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Simple Summary: Circular RNA KRT17 (circKRT17) is elevated in osimertinib-resistant lung cancer
cells by a circRNA microarray analysis. However, the functional role of circKRT17 in the osimertinib
resistance of lung adenocarcinoma (LUAD) remains undetermined. Herein, we found that circKRT17
and METTL3 were elevated in osimertinib-insensitive LUAD tissues and cells. CircKRT17 and
METTL3 knockdown increased the sensitivity of LUAD cells to osimertinib. In mechanisms, we
demonstrated that METTL3 enhanced the stability of circKRT17 by initiating m6A modification
and, thus, promoting YAP1 nuclear localization through the recruitment of EIF4A3. These collective
data provide novel insights into therapeutic strategies for osimertinib-resistant LUAD patients.
CircKRT17 may act as a biomarker of osimertinib resistance of LUAD and a promising target for
osimertinib-resistant LUAD treatment.

Abstract: Background: Circular RNAs (circRNAs) play a key role in regulating the drug resistance
of numerous human tumors. However, whether circKRT17 involves in the osimertinib resistance
of lung adenocarcinoma (LUAD) remains undetermined. Methods: Relative mRNA/circRNA and
protein levels were detected by qRT-PCR and western blotting. Localization of circKRT17 and
YAP1 was determined by FISH and immunofluorescence staining. Cell growth and apoptosis were
evaluated using colony formation, EdU assays, and flow cytometry. The N6-methyladenosine (m6A)
modification was analyzed by MeRIP. The interplay between EIF4A3 and circKRT17 or YAP1 was
verified by RNA pull-down or/and RIP assays. Subcutaneous tumor growth was monitored in nude
mice, and Ki-67 and TUNEL staining were carried out to evaluate cell proliferation and apoptosis,
respectively. Results: CircKRT17 and METTL3 were elevated in osimertinib-insensitive LUAD
tissues and cells. Knockdown of circKRT 17 and METTL3 increased the sensitivity of LUAD cells
to osimertinib. Knockdown of METTL3 decreased the expression of circKRT17 by inhibiting m6A
modification. CircKRT17 promoted the stability and nuclear transportation of YAP1 by recruiting
EIF4A3 in LUAD cells. Overexpression of YAP1 abolished the impacts of circKRT17 knockdown on
the osimertinib sensitivity of LUAD cells. CircKRT17 knockdown increased the repressive effects of
osimertinib on tumor growth in vivo by inhibiting YAP1 signaling. Conclusion: METTL3 initiated
the m6A modification of circKRT17, thus promoting osimertinib resistance of LUAD by enhancing
YAP1 stability through EIF4A4 recruitment.

Keywords: lung adenocarcinoma; osimertinib resistance; circKRT17; m6A modification; YAP1 signaling

1. Introduction

Over 80% of all lung cancer cases are non-small cell lung cancer (NSCLC) [1], and
lung adenocarcinoma (LUAD) is the most common histological subtype of NSCLC [2].
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LUAD patients have frequently been found to carry genetic mutations in the tyrosine
kinase domain of the epidermal growth factor receptor (EGFR). Although LUAD patients
harboring EGFR mutations have benefited from treatment with EGFR-tyrosine kinase
inhibitors (EGFR-TKIs), most patients inevitably develop acquired resistance to EGFR-TKIs,
resulting in a poor prognosis [3–5]. Osimertinib, as the third generation of oral EGFR-TKI,
shows less serious adverse reactions and higher efficacy than the previous two generations
of EGFR-TKIs, nevertheless, acquired resistance remains a major challenge for osimertinib
treatment [6,7]. Therefore, it is necessary to explore the molecular mechanism of acquired
resistance to osimertinib in LUAD to develop a way to alleviate the resistance.

Circular RNAs (circRNAs), a special class of non-coding RNAs, are generated by
the mechanisms of “direct back splicing” and “exon skipping” by forming a covalently
closed loop [8,9]. During the past decades, numerous dysregulated circRNAs have been
identified by bioinformatics analysis in various cell lines and across multiple species [10,11].
These dysregulated circRNAs are proven to affect the expressions of gene products that are
involved in tumor biology, such as cell growth, apoptosis, metastasis, drug resistance, and
angiogenesis [12,13]. Moreover, the involvement of circRNAs in the tumorigenesis of lung
cancer has been well documented [14,15]. CircKRT17 (hsa_circ_0043632), a circRNA that is
derived from the Keratin 17 (KRT17) gene, is elevated in osimertinib-resistant lung cancer
cells by a circRNA microarray analysis [16]. However, the functional role of circKRT17 in
the osimertinib resistance of LUAD remains undetermined.

N6-methyladenosine (m6A) is a common modification in RNA that was originally
identified and characterized in the 1970s [17]. Research shows that it is involved in the
modulation of the outcome of gene expression by controlling RNA localization, translation,
and decay, all of which are regulated by m6A “writers”, “readers”, and “erasers” [18]. RNA
methyltransferase methyltransferase-like 3 (METTL3), as an important member of m6A
“writers”, has been shown to affect cell proliferation, differentiation, tissue development,
and tumorigenesis [19]. Recently, METTL3 was elevated in and associated with the metas-
tasis and cisplatin resistance of lung cancer [20,21]. By using a computational predictor of
mammalian m6A site (SRAMP, http://www.cuilab.cn/sramp/), we found m6A sites in
the sequence of circKRT17, implying that there may be an interaction between METTL3
and circKRT17. Nevertheless, whether there is an interaction and whether this interaction
plays a role in the osimertinib resistance of LUAD remains unclear.

