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Simple Summary: Cancer cells upregulate RNA polymerase I (Pol I) activity to increase ribosome
abundance in support of rapid cell growth and proliferation. During the last decade, Pol I has
emerged as a promising anti-cancer target. Eukaryotes express three closely related RNA polymerases
(Pols I, II, and III), responsible for synthesis of all the genome-encoded RNA required by the cell.
Effective therapeutic development requires that the treatment be selective for Pol I, without inhibition
of Pols II or III. This study evaluates the specificity of the compound BMH-21 on transcription by
Pols I, II, and III using purified in vitro transcription assays. These results reveal that Pol I is uniquely
sensitive to inhibition by BMH-21, compared to Pols II and III. These findings support ongoing
preclinical development of BMH-21 and its derivatives for potential therapeutic applications.

Abstract: Cancer cells require robust ribosome biogenesis to maintain rapid cell growth during
tumorigenesis. Because RNA polymerase I (Pol I) transcription of the ribosomal DNA (rDNA) is
the first and rate-limiting step of ribosome biogenesis, it has emerged as a promising anti-cancer
target. Over the last decade, novel cancer therapeutics targeting Pol I have progressed to clinical trials.
BMH-21 is a first-in-class small molecule that inhibits Pol I transcription and represses cancer cell
growth. Several recent studies have uncovered key mechanisms by which BMH-21 inhibits ribosome
biosynthesis but the selectivity of BMH-21 for Pol I has not been directly measured. Here, we quantify
the effects of BMH-21 on Pol I, RNA polymerase II (Pol II), and RNA polymerase III (Pol III) in vitro
using purified components. We found that BMH-21 directly impairs nucleotide addition by Pol I,
with no or modest effect on Pols II and III, respectively. Additionally, we found that BMH-21 does
not affect the stability of any of the Pols’ elongation complexes. These data demonstrate that BMH-21
directly exploits unique vulnerabilities of Pol I.

Keywords: RNA polymerase I; RNA polymerase II; RNA polymerase III; BMH-21; cancer therapeutics;
transcription elongation

1. Introduction

Eukaryotic RNA polymerases (Pols I, II, and III) [1] are structurally homologous [2–9]
but each Pol has unique genetic targets and they each play a distinct role in ribosome
biogenesis [10,11]. Pol I transcription of the ribosomal DNA (rDNA) is tightly regulated
and proportional to cellular growth rate [12,13]. In human cells, Pol I synthesizes the 47 S
pre-ribosomal RNA (rRNA) from clusters of ~400 tandem repeats found on chromosomes
13, 14, 15, 21, and 22 [14,15]. The 47 S pre-rRNA is co- and post-transcriptionally processed
to form the mature 18 S, 5.8 S, and 28 S rRNAs [16]. Pol III transcribes the 5 S rDNA genes
that are similarly arranged in clusters of tandem repeats on chromosome 1 [17,18]. Finally,
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Pol II synthesizes the messenger RNA (mRNA) that encodes the 80 ribosomal proteins. All
of these components assemble together to form the human ribosome [19].

Most cancer cells require robust ribosome synthesis to support rapid growth and pro-
liferation rates [20]. This “addiction” to ribosome biogenesis represents a unique “Achilles’
heel” in cancer cells [21–23]. As a result, several unique ribosome biogenesis inhibitors
have been developed to target cancer cells with varying degrees of success [24–30]. These
ribosome biogenesis inhibitors often have off-target effects; they can interfere with mRNA
synthesis or translation [31] and induce DNA damage [32,33]. A promising strategy to
circumvent these issues is to target Pol I transcription specifically [22,23,34,35]. Because Pol
I transcription of the rDNA is the first and rate-limiting step in ribosome biogenesis [36,37],
inhibiting Pol I activity will reduce the amount of rRNA available in a cell to form new
ribosomes, thereby interfering with cell proliferation. Selective, direct inhibition of Pol I
may be challenging due to the structural and functional similarities presented by the three
nuclear Pols.

CX-5461 is the first and only Pol I inhibitor to complete Phase I clinical trials [38,39].
Initially, Drygin et al. [39] found that CX-5461 competes with the transcription initiation
factor SL1 [40,41] for binding to the rDNA promoter. Its association with the rDNA reduced
the binding of SL1 by ~50% and caused a decrease in rRNA synthesis [39]. CX-5461 had an
anti-proliferative effect in cancer cell lines, solid tumor cancer cells, and an anti-tumor effect
in murine xenograft models [39]. Despite the early promise of CX-5461, in recent years,
multiple research groups have shown that CX-5461 does not achieve its chemotherapeutic
effects exclusively through Pol I-specific inhibition [33,42]. Xu et al. found that CX-5461
impairs cell growth in malignant cells by stabilizing G-quadruplex DNAs, causing DNA
damage [33]. Similarly, Bruno et al. characterized CX-5461 as a topoisomerase II poison,
which also results in DNA damage [42]. This was independently confirmed by Pan et al. [43]
and is thoroughly reviewed by Xu and Hurley [44]. Considering the recent evidence on
CX-5461’s mechanism of action, there remains a need to discover anti-cancer compounds
that specifically target Pol I and act independently of DNA damage.

