fold
cross-validation of 0.70, and AUC of 0.82 as shown in Figure 2E, thus showing a better
overall accurate performance in predicting ICI response.
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All the genes were significant based on best cutoff value. (B) Cox proportional hazard model of the
8 genes. None of the genes showed survival value in the multivariate cox proportional hazard model.
(C) Feature contribution of RFC16 model.

The features of the RFC-Seq model (n = 8) and the RFC-Surv model (n = 8) were fitted
into a combined model (RFC16) and performed on the testing set with 0.77 mean bootstrap
estimate, 95% CI: [0.58–0.92], 10-fold CV of 0.67 and AUC of 0.88 as shown in Table 2 and
Figure 2F. VNN2 and GSTA3 were the highest contributing features in the RFC16 model as
shown in Figure 5C.
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Table 3. Univariate and multivariate cox proportional hazard model for OS.

Variable Category N (%) Univariate Multivariate

HR (95% CI) p-Value * HR (95% CI) p-Value

Age (>66) 49 (55.7) - - - -
(<66) 39 (44.3) 1.09 (0.63–1.88) 0.76 - -

Sex Female 34 (38.6) - - - -
Male 54 (61.4) 0.61 (0.35–1.06) 0.08 - -

CD86 High 67 (75.3) - - - -
Low 22 (24.7) 1.96 (1.09–3.51) 0.02 * 0.83 (0.36–1.92) 0.67

FCRL6 High 64 (71.9) - - - -
Low 25 (28.1) 1.95 (1.09–3.49) 0.03 * 0.61 (0.24–1.56) 0.30

PARP15 High 67 (76.1) - - - -
Low 21 (23.6) 2.19 (1.17–4.09) 0.01 * 1.40 (0.60–3.26) 0.43

ZNF831 High 60 (68.2) - - - -
Low 28 (31.8) 2.62 (1.48–4.64) <0.01 * 0.95 (0.29–3.11) 0.94

LCK High 63 (71.6) - - - -

Low 25 (28.4) 3.03 (1.72–5.33) <0.001 * 4.33
(0.91–20.52) 0.07

VNN2 High 63 (71.6) - - - -
Low 25 (28.4) 2.49 (1.41–4.42) <0.01 * 1.69 (0.76–3.77) 0.20

IL4I1 High 55 (62.5) - - - -
Low 33 (37.5) 1.76 (1.02–3.05) 0.04 * 1.03 (0.50–2.21) 0.94

CCL5 High 65 (73.9) - - - -
Low 23 (26.1) 2.46 (1.38–4.38) <0.01 * 0.78 (0.23–2.62) 0.69

*: statistical significane of p-value < 0.05.

4. Discussion

Accurate prediction of immunotherapy response in cancer patients remains an elusive
question. Several studies have investigated the potential effect of multiple demographic,
clinical, and genomic variables in the prediction of immunotherapy response. Herein,
through utilizing melanoma open data-driven cohorts, we built a machine learning classifier
to integrate demographic, genomic as well as transcriptomic data to predict response to ICIs.
Our RFC7 model further confirmed the substantial role of TMB in predicting responders to
ICIs in melanoma as it was the highest contributing feature.

The RFC TMB alone model did not perform better in comparison to the RFC7 model
which is in agreement with a previous machine learning report in solid cancers where a
multifactorial model including both genomic and clinical features outperformed the TMB-
based model [19]. In their study, Chowell and colleagues developed a machine learning
model using 1479 patients across 16 cancer types (37% had non-small cell lung cancer and
13% had melanoma) [19]. Their 16-variable model which incorporated clinical (age, sex, ICI
agent, cancer stage, BMI, neutrophil-to-lymphocyte ratio, cancer type, chemotherapy status,
blood parameters), molecular and genomic (TMB, fraction of copy number alterations,
HLA-1 evolutionary divergence, loss of heterozygosity in HLA-1, MSI) has outperformed
the established TMB based model (AUC: 0.85 versus 0.62). Other established ICI response
biomarkers include CD8+ T cell infiltration levels and PD-L1 expression levels both on
tumor and immune cells [20,21]. One study further highlighted the prognostic value of
the presence of CD137 on circulating CD8+ T cells in resected stage 3 melanoma patients
after adjuvant ipilimumab + nivolumab combination therapy [22]. Our results should
be confirmed in clinical trial settings to assess their performance in comparison to other
reported predictors.