Herein, we demonstrated that circKRT17 was elevated in osimertinib-resistant LUAD.
The m6A modification of circKRT17 initiated by METTL3 promoted the nuclear trans-
portation and stability of YAP1 by recruiting EIF4A3, thus promoting osimertinib resis-
tance of LUAD. Our findings proved the role of METTL3/circKRT17/YAP1 in regulating
the osimertinib resistance of LUAD and provided novel potential therapeutic targets for
osimertinib-resistant LUAD.

2. Materials and Methods
2.1. Tissue Specimens

Tissues were collected from 24 osimertinib-sensitive LUAD patients and 16 osimertinib-
insensitive (resistant) LUAD patients who underwent surgery at the Beijing Institute of
Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University. The
diagnosis of each patient was verified by a histological examination. Patients with other
cancers or who had received chemotherapy or radiotherapy were excluded. Collected
tissues were kept at −80 ◦C until further use. Written informed consent was provided
by each participant involved in this study. This research was approved by the Ethics
Committee of Beijing Chao-Yang Hospital of Capital Medical University.

2.2. Cell Culture

H1975 and PC-9 were obtained from the Chinese Academy of Sciences Collection Com-
mittee cell bank (Shanghai, China) and maintained under 37 ◦C in RPMI-1640 containing
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4 mM L-glutamine (Invitrogen, Carlsbad, CA, USA), fetal bovine serum (10%, Invitrogen
Carlsbad, CA, USA), and penicillin/streptomycin (1%, Invitrogen).

2.3. Generation of Osimertinib-Resistant LUAD Cell Lines

H1975/OR and PC-9/OR were generated from their parental cell lines by gradually
increasing the osimertinib concentration. In brief, parental cells (1 × 106) were plated onto
a cell culture dish (10 cm2) and treated with osimertinib, starting from 500 nM. Osimertinib
concentration was increased by 500 nM every 15 days until the final concentration of 2 µM
was reached. Osimertinib-treated cells were further plated on 96-well plates using limiting
dilution and a single clone was selected and maintained in culture medium containing
2 µM of osimertinib.

2.4. Plasmid Construction and Transfection

Specific short hairpin RNAs (shRNAs) were generated to knock down the expression
of the target gene. Two specific shRNAs targeted circKRT17 and METTL3, and were
inserted into the pGLVH1 vector (GenePharm, Shanghai, China) to generate shcircKRT17#1,
shcircKRT17#2, shMETTL3#1, and shMETTL3#2. The indicated lentiviral vector was
transfected into HEK293T cells together with package plasmid by Lipofectamine 3000
(Invitrogen, Carlsbad, CA, USA), and puromycin (2 µg/mL) was applied to screen target
cells. The full-length circKRT17 and YAP1 sequences were inserted into the pcDNA3.1
vector (GenePharm, Shanghai, China) to overexpress circKRT17 and YAP1, respectively.

2.5. Fluorescence In Situ Hybridization (FISH)

The FISH assay was performed to detect the subcellular localization of circKRT17
in H1975/OR cells. An in situ hybridization kit (GenePharma, Shanghai, China) was
used in this experiment. The specific Cy3-labeled circKRT17 probe was provided by
Roche (Indianapolis, IN, USA). In brief, after fixation in 4% formaldehyde and washing in
PBS, LUAD cells were subjected to hybridization with the Cy3-labeled circKRT17 probe
overnight. Signals were imaged using a confocal microscope (Olympus, Tokyo, Japan).

2.6. Treatment with Actinomycin D and RNase R

Since circRNA does not have 5 and 3 ends, it is resistant to exonuclease-mediated
degradation and, thus, more stable than linear RNA. To confirm the circular structure of
circKRT17, Actinomycin D and RNase R were used to treat circKRT17 and linear KRT17
mRNA. After treatment with Actinomycin D (5 µg/mL, Sigma, St Louis, MO, USA),
the RNA levels of circKRT17 and linear KRT17 mRNA were examined by qRT-PCR, as
described above. For RNase R treatment, total RNAs were divided into two parts, one
for RNase R (Epicenter Technologies, Madison, WI, USA) incubation and the other for
non-incubation (mock). The RNA expressions of circKRT17 and linear KRT17 mRNA were
examined by qRT-PCR, as described above.

2.7. Calculation of IC50 Value Using MTT Assay

In order to calculate the IC50 values of H1975, PC-9, H1975/OR, PC-9/OR cells to
osimertinib, an MTT assay was performed to detect the cell viability after the treatment
with different concentrations of osimertinib. H1975, PC-9, H1975/OR, and PC-9/OR cells
(1 × 105) were plated on 96-well plates, and osimertinib (0.001 µM, 0.01 µM, 0.1 µM,
1 µM, and 10 µM) was added. After 48 h of incubation with osimertinib, methyl thiazolyl
tetrazolium (MTT) reagent (0.5 mg/mL, Sigma) was added and incubated for 4 h. Finally,
absorbance at 490 nm was measured in a microplate reader (Bio-Rad, Hercules, CA, USA).
IC50 represents the concentration of osimertinib that is required for half repression of
cell growth.
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2.8. Colony Formation Assay

A colony formation assay was conducted to assess the cell proliferation of the treated
cells. Treated LUAD cells were collected and seeded on six-well plates and cultured in
culture medium supplied with 10% fetal bovine serum for 14 days. Proliferating colonies
were fixed in methanol and then stained with 1% crystal violet (Beyotime, Shanghai, China).
The colony number was counted under a microscope (Olympus, Tokyo, Japan).

2.9. EdU Immunofluorescence Staining

EdU immunofluorescence staining was performed to further evaluate cell proliferation.
An EdU kit (Beyotime) was employed in this experiment. The treated cells (2 × 104) were
seeded and cultured on 96-well plates for 24 h. Afterward, 50 µM EdU was added and
incubated for 2 h, followed by the incubation with 4% paraformaldehyde and 0.5% Triton
X-100. Finally, cells were stained with 1 × Apollo® reaction cocktail for 30 min. Signals
were detected under a confocal microscope (Olympus, Tokyo, Japan).