A DNA intercalator, BMH-21, was discovered in a high-throughput cell-based screen
for novel p53 activating compounds [45]. It was determined that BMH-21 is a Pol I-
inhibitor that does not induce DNA damage, distinguishing it from CX-5461 [29,45,46].
Peltonen et al. found that BMH-21 treatment resulted in potent anti-tumorigenic effects
in mammalian cell lines, ex vivo tissues, and mouse models [29,45]. Further mechanistic
studies revealed that BMH-21 severely impaired the speed of Pol I transcription elongation
in vivo and in vitro, reduced Pol I occupancy of the rDNA, and caused the persistence of
long-lived paused Pol I molecules [29,47,48]. Wei et al. found that BMH-21 activates a Pol I
regulatory checkpoint that monitors for stalled Pol I molecules and subsequently, triggers
the proteasome-mediated degradation of the second largest subunit of Pol I [47]. This
regulatory pathway is conserved in both mammalian and Saccharomyces cerevisiae (yeast)
cells [47]. As a result, yeast is an excellent eukaryotic model for further investigation of the
mechanism of BMH-21.

Until this study, the selectivity of BMH-21 inhibition has not been directly tested. It is
critical to evaluate this property of BMH-21 as its derivatives progress toward clinical trials.
To fill this knowledge gap, we used transient-state kinetics to examine Pol I, II, and III
catalyzed transcription elongation in the presence and absence of BMH-21. Even though we
know that BMH-21 targets the transcription elongation phase of Pol I transcription [47,48],
prior to this study we did not know how BMH-21 influenced the kinetic mechanism of
Pol I nucleotide addition. We found that BMH-21 slows Pol I nucleotide addition and
induces pausing, ultimately altering the kinetic mechanism of Pol I catalyzed transcrip-
tion to include pausing pathways. Interestingly, BMH-21 did not affect Pol II elongation
under identical experimental conditions. Finally, we observed slight inhibition of Pol III
nucleotide addition in the presence of BMH-21 (without induction of a divergent reaction
mechanism). Additionally, we found that BMH-21 had no effect on the stability of Pol I, II,
and III elongation complexes (ECs). This study provides the first direct evidence that Pol I
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transcription elongation is uniquely vulnerable to BMH-21 inhibition compared to Pols II
and III.

2. Materials and Methods
2.1. Purification of RNA Polymerases (Pols) I, II, and III

Three Saccharomyces cerevisiae (yeast) strains were generated with a C-terminal tag
(TEV cleavage site, three HA repeats, and 10 histidine residues) on the second largest
subunit of Pol I, II, and III. Yeast were grown at the Bioexpression and Fermentation Facility,
Department of Biochemistry and Molecular Biology at the University of Georgia and
purified as detailed previously [49,50]. The purified Pol samples were analyzed with SDS
PAGE and mass spectrometry [50]. All subunits of Pol I (14-subunits), Pol II (12-subunits),
and Pol III (17-subunits) were present with no cross-contamination of subunits across Pol I,
II, and III preparations.

2.2. Multi-Nucleotide Addition Assay

Multi-nucleotide addition reactions were executed as previously published [49–51]
and detailed in the Supplemental Materials. Briefly, elongation complexes (ECs) were
assembled with purified Pol I, II, or III, pre-annealed RNA:DNAt hybrid, 9-mer RNA
annealed to 64-nt DNA template strand, and DNAnt (DNA non-template strand) [52].
EC9-mer were radiolabeled with α-32P-CTP in the presence of Mg2+ to yield EC10-mer. EDTA
was added to stop the labeling reaction. Labeled ECs were incubated with BMH-21 (1 µM)
or vehicle (BMH-21 storage buffer, 0.1 M NaH2PO4 pH 6) for 5 min before loading into
the rapid mixing instrument, the chemical quenched-flow. A substrate mix including ATP
(1 mM), GTP (1 mM), and Mg2+ (9 mM) was loaded in the opposite syringe. Radiolabeled
ECs and substrates were rapidly mixed together and allowed to incubate for (0.005–10 s).
Aliquots of each reaction were run on polyacrylamide sequencing gels to separate starting
RNA, 10-mer, from extension products, 11-mer–19-mer.