TMB remains to be the only established biomarker for ICI response as it was approved
by the FDA as a predictive biomarker for response in solid tumors patients treated with
anti-PD-1 pembrolizumab following phase II of KEYNOTE-158. [23,24]. A suggested
mechanism is that high TMB generates multiple neo-peptides of immunogenic cancer
cells, thus being recognized by T cells when presented by MHC molecules and enhancing
the response to ICIs [25]. One of the challenges regarding the use of TMB as an optimal
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biomarker for ICI prediction is the absence of a fixed tumor-type-specific TMB cutoff [26].
The universal 10 mut/Mb cutoff to define high TMB showed high variation in its accuracy
as a precision immune-oncology tool across cancer types with higher power of prediction
seen in melanoma and NSCLC patients and lower power in other solid and renal cancers.
Thus, to optimize the use of TMB in ICI blockade prediction, tailored cancer-specific TMB
cutoffs are warranted [27,28]. TMB variability across tumors reflects the level of chronic
exposure to carcinogens such as tobacco smoking in lung cancer and ultraviolet light
in melanoma which are translated to higher TMB, thus contributing to better responses
to ICIs blockade in lung cancer and melanoma [29–31]. The pathologic and molecular
heterogeneity between various malignancies limits the function of TMB alone as a predictor
of ICI response and raises the need of integrating other genomic and demographic features,
which may influence ICI response prediction. FGA which represents the percentage of copy
number alteration in a specific chromosomal region, and mutation count which represents
the number of mutational events in each patient, are thought to be cancer-specific factors
that influence disease progression, however, are not well-validated as predictive biomarkers
of ICIs [32]. Kong et al. demonstrated that the combination of TMB with a network-based
analysis that identifies ICI-target-proximal genes and pathways, improved the prediction of
ICI response as well as overall survival in melanoma, further confirming the applicability
of a combinatorial approach to multi-omics datasets to achieve superior predictive accuracy
with ICIs [33].

Through transcriptomic analyses, we retrieved the significantly up- and downreg-
ulated genes which were then included as features in the RFC-seq model. The most
contributing gene to the overall high-performance accuracy of the model was the glu-
tathione S-transferase A3 (GSTA3) enzyme. Interestingly, the GSTA3-based RFC model
had a numerically superior accuracy yet lower sensitivity and specificity in comparison
to the RFC-seq model. GSTA3, a member of the glutathione S-transferase family, is in-
volved in cellular defense against toxic carcinogenic compounds [34]. Previous studies
have alluded to GSTA3’s involvement in tumorigenesis in colon cancer and gastric cancer
as higher expression translated into poorer survival outcomes [35,36]. A recent report on
cutaneous squamous cell carcinoma highlighted a tumor-suppressive effect on progression
by inhibiting the TGF-beta/Smad and HIF-1alpha signaling pathways [37].