2.10. Flow Cytometry Analysis of Cell Apoptosis

The apoptosis rate of the treated cell was detected by flow cytometry analysis. An
Annexin-V/FITC and propidium iodide (PI) detection kit (BD Biosciences, San Jose, CA,
USA) was adopted in this study to assess the apoptosis percentage of treated LUAD cells
following the protocol of the manufacturer. The apoptosis rate was analyzed by flow
cytometry (BD Bioscience, San Jose, CA, USA).

2.11. Immunofluorescence Analysis

Immunofluorescence analysis was performed to detect the expression of YAP1 in
LUAD cells. After fixation with 4% paraformaldehyde for 24 h, treated LUAD cells were
washed in PBS and incubated with 5% BSA for 1 h, followed by the incubation with anti-
YAP1 antibody (Rabbit, ab52771, 1:500, Abcam) overnight at 4 ◦C. After three washes, cells
were stained with donkey–anti-rabbit 647 (1:200, ab150075, Abcam). Nuclear was stained
with DAPI. Fluorescence images were acquired by a confocal microscope (Olympus).

2.12. RNA Immunoprecipitation (RIP)

A RIP assay was performed to test the interaction among circKRT17, YAP1, and EIF4A3
in LUAD cells. A Magna RIP kit (EMD Millipore, Billerica, MA, USA), anti-EIF4A3, and
IgG (used as control) were adopted in this experiment. Co-precipitated RNAs were isolated
and examined by qRT-PCR. Total RNAs (input control) were also detected.

2.13. RNA Pull-Down

An RNA pull-down assay was utilized to determine the interaction between circKRT17
and EIF4A3 using biotin-labeled circKRT17. Biotin-labeled circKRT17 was designed and
provided by GenePharm (Shanghai, China). A specific circKRT17 probe was mixed and
incubated with cell lysates of the indicated LUAD cells overnight. Next, streptavidin-
conjugated magnetic beads (Invitrogen, Carlsbad, CA, USA) were added and incubated
for another 2 h. Beads were then rinsed and interested protein levels were detected via
western blotting.

2.14. MeRIP

A MeRIP assay was adopted to detect the m6A methylation level of circKRT17 in
LUAD cells. Briefly, isolated mRNAs were chemically shredded into ~100 nucleotide
fragments by Ambion reagent (Thermo Fisher Scientific, Waltham, MA, USA). Next, these
fragments were denatured for 5 min at 65 °C and incubated with Magnetic Beads (A + G,
2923270, Millipore, Billerica, MA, USA) conjugated to anti-m6A antibody (ab208577, Ab-
cam). mRNA was allowed to incubate with m6A-bound beads for 4 h in IPP buffer (15 mM
NaCl, 0.1% NP-40, 10 mM Tris-HCl). RLT buffer was employed to elute RNA from the
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beads and then purified using Qiagen RNeasy kit (Qiagen, Shanghai, China). Relative
abundances of the indicated RNA were measured by qRT-PCR.

2.15. Quantitative Real-Time PCR (qRT-PCR)

Relative expressions of circKRT17, METTL3, and YAP1 mRNA in LUAD cells were
tested by qRT-PCR. Total RNA isolation was performed using TRIzol (Invitrogen). Af-
ter determining the quality and concentration of the extracted RNA, it was reversely
transcribed into cDNA by a PrimeScript™ RT Kit (Takara, Tokyo, Japan). The PCR
process was carried out on an ABI 7500 Real-Time System (Applied Biosystems, Fos-
ter City, CA, USA) using a YBR Green kit (Roche). Primers were synthesized by RiboBio
(Guangzhou, Guangdong, China). The transcriptional levels of targeted genes were ana-
lyzed by the 2−∆∆Ct method. The following primers were used in this study: GAPDH: (F:
5-CCAGGTGGTCTCCTCTGA-3 and R: 5-GCTGTAGCCAAATCGTTGT-3); circKRT17: (F:
5-TCCCTTCCCCATGCTTCCTT-3 and R: 5-GCGGGAGGAGATGACCTTG-3); METTL3: (F:
5-GAGTGCATGAAAGCCAGTGA-3 and R: 5-CTGGAATCACCTCCGACACT-3); YAP1:
(F: 5-CACAGCATGTTCGAGCTCAT-3 and R: 5-CTCAGCGTCCTGGGTTACAT-3).

2.16. Western Blot Analysis

Protein expression levels in treated LUAD cells were measured by a western blot
analysis. Proteins of tissues and cells were prepared by a RIPA lysis buffer (Thermo Fisher,
Waltham, MA, USA). After the determination of the quality and concentration, proteins
were loaded into 10% SDS-PAGE for isolation, followed by the transfer to nitrocellulose
membranes. The membranes were subjected to incubation with 5% low-fat milk for 2 h
for blocking the non-specific binding. We rinsed the membranes with PBS (three times)
and then incubated them with primary antibodies against METTL3 (ab195352, 1:1000,
Abcam, Cambridge, MA, USA), YAP1 (ab52771, 1:5000, Abcam), p-TAZ (sc-17610, 1:2000,
Santa Cruz Biotechnology, SCB, Santa Cruz, CA, USA), TAZ (sc-518206, 1:1000, SCB), P-
gp (ab262880, 1:5000, Abcam), MRP-1 (ab260038, 1:1000, Abcam), c-Myc (ab32072, 1:000,
Abcam), Cyclin D1 (ab16663, 1:200, Abcam), Bax (ab32503, 1:5000, Abcam), Bcl2 (ab182858,
1:2000, Abcam), and GAPDH (ab8245, 1:10000, Abcam) for 24 h. Afterward, the membranes
were incubated with indicated secondary antibodies (Abcam) for 2 h; the bands were
detected by an enhanced chemiluminescence reagent (EMD Millipore, Billerica, MA, USA).