2.3. Analysis of Multi-Nucleotide Addition Data

Multi-nucleotide addition time courses, composed of nine data sets (11-mer–19-mer),
were fit globally using a previously published method [49–51], Multi-start Evolutionary
Nonlinear OpTimizeR (MENOTR) [53]. MENOTR is available on GitHub: https://github.
com/ZachIngram/2021-MENOTR, accessed on 22 September 2021. Briefly, MENOTR [53]
uses MATLAB (MathWorks, Natick, MA, USA) to combine the genetic algorithm and
nonlinear least squares methods to escape local minima and obtain the best parameter
estimates for each data set. Replicates were fit individually, and the kinetic parameters of
each resulting fit were averaged, and the standard deviation was calculated.

2.4. Elongation Complex (EC) Stability Assay

EC stability experiments were executed as previously published [49,50,54,55]. Ra-
diolabeled EC10-mer containing either Pol I, II, and III were mixed with 10 µM RNase A
(#LS002132; Worthington Biochemical, Lakewood, NJ, USA), 1 M KCl, and BMH-21 (1 µM)
or vehicle at t = 0. EC collapse was determined by calculating the fraction of 7-mer RNA
over total RNA.

3. Results
3.1. BMH-21 Alters the Nucleotide Addition Mechanism of Pol I

To evaluate the effect of BMH-21 on Pol I transcription elongation, we employed
a multi-nucleotide addition assay using oligonucleotide scaffold DNA templates [49–51].
Elongation complexes (ECs) were assembled with purified Pol I, a 9-mer RNA pre-annealed
to the DNAt, and complementary DNAnt strand (Figure 1A). The EC9-mer was radiolabeled
with α-32P-CTP in the presence of Mg2+, yielding EC10-mer. The EC10-mer was incubated
with BMH-21 (1 µM) or vehicle for 5 min and then loaded into one syringe of a chemical
quenched-flow instrument. ATP, GTP, and Mg2+ were loaded into the opposite syringe.

https://github.com/ZachIngram/2021-MENOTR
https://github.com/ZachIngram/2021-MENOTR
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Based on the template DNA sequence, supplying ATP and GTP allows for nine succes-
sive nucleotide incorporation events; 10-mers are extended to full-length 19-mers. ECs
and NTPs were rapidly mixed and allowed to incubate for a varying amount of time,
(0.005–10 s), before being quenched by 1 M HCl. Each time point was run on a polyacry-
lamide sequencing gel and exposed to a phosphorimager screen to visualize synthesized
RNAs (Figure 1B).

Cancers 2022, 14, x FOR PEER REVIEW 4 of 15 
 

 

3. Results 
3.1. BMH-21 Alters the Nucleotide Addition Mechanism of Pol I 

To evaluate the effect of BMH-21 on Pol I transcription elongation, we employed a 
multi-nucleotide addition assay using oligonucleotide scaffold DNA templates [49–51]. 
Elongation complexes (ECs) were assembled with purified Pol I, a 9-mer RNA pre-an-
nealed to the DNAt, and complementary DNAnt strand (Figure 1A). The EC9-mer was radi-
olabeled with α-32P-CTP in the presence of Mg2+, yielding EC10-mer. The EC10-mer was incu-
bated with BMH-21 (1 μM) or vehicle for 5 min and then loaded into one syringe of a 
chemical quenched-flow instrument. ATP, GTP, and Mg2+ were loaded into the opposite 
syringe. Based on the template DNA sequence, supplying ATP and GTP allows for nine 
successive nucleotide incorporation events; 10-mers are extended to full-length 19-mers. 
ECs and NTPs were rapidly mixed and allowed to incubate for a varying amount of time, 
(0.005–10 s), before being quenched by 1 M HCl. Each time point was run on a polyacryla-
mide sequencing gel and exposed to a phosphorimager screen to visualize synthesized 
RNAs (Figure 1B). 

 
Figure 1. Schematic of multi-nucleotide addition experiment in the presence of vehicle or BMH-21. 
(A) Schematic for multi-nucleotide addition assay. Elongation complexes (ECs) are formed with Pol 
I, II, or III, RNA:DNAt hybrid, and DNAnt. ECs are radiolabeled with α-32P-CTP in the presence of 
Mg2+, allowing the formation of a EC10-mer. Radiolabeled ECs are incubated with vehicle or BMH-21 
(1 μM) for 5 min. ECs are loaded into a chemical quenched-flow instrument and rapidly mixed with 
ATP (1 mM), GTP (1 mM), and Mg2+ (9 mM). Time points are collected over a time course, (0.005–
10 s), and run on polyacrylamide sequencing gels to resolve the RNA intermediates, 10-mer–19-mer. 
(B) Representative gels of Pol I multi-nucleotide addition time courses collected in the presence of 
vehicle, left, or BMH-21 (1 μM), right. 