To further understand the immune landscape of responding patients, upregulated
genes were found to be associated with higher infiltration levels of CD8+, CD4+ T cells, and
B cells which are known to promote a durable response to ICIs in melanoma [38]. Interest-
ingly, a recent study pointed out that the co-occurrence of CD20+ B cells and CD8+ T cells
was independently associated with improved survival in melanoma patients. Additionally,
the presence of B cells was associated with the formation of tertiary lymphoid structures
which enable CD20+ B cells for antigen presentation and overall assistance in inducing
durable immune responses to ICIs [39]. Among the 144 DEGs, 31 upregulated genes were
found to be inversely associated with MDSCs which are one of the main immunosup-
pressive cells in the tumor microenvironment that promote tumor progression. Therefore,
agents targeting MDSCs are one of the currently investigated strategies to overcome ICI
resistance [40]. One of those agents, ATRA, currently being studied in phase 2 trials, has
demonstrated the ability to induce MDSCs differentiation into macrophages and dendritic
cells [41,42]. In addition, GO analyses revealed enrichment for immune activation terms
such as “T-cell activation”, “MHC protein complex binding” and “immunological synapse”
in the 723 upregulated genes in responders. This further confirms the unique immune
microenvironment of melanoma responders. As for downregulated genes, enrichment
with skin-related terms was observed “keratinization”, “skin development”, “keratinocyte
differentiation”, and “epidermal cell differentiation”. This is supported by the spindle cell
morphology in melanomas which represents a dedifferentiated mesenchymal phenotype,
and epithelial to mesenchymal transition (EMT) which was shown to be directly correlated
with PD-L1 expression [43,44].
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The developed RFC-surv model using survival-related genes performed compara-
bly with the RFC-seq model (mean bootstrap measure 0.76 versus 0.75) and VNN2 was
identified as the main contributing feature. Further analyses on VNN2 through a single
gene RFC model, demonstrated higher performance accuracy and superior specificity and
sensitivity in comparison to the 8-gene RFC-surv model. VNN2, a member of the vanin
family, is a membrane-associated protein mainly expressed on myeloid and lymphoid cells
implicated in the inflammatory response [45]. VNN2 was overexpressed in ICI-responding
patients in our sample and notably, its lower expression was associated with poor survival
outcomes. In other solid tumors, Li et al. identified VNN2 as one of the six-gene signatures
that predict overall survival in hepatocellular carcinoma in which higher VNN2 expression
correlated with a poor prognosis [46]. While in hematological malignancies, Bornhauser
et al. identified VNN2 as a marker that increases resistance to chemotherapy in acute lym-
phoblastic leukemia [47]. A urologic cancer-based study provided some mechanistic insight
into VNN2’s impact, in which VNN2 was found to promote non-adhesive proliferation
and IL-1beta production in prostate cancer cell lines and generally was correlated with
poor survival outcomes [48]. This effect could be attributed to VNN2’s effect of inducing
chronic inflammation through NF-KB activation which is known to suppress the immune
response [48]. Another aspect of VNN2’s role in the tumor immune microenvironment is
its functionality with MDSCs. One study has identified VNN2 as a unique surface enzyme
highly enriched on monocytic MDSCs in healthy subjects [49]. While MDSCs are known to
inhibit CD8+ T cell proliferation, this study described an inverse association between CD14+
monocytes expressing VNN2 and glioma patient’s tumor grade potentially highlighting
a role for VNN2 in less aggressive tumors [49]. In another study on metastatic renal cell
carcinoma, VNN2 expression on monocytes and neutrophils was found to be correlated
with poor prognostic outcomes [50]. Considering the limited work pertaining to VNN2′s
significance in melanoma, mechanistic studies describing its effect on the tumor immune
microenvironment are needed to establish practical recommendations.

We also developed an RFC model that combines features from the RFC-seq and the
RFC-surv model, to optimize our machine learning approach for more than one aspect of the
genomic landscape of the microenvironment. Using the combined features model, VNN2
and GSTA3 remained to be the major contributing genes which further demonstrates those
genes’ substantial involvement in response prediction and warrants future experimentation
for biomarker validation.

In this study, we conducted a comprehensive bioinformatics analysis, integrating mul-
tiple genomic and demographic factors contributing to ICI prediction using robust machine
learning models. Our results and in concordance with previous reports present a strong
association between TMB and ICI responses. In addition, we provided a unique insight
into the transcriptomic landscape of melanoma ICI responders. However, our models were
limited by the relatively small sample size of the melanoma cohorts. Additionally, due
to the lack of large melanoma cohorts with adequate genomic and transcriptomic data,
we could not externally validate our models. Lastly, our cohorts did not include patients
on anti-PD-1 plus anti-CTLA-4 combination therapy which limits the generalizability of
our model on such treatment which has been incorporated in advanced melanoma first-
line treatment. Therefore, validation of external cohorts with adequate sample sizes and
inclusivity of ICI combination regimens are needed in the future.

5. Conclusions

We introduced and evaluated machine learning models incorporating several ge-
nomic and transcriptomic data that predicted responses to immunotherapy in advanced
melanoma patients. Our results further confirmed the accuracy of TMB in predicting re-
sponse to ICIs and demonstrated the applicability of integrating other clinical and genomic
features to improve the performance of TMB in predicting response. Additionally, through
transcriptomic data, we were able to identify novel genes (GSTA3 and VNN2) that could
lead to better stratification of potential responders to ICIs in melanoma.
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