2.17. Xenograft Tumor Growth Assay

The xenograft tumor growth assay was performed to test the effects of circKRT17
knockdown on LUAD progression in vivo. Nude mice (6-weeks old, male, SJA Laboratory
Animal Co., Ltd., Changsha, Hunan, China) were used in this study. Animal procedures
were approved by the Ethics Committee of Beijing Chao-Yang Hospital of Capital Medical
University. H1975/OR and PC-9/OR cells (2 × 106) stably transfected with shNC or
shcircKRT17 were subcutaneously delivered into the left flanks of the mice. When the
tumor volume reached 50 mm3, mice were treated with osimertinib (25 mg/kg/d) or
noting by oral gavage for 14 days. Tumors were examined every 3 days by calipers, and
the volume was calculated by the formula: (length × width2)/2. In the end, animals were
sacrificed and tumors were collected for further study.

2.18. Immunohistochemistry and TUNEL Staining

An immunohistochemistry analysis of Ki-67 was performed to assess the cell prolifer-
ation of LUAD cells; TUNEL staining was adopted to evaluate the cell apoptosis of LUAD
cells. Isolated tumors were fixed in 4% paraformaldehyde overnight. Afterward, tumors
were rinsed with pre-cold PBS and embedded in paraffin, and cut into 4-µm sections
using a microtome. After antigen retrieval with sodium citrate buffer, tumor sections were
incubated overnight with an anti-Ki-67 antibody (Cell Signaling Technology, Beverly, MA,
USA). Tissues were also stained with DAPI (1:10,000, 5 min) to stain nuclear. Signals were
detected using a confocal microscope (Olympus, Tokyo, Japan). TUNEL staining of tumor
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sections was performed using an in situ cell death detection fluorescein kit (Roche) follow-
ing the manufacturer’s instructions. Signals were detected using a microscope (Olympus,
Tokyo, Japan).

2.19. Statistical Analysis

All analyses were done in GraphPad Prism 7 (GraphPad Software Inc.). Data are
presented as Mean ± SD. The unpaired two-tailed Student’s t test or/and one-way ANOVA
with Turkey post hoc test were performed to analyze the differences between two or
multiple groups. The statistical significance was defined as a p value of less than 0.05.

3. Results
3.1. CircKRT17 Was Elevated in Osimertinib-Resistant LUAD

To explore whether circKRT17 has a role in LUAD resistance to osimertinib, we
first tested the level of circKRT17 in lung tissues collected from osimertinib-sensitive
(n = 24) and -insensitive (n = 16) LUAD patients. Compared to the osimertinib-sensitive
group, circKRT17 was elevated in the osimertinib-insensitive group (Figure 1A). The
osimertinib-resistant LUAD cell lines (H1975/OR and PC-9/OR) were generated from
their parental cell lines by elevating the osimertinib concentration gradually. Half-maximal
inhibitory concentration (IC50) values of osimertinib for H1975/OR and PC-9/OR cells
were 3.54 µM and 4.85 µM, respectively, while the IC50 value for H1975 and PC-9 was
only 74 nM and 141 nM, respectively (Figure 1B). We also found a higher expression of
circKRT17 in H1975/OR and PC-9/OR cells than in H1975 and PC-9 cells (Figure 1C).
CircKRT17 (hsa_circ_0043632) was transcribed from the exon 8 of the KRT17 gene by back-
splicing with a length of 249 bp, and the junction site was further validated by Sanger
sequencing (Figure 1D). Actinomycin D exposure experiment showed that the half-life of
circKRT17 exceeded 24 h while the linear KRT17 mRNA was less than 4 h in the presence
of actinomycin D (Figure 1E), indicating that circKRT17 was more stable than linear KRT17
mRNA. Moreover, we found that circKRT17, but not linear KRT17 mRNA, had resistance
to RNase R digestion, suggesting a typical loop structure of circKRT17 (Figure 1F). In
addition, the subcellular localization of circKRT17 was detected using nucleoplasmic
separation followed by qRT-PCR and FISH experiments. Results indicated that circKRT17
was preferentially localized in the cytoplasm (Figure 1G,H). These results indicated that
circKRT17 was a stable circular transcript that elevated in osimertinib-resistant LUAD.