Minimal kinetic models were developed to describe the vehicle- and BMH-21-treated 
reactions. Experimental data sets consisting of nine time courses, describing the abun-
dance of each RNA intermediate, were fit simultaneously using MENOTR [53]. Vehicle-
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Figure 1. Schematic of multi-nucleotide addition experiment in the presence of vehicle or BMH-21.
(A) Schematic for multi-nucleotide addition assay. Elongation complexes (ECs) are formed with Pol I,
II, or III, RNA:DNAt hybrid, and DNAnt. ECs are radiolabeled with α-32P-CTP in the presence of
Mg2+, allowing the formation of a EC10-mer. Radiolabeled ECs are incubated with vehicle or BMH-21
(1 µM) for 5 min. ECs are loaded into a chemical quenched-flow instrument and rapidly mixed with
ATP (1 mM), GTP (1 mM), and Mg2+ (9 mM). Time points are collected over a time course, (0.005–10 s),
and run on polyacrylamide sequencing gels to resolve the RNA intermediates, 10-mer–19-mer.
(B) Representative gels of Pol I multi-nucleotide addition time courses collected in the presence of
vehicle, left, or BMH-21 (1 µM), right.

Minimal kinetic models were developed to describe the vehicle- and BMH-21-treated
reactions. Experimental data sets consisting of nine time courses, describing the abundance
of each RNA intermediate, were fit simultaneously using MENOTR [53]. Vehicle-treated
Pol I time courses were fit to Scheme 1, used previously to describe Pol I multi-nucleotide
addition [49,50]. Scheme 1 consists of nine individual observed rate constants, kobs,1-kobs,9,
that describe the appearance of each RNA, 11-mer–19-mer. An additional kinetic parameter,
kobs,10, is required to describe Pol I’s intrinsic nuclease activity. Scheme 1 failed to describe
the BMH-21-treated Pol I time courses (Supplemental Figure S1). For the 11-mer and
12-mer, Scheme 1 adequately describes the earlier portion of the intermediate, but unlike
the experimental data points, the best fit line sharply falls back to a baseline of 0. For the
intermediates 13-mer–16-mer, the best fit line generated by Scheme 1 fails to rise as fast
as the experimental data points do. As a result, we determined that BMH-21-treated time
courses required a modified scheme, Scheme 2, which includes two pathways leading to
and from two paused populations: EC11-mer* and EC12-mer*. For each treatment condition,
three independent reactions were collected, and each replicate was fit individually. Repre-
sentative time courses were compared (Figure 2). The mean and standard deviation of each
rate constant is reported (Table 1).
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Table 1. Resultant parameter values from Pol I vehicle- and BMH-21-treated multi-nucleotide
time courses.

Kinetic Parameter (s−1) Vehicle a BMH-21 (1 µM) b

kobs,1 80 ± 4 60 ± 20

kobs,2 120 ± 30 90 ± 20

kobs,3 66 ± 6 30 ± 7

kobs,4 26 ± 3 13 ± 3

kobs,5 53 ± 9 40 ± 20

kobs,6 63 ± 5 40 ± 20

kobs,7 17 ± 4 13 ± 3

kobs,8 48 ± 5 70 ± 50

kobs,9 52 ± 3 60 ± 40

kobs,10 8 ± 2 8 ± 7

kobs,1,on - 2.5 ± 0.8

kobs,1,off - 25 ± 5

kobs,2,on - 0.9 ± 0.4

kobs,2,off - 17 ± 5
a Vehicle-treated time courses were fit to Scheme 1. Pol I multi-nucleotide addition time courses were collected in
triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.
b BMH-21-treated time courses were fit to Scheme 2. Pol I multi-nucleotide addition time courses were collected in
triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.