3.2. Knockdown of CIRCKRT17 Increased the Sensitivity of Osimertinib-Resistant LUAD Cells
to Osimertinib

To understand the functions of circKRT17 in osimertinib resistance, two shRNAs
target circKRT17 (shcircKRT17#1 and shcircKRT17#2) were designed to knock down the
expression of circKRT17. Both shcircKRT17#1 and shcircKRT17#2 could significantly de-
crease the expression of circKRT17 in H1975/OR and PC-9/OR cells compared to the shNC
group (Figure 2A). The MTT assay suggested that transfection with shcircKRT17#1 and
shcircKRT17#2 reduced the IC50 value of osimertinib for H1975/OR and PC-9/OR cells
(Figure 2B,C). The colony numbers in shcircKRT17#1 and shcircKRT17#2 transfected groups
were dramatically reduced compared to that in the shNC group (Figure 2D,E). Consis-
tently, by using EdU immunofluorescence staining, less proliferative cells were observed in
H1975/OR and PC-9/OR cells with circKRT17 knockdown compared with the shNC group
(Figure 2F,G). Effects of circKRT17 silencing on apoptosis were evaluated by flow cytometry.
Results indicated that circKRT17 knockdown promoted the apoptosis of H1975/OR and
PC-9/OR cells (Figure 2H,I). Additionally, we detected the levels of multidrug resistance
and survival-associated proteins, namely P-gp, MRP-1, c-Myc, Cyclin D1, Bax, and Bcl2.
Knockdown of circKRT17 could reduce the expression of multidrug resistance-related
protein P-gp and MRP-1 (Figure 2J,K). Moreover, the levels of pro-survival proteins c-Myc,
Cyclin D1, and Bcl2 were reduced while that of pro-apoptotic protein Bax was increased in
circKRT17 silenced H1975/OR and PC-9/OR cells (Figure 2J,K). These findings suggested
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that the knockdown of circKRT17 increased the sensitivity of osimertinib-resistant LUAD
cells to osimertinib.
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Figure 1. CircKRT17 was elevated in osimertinib-resistant LUAD. (A) Relative circKRT17 level in the
tissues from osimertinib-sensitive and -insensitive LUAD patients. (B) Half-maximal inhibitory con-
centration (IC50) value of osimertinib in H1975 and PC-9 and H1975/OR and PC-9/OR. (C) Relative
circKRT17 level in H1975 and PC-9 and H1975/OR and PC-9/OR. (D) Schematic diagram of the gene
location and formation of circKRT17. Relative levels of circKRT17 and KRT17 mRNA in H1975/OR
cells after treatment with (E) Actinomycin D or (F) RNase R. (G) The abundance of circKRT17 in
either the cytoplasm or nuclear of H1975/OR cells. U6 and GAPDH were employed as controls.
(H) RNA FISH was performed to identify the subcellular localization of circKRT17 in H1975/OR
cells. * p < 0.05, ** p < 0.01 and *** p < 0.001.
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Figure 2. Knockdown of circKRT17 increased the sensitivity of osimertinib-resistant LUAD cells to
osimertinib. (A) Two shRNAs target circKRT17 (shcircKRT17#1 and shcircKRT17#2) were designed
to knock down the expression of circKRT. (B,C) Osimertinib IC50 value of H1975/OR and PC-9/OR
cells transfected with shNC, shcircKRT17#1 and shcircKRT17#2. (D,E) Colony formation assay in
H1975/OR and PC-9/OR cells transfected with shNC, shcircKRT17#1 and shcircKRT17#2. (F,G) EdU
immunofluorescence staining was conducted to evaluate cell proliferation of H1975/OR and PC-
9/OR cells from different groups. (H,I) Effects of circKRT17 knockdown on H1975/OR and PC-9/OR
cell apoptosis assessed via flow cytometry. (J,K) Western blot analysis of P-gp, MRP-1, c-Myc,
CyclinD1 Bax, and Bcl2 in H1975/OR and PC-9/OR cells transfected with shNC, shcircKRT17#1 and
shcircKRT17#2. * p < 0.05, ** p < 0.01 and *** p < 0.001. File S1: Original western blots.
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3.3. Elevated METTL3 in LUAD Regulated CIRCKRT17 Expression by m6A Modification

CircRNAs are regulated by METTL3 through m6A modification in various human
diseases. Thus, we examined the expression of METTL3 in lung tissues collected from
osimertinib-sensitive (n = 24) and -insensitive (n = 16) LUAD patients. METTL, com-
pared to the osimertinib-sensitive group, was elevated in the osimertinib-insensitive group
(Figure 3A). We also detected a positive correlation between the levels of circKRT17 and
METTL3 mRNA (Figure 3B). Consistently, METTL3 was found to be elevated in H1975/OR
and PC-9/OR cells compared to H195 and PC-9 cells in both mRNA (Figure 3C) and
protein levels (Figure 3D,E). To determine whether METTL3 could regulate circKRT17 ex-
pression, two shRNAs targeting METTL3 (shMETTL3#1 and shMETTL3#2) were designed
to knock down the expression of METTL3 in H1975/OR and PC-9/OR cells. Transfection
with shMETTL3#1 or shMETTL3#2 dramatically decreased the mRNA (Figure 3F) and
protein (Figure 3G,H) expression of METTL3 compared to shNC transfection, suggesting
that METTL3 was successfully silenced by shMETTL3#1 and shMETTL3#2. Knockdown
of METTL3 in H1975/OR and PC-9/OR cells significantly decreased the expression of
circKRT17 (Figure 3I). Moreover, by using MeRIP-qPCR, we found a significant decrease
in circKRT17 m6A methylation in METTL3 knockdown H1975/OR and PC-9/OR cells
(Figure 3J). These findings suggested that elevated METTL3 in osimertinib-resistant LUAD
regulated the expression of circKRT17 by m6A modification.

3.4. Knockdown of METTL3 Increased the Sensitivity of Osimertinib-Resistant LUAD Cells to
Osimertinib by Inhibiting CIRCKRT17

Next, rescue assays were designed to determine the role of the METTL3/circKRT17
axis in the resistance of H1975/OR and PC-9/OR cells to osimertinib. A circKRT17 over-
expression plasmid was used to overexpress circKRT17, and qRT-PCR results indicated
significant upregulation of circKRT17 in both H1975/OR and PC-9/OR cells transfected
with circKRT17 overexpression plasmid compared to the vector group (Figure 4A). Knock-
down of METTL3 by shMETTL3#1 and shMETTL3# could decrease the IC50 value of
osimertinib for H1975/OR and PC-9/OR cells, while overexpression of circKRT17 could
reverse the above effects in METTL3-silenced cells (Figure 4B,C). By using the colony
formation assay (Figure 4D,E) and EdU immunofluorescence staining (Figure 4F,G), we
revealed an inhibition of cell proliferation in METTL3-silenced cells, while circKRT17 over-
expression abolished the inhibitive effects of METTL3 knockdown on cell proliferation.
The promotive effects of METTL3 knockdown on cell apoptosis were also abrogated by
circKRT17 overexpression (Figure 4H,I). Knockdown of METTL3 decreased the expres-
sion of multidrug resistance-related proteins (P-gp and MRP-1) and pro-survival proteins
(c-Myc, Cyclin D1, and Bcl2) and increased the expression of pro-apoptotic protein Bax,
moreover, the alterations of these proteins induced by METTL3 knockdown were reversed
by circKRT17 overexpression (Figure 4J,K). These results suggested that the knockdown
of METTL3 increased the sensitivity of H1975/OR and PC-9/OR cells to osimertinib by
inhibiting circKRT17.

3.5. CIRCKRT17 Promoted the Expression and Nuclear Transportation of YAP1

Yes-associated protein 1 (YAP1) has been reported to be elevated in various solid
tumors and plays a critical role in tumorigenesis [22–24]. Here, we also found a significant
elevation of YAP1 mRNA in the tissues of osimertinib-insensitive patients (Figure 5A). We
also found a positive correlation between YAP1 mRNA and circKRT17 levels (Figure 5B).
Consistently, YAP1 was revealed to be elevated in H1975/OR and PC-9/OR cells in mRNA
(Figure 5C) and protein levels (Figure 5D,E). Overexpression of circKRT17 by overexpres-
sion plasmid could dramatically increase the mRNA level of YAP1 while knockdown of
circKRT17 by shcircKRT17#1 and shcircKRT17#2 could sharply decrease the mRNA level
of YAP1 (Figure 5F). Results from western blotting suggested that overexpression of cir-
cKRT17 increased YAP1 protein level and decreased p-TAZ protein level, while knockdown
of circKRT17 had the opposite effect (Figure 5G,H). Immunofluorescence analysis showed
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that more YAP1 was present in the nucleus when circKRT17 was overexpressed, and less
YAP1 was present in the nucleus when circKRT17 was silenced (Figure 5I). These findings
implied that circKRT17 activated the YAP1/TAZ signaling pathway by accelerating YAP1
nuclear transport.
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Figure 3. Elevated METTL3 in LUAD regulated circKRT17 expression by m6A modification. (A) Rel-
ative METTL3 mRNA expression in the tissues from osimertinib-sensitive and -insensitive LUAD
patients. (B) Correlation analysis between the levels of circKRT17 and METTL3 mRNA. Relative
(C) mRNA and (D,E) protein expression of METTL3 in H1975 and PC-9 and H1975/OR and PC-9/OR.
Two shRNAs target METTL3 (shMETTL3#1 and shMETTL3#2) were designed to knock down the
expression of METTL3, knockdown efficiency was tested using (F) qRT-PCR and (G,H) western
blotting. (I) Relative circKRT17 expression in H1975/OR and PC-9/OR cells transfected with shNC,
shMETTL3#1 and shMETTL3#2. (J) The m6A methylation level of circKRT17 in H1975/OR and
PC-9/OR cells transfected with shNC, shMETTL3#1, and shMETTL3#2. * p < 0.05, ** p < 0.01 and
*** p < 0.001. File S1: Original western blots.
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osimertinib by inhibiting circKRT17. (A) CircKRT17 overexpression plasmid was designed to
overexpress circKRT17 in osimertinib-resistant LUAD cells, and overexpression efficiency was de-
tected by Qrt-PCR. (B,C) Osimertinib IC50 value of H1975/OR and PC-9/OR cells transfected with
shMETTL3#1 or shMETTL3#2 and circKRT17 overexpression plasmid. (D,E) Colony formation as-
say and (F,G) EdU immunofluorescence staining were performed to detect cell proliferation after
treatment with shMETTL3#1 or shMETTL3#2 and circKRT17 overexpression plasmid. (H,I) After co-
transfection with shMETTL3#1 or shMETTL3#2 and circKRT17 overexpression plasmid, H1975/OR
and PC-9/OR cells were subjected to apoptosis analysis using flow cytometry. (J,K) Western blot
analysis of P-gp, MRP-1, c-Myc, CyclinD1 Bax, and Bcl2 in H1975/OR and PC-9/OR cells transfected
with shMETTL3#1 or shMETTL3#2 and circKRT17. * p < 0.05, ** p < 0.01 and *** p < 0.001. File S1:
Original western blots.

3.6. CIRCKRT17 Enhanced the Stability of YAP1 mRNA by Recruiting EIF4A3

By CircInteractome (https://circinteractome.nia.nih.gov/, accessed on 13 March 2020)
and Starbase (https://starbase.sysu.edu.cn/index.php, accessed on 13 March 2020), we
found EIF4A3 protein binding sites in both circKRT17 and YAP1 mRNA. Given the impor-
tant role of EIF4A3 in regulating mRNA splicing, translation, and degradation, and the
increasing evidence of circRNAs interacting with EIF4A3, we hypothesized that circKRT17
might regulate YAP1 mRNA by interacting with EIF4A3. Thus, we first tested the interplay
between circKRT17 and EIF4A3 using a specific circKRT17 probe. Results indicated that
EIF4A3 could be pulled down by the circKRT17 probe (Figure 6A). Consistently, in the RIP
assay, circKRT17 and YAP1 were found to be enriched by anti-EIF4A3 antibody but not by
anti-IgG (Figure 6B,C). Moreover, we found that circKRT17 knockdown in H1975/OR and
PC-9/OR cells could inhibit the enrichment of YAP1 by anti-EIF4A3 (Figure 6D). Actino-
mycin D incubation assay showed that YAP mRNA was less stable in circKRT17 silenced
cells compared to that in shNC-treated cells (Figure 6E). These findings proved that the
knockdown of circKRT17 inhibited the stability of YAP1 mRNA by recruiting EIF4A3.