The requirement of a modified scheme to describe Pol I multi-nucleotide addition in
the presence of BMH-21 is especially apparent at the 11-mer and 12-mer intermediates. In
the gels (Figure 1B) and plots (Figure 2), we observed that 11-mers and 12-mers persisted
longer in the time course compared to the vehicle treatment. Unlike the single peak
observed in the fraction of 11-mer and 12-mer for the vehicle condition, we observed the
peak of two distinct populations of 11-mers and 12-mers (Figure 2). This can be explained
by Pol I EC11-mer/12-mer existing in two populations: one that is immediately able to undergo
nucleotide addition (EC11-mer/12-mer), and one that must cycle through an off-pathway step,
described by kobs,1,on/kobs,1,off and kobs,2,on/kobs,2,off, before the next nucleotide is added.
We describe the intermediate of the off-pathway step as EC11-mer* and EC12-mer* in Scheme 2.
From our analysis, we are unable to discern the identity of EC11-mer* and EC12-mer*; rather
we hypothesize these ECs undergo an extended pause state, and/or a conformational
change(s). Additionally, the peak for each intermediate of the 13-mer–19-mer is right-
shifted in the presence of BMH-21 compared to the vehicle treatment (Figure 2). This
observation indicates slower addition of nucleotides when treated with BMH-21, and
indeed, we observed a > 2-fold reduction in the rate constants describing the appearance of
the 13-mer and 14-mer (Table 1). Thus, BMH-21 changes the mechanism of Pol I nucleotide
addition by inducing pausing and inhibiting nucleotide addition.

3.2. Pol II Is Unaffected by BMH-21

The effect of BMH-21 on Pol II was very different than on Pol I. Vehicle- and BMH-
21-treated Pol II time courses were collected and fit to Scheme 3. Pol II multi-nucleotide
addition in the presence of vehicle and BMH-21 required forward (kobs,F) and reverse (kobs,R)
rate constants between each RNA intermediate. Our data suggests that pyrophosphate is
slow to release from the active center, which allows for the reverse reaction of nucleotide
addition, pyrophosphorolysis, to occur (unpublished). Vehicle and BMH-21 representative
data were compared (Figure 3). For each treatment condition, three independent reactions
were collected, and rate constants were calculated and reported (Supplementary Table S1).
To facilitate straightforward comparisons of the vehicle- and BMH-21-treated reactions,
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we calculated and reported the ratio of the forward and reverse rate constants (Table 2).
Resultant ratios were within error between the vehicle- and BMH-21-treated data sets. It is
evident from both the raw data (Figure 3) and the fit parameters (Table 2) that BMH-21 has
no effect on Pol II transcription elongation.
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3.3. BMH-21 Has a Modest Inhibitory Effect on Pol III

Finally, we investigated the effect of BMH-21 on Pol III transcription elongation.
Pol III time courses were fit similarly to Pol I vehicle-treated time courses. The only
difference was the requirement for inclusion of an additional kinetic parameter, kobs,*,
that describes the conversion of an inactive subpopulation of Pol III ECs (EC10-mer*) to
an elongation competent conformation (EC10-mer), shown in Scheme 4. Rate constants
kobs,1–kobs,9 describe the appearance of each RNA intermediate while kobs,10 describes
Pol III’s intrinsic nuclease activity. Representative vehicle- and BMH-21-treatment data
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sets were compared (Figure 4). For each treatment condition, three independent reactions
were collected, and the average and standard deviation of each rate constant are reported
(Table 3).

Table 2. Ratios of forward and reverse parameter values from Pol II vehicle- and BMH-21-treated
multi-nucleotide time courses.

Kinetic Parameter Vehicle a BMH-21 (1 µM) b

kobs,1,F/kobs,1,R 0.43 ± 0.06 0.5 ± 0.1

kobs,2,F/kobs,2,R 1.9 ± 0.6 5 ± 3

kobs,3,F/kobs,3,R 0.8 ± 0.2 1.0 ± 0.5

kobs,4,F/kobs,4,R 1.4 ± 0.5 1.6 ± 0.5

kobs,5,F/kobs,5,R 1.8 ± 0.3 2.6 ± 0.7

kobs,6,F/kobs,6,R 0.92 ± 0.04 1.5 ± 0.6

kobs,7,F/kobs,7,R 2.0 ± 0.2 2.6 ± 0.7

kobs,8,F/kobs,8,R 1.0 ± 0.3 1.7 ± 0.7

kobs,9,F/kobs,9,R 20 ± 20 20 ± 10
a Vehicle-treated time courses were fit to Scheme 3. Pol II multi-nucleotide addition time courses were collected in
triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.
b BMH-21-treated time courses were fit to Scheme 3. Pol II multi-nucleotide addition time courses were collected
in triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.
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Table 3. Resultant parameter values from Pol III vehicle- and BMH-21-treated multi-nucleotide
time courses.

Kinetic Parameter (s−1) Vehicle a BMH-21 (1 µM) b

kobs,* 1.8 ± 0.6 2.1 ± 0.5

kobs,1 138 ± 7 104 ± 3

kobs,2 46.3 ± 0.5 30 ± 4

kobs,3 50 ± 1 25 ± 3

kobs,4 40 ± 