3.7. YAP1 Overexpression Reversed the Promotive Effects of CIRCKRT17 Knockdown on the
Sensitivity of Osimertinib-Resistant LUAD Cells to Osimertinib

Next, rescue assays were designed to uncover the function of the circKRT17/YAP1 axis
in the resistance of H1975/OR and PC-9/OR cells to osimertinib. A YAP1 overexpression
plasmid was used to overexpress YAP1, qRT-PCR and western blotting results indicated a
remarkable elevation of YAP1 mRNA and protein in both H1975/OR and PC-9/OR cells
transfected with YAP1 overexpression plasmid compared to vector group (Figure 7A,B).
Knockdown of circKRT17 significantly decreased the osimertinib IC50 value of H1975/OR
and PC-9/OR cells, while YAP1 overexpression could restore the osimertinib IC50 value
(Figure 7C,D). By using the colony formation assay (Figure 7E,F) and EdU immunofluores-
cence staining (Figure 7G,H), we revealed the dramatic repression of cell proliferation in
circKRT17-silenced cells, while YAP1 overexpression abrogated the inhibitive impacts of
circKRT17 silencing on cell proliferation. The promotive effects of circKRT17 knockdown
on cell apoptosis were also abrogated by YAP1 overexpression (Figure 7I,J). Knockdown of
circKRT17 decreased the levels of multidrug resistance-related proteins (P-gp and MRP-1)
and pro-survival proteins (c-Myc, Cyclin D1, and Bcl2) and increased the expression of
pro-apoptotic protein Bax; moreover, the alterations of these proteins induced by circKRT17
knockdown were reversed by YAP1 overexpression (Figure 7K,L). These findings suggested
that circKRT17 regulated the sensitivity of LUAD cells to osimertinib by YAP1 in vitro.

https://circinteractome.nia.nih.gov/
https://starbase.sysu.edu.cn/index.php
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Figure 5. CircKRT17 promoted the expression and nuclear transportation of YAP1. (A) Relative
YAP1 mRNA expression in the tissues from osimertinib-sensitive and –insensitive LUAD patients.
(B) Correlation analysis between the levels of YAP1 mRNA and circKRT17 in LUAD tissue. Relative
(C) mRNA and (D,E) protein expression of YAP1 in H1975 and PC-9 and H1975/OR and PC-9/OR.
(F) Relative YAP1 mRNA level in H1975/OR and PC-9/OR cells transfected with circKRT17, shcir-
cKRT17#1, or shcircKRT17#2. (G,H) Western blot analysis of YAP1, p-TAZ, and TAZ protein levels
in H1975/OR and PC-9/OR cells transfected with circKRT17, shcircKRT17#1 or shcircKRT17#2.
(I) Immunofluorescence analysis of YAP1 in H1975/OR and PC-9/OR cells transfected with cir-
cKRT17, shcircKRT17#1, or shcircKRT17#2. * p < 0.05, ** p < 0.01 and *** p < 0.001. File S1: Original
western blots.
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Figure 6. CircKRT17 enhanced the stability of YAP1 mRNA by recruiting EIF4A3. (A) Verification of
the interplay of circKRT17 and EIF4A3 using a circKRT17 probe. (B,C) Interplay between EIF4A3 and
circKRT17 or YAP1 was verified by the RIP assay in H1975/OR and PC-9/OR cells. (D) Impacts of
circKRT17 silencing on the interaction of EIF4A3 and YAP1 were evaluated via RIP assay. (E) Relative
YAP1 mRNA level in H1975/OR and PC-9/OR cells transfected with shNC, shcircKRT17#1 or
shcircKRT17#2 in the presence of Actinomycin D. * p < 0.05, ** p < 0.01 and *** p < 0.001. File S1:
Original western blots.

3.8. Knockdown of CIRCKRT17 Enhanced the Suppressive Effects of Osimertinib on Tumor
Growth In Vivo by Inhibiting YAP1 Signaling

H1975/OR and PC-9/OR cells stably transfected with shNC or shcircKRT17 were
injected into nude mice. When the tumor volume reached 50 mm3, mice were treated with
osimertinib (25 mg/kg/d) or noting by oral gavage for 14 days. Knockdown of circKRT17
alone significantly decreased the volume and weight of tumors, combined with osimertinib
treatment could further decrease the volume and weight of tumors (Figure 8A–C). By using
Ki-67 staining, we proved that the knockdown of circKRT17 alone significantly repressed
tumor cell proliferation, and the combination of osimertinib and shcircKRT17 further re-
pressed tumor cell proliferation (Figure 8D,E). We also showed that the knockdown of
circKRT17 alone significantly promoted tumor cell apoptosis (as demonstrated by TUNEL
staining), and the combination of osimertinib and shcircKRT17 further promoted tumor cell
apoptosis (Figure 8F,G). Moreover, knockdown of circKRT17 alone induced the downregu-
lation of YAP1 and the upregulation of p-TAZ was enhanced by the combined treatment
with osimertinib (Figure 8H,I). These findings suggested that the knockdown of circKRT17
improved the therapeutic effects of osimertinib on LUAD in vivo by inhibiting YAP1.
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of osimertinib-resistant LUAD cells to osimertinib. (A,B) Relative mRNA and protein expression
of YAP1 in treated H1975/OR and PC-9/OR cells (C,D) Osimertinib IC50 value of H1975/OR and
PC-9/OR cells transfected with shcircKRT17#1 or shcircKRT17#2 plus YAP1 overexpression plasmid.
(E,F) Colony formation assay and (G,H) EdU immunofluorescence staining were performed to detect
cell proliferation after treatment with shcircKRT17#1 or shcircKRT17#2 plus YAP1 overexpression
plasmid. (I,J) After co-transfection with shcircKRT17#1 or shcircKRT17#2 plus YAP1 overexpression
plasmid, H1975/OR and PC-9/OR cells were subjected to apoptosis analysis using flow cytometry.
(K,L) Western blot analysis of P-gp, MRP-1, c-Myc, CyclinD1 Bax, and Bcl2 in H1975/OR and PC-
9/OR cells transfected with shcircKRT17#1 or shcircKRT17#2 plus YAP1 overexpression plasmid.
* p < 0.05, ** p < 0.01 and *** p < 0.001. File S1: Original western blots.
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Figure 8. Knockdown of circKRT17 enhanced the suppressive effects of osimertinib on tumor growth
in vivo by inhibiting YAP1. H1975/OR and PC-9/OR cells stably transfected with shcircKRT17 were
delivered into mice with or without the treatment of osimertinib. (A) Representative images of
xenograft tumors from shNC, shcircKRT17, shNC + osimertinib, AND shcircKRT17 + osimertinib
groups. (B,C) Tumor volume and weight from different groups. (D,E) Ki-67 staining and (F,G) TUNEL
staining were carried out to assess tumor cell proliferation and apoptosis in xenograft tumor sections
from different groups. (H,I) Protein level analysis of YAP1, p-TAZ, and TAZ in xenograft tumors
from different groups. * p < 0.05, ** p < 0.01 and *** p < 0.001. File S1: Original western blots.
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4. Discussion

Osimertinib has improved the prognosis of LUAD patients to a certain degree in the
last few years; nevertheless, its therapeutic outcomes are largely limited by the acquired
resistance [25]. Hence, it is critical to develop novel selective targets that can enhance the
sensitivity of LUAD cells to osimertinib. Herein, we assessed the specificity and efficacy of
METTL3/circKRT17/EIF4A3/YAP1 signaling axis in regulating the sensitivity of LUAD
cells to osimertinib in both in vitro and in vivo. Based on our results, we believe this axis is
a novel target for increasing the sensitivity of LUAD cells to osimertinib.

KRT17 was revealed to be highly presented in cancer tissues and has been adopted
as a clinical biomarker for various human tumors [26–28]. It was also proven to facilitate
lung cancer cell proliferation and invasion, and elevated KRT17 is closely related to a poor
prognosis [29,30]. In a recent circRNAs microarray analysis performed by Chen et al., cir-
cKRT17 was demonstrated to be elevated in osimertinib-resistant lung cancer cell lines [16],
implying circKRT17 might play a role in the osimertinib resistance of LUAD. However, no
study has verified the functional role of circKRT17 in the osimertinib resistance of LUAD.
Accumulating evidence has shown the important role of circRNAs in regulating the biolog-
ical events of LUAD, such as proliferation, metastasis, and glycolysis [31–33]. However,
only one paper focused on the role of circRNAs in the osimertinib resistance of LUAD, sug-
gesting that circ_0005576 promotes osimertinib resistance of LUAD by miR-512-5P/IGF1R
axis [34]. Herein, we confirmed the elevation of circKRT17 in osimertinib-resistant LUAD,
and circKRT17 knockdown could increase the sensitivity of LUAD cells to osimertinib.
This study is the first one to report the function of circKRT17 in tumorigenesis and drug
resistance of LUAD.

As one of the most abundant RNA modifications, m6A dysregulation has been iden-
tified by current studies to contribute to multiple human diseases, especially for certain
cancers [35,36]. Moreover, m6A modification has been found to facilitate tumor progression
in most of the cases [37,38], but recent studies have also shown its role in suppressing
tumor progression [39]. METTL3, as an m6A “writer”, affects almost all kinds of biologi-
cal behaviors of various tumors by initiating m6A methylation on target mRNA [40–42].
Recently, elevated METTL3 has been found in the TCGA-LUAD database, which may
be a new biomarker for the prognosis of LUAD patients [20]. Moreover, METTL3 could
facilitate the progression of NSCLC by mediating the m6A modification of Bcl2 mRNA [43].
In addition, METTL3 has been proven to affect the resistance of human cancers to multiple
drugs, including adriamycin, sorafenib, and gefitinib [44–46]. Nevertheless, no study has
studied MTTLE’s role in regulating the resistance to LUAD. Previous studies focused
on m6A-modified mRNA, but in fact, m6A-modified circRNAs also play a key role in
tumorigenesis [47,48]. Herein, we reported an elevated METTL3 in LUAD, in line with
previous studies [20,43]. Moreover, we found that METTL3 could increase the stability of
circKRT17 by initiating m6A modification on it and, thus, affecting the sensitivity of LUAD
cells to osimertinib.

Yes-associated protein 1 (YAP1) has been proven to function as a key modulator in
tumor cell proliferation, metastasis, and stem cell activity since it was first identified in
1994 [49–51]. YAP1 was revealed to be elevated in LUAD, and YAP1 inhibition could repress
the impacts of the inflammation on LUAD cell proliferation, invasion, and migration [52];
nevertheless, the precise mechanisms of YAP1 in LUAD remain unclear. Moreover, METTL3
was found to facilitate YAP translation by modulating miR-1914-3p to initiate NSCLC
cisplatin resistance and metastasis [21]. YAP1 was also proven to be related to the multidrug
resistance of lung cancer by CD74-related signaling pathways [53]. Additionally, m6A-
induced circ1662 was proven to promote colorectal cancer cell metastasis by promoting
YAP1 nuclear localization [54]. Our study indicated that circKRT17 might promote YAP1
nuclear localization and, thus, regulate the osimertinib resistance of LUAD.
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5. Conclusions

In summary, our results illustrated that circKRT17 silencing elevated the sensitivity of
LUAD to osimertinib, indicating a key role of circKRT17 in modulating LUAD osimertinib
resistance. Mechanistically, METTL3 enhanced the stability of circKRT17 by initiating
m6A modification and, thus, promoting YAP1 nuclear localization through the recruitment
of EIF4A3. These collective data provide novel insights into therapeutic strategies for
osimertinib-resistant LUAD patients. CircKRT17 may act as a biomarker of osimertinib
resistance of LUAD and a promising target for osimertinib-resistant LUAD treatment.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cancers14225582/s1, File S1: Uncropped western blots for figures.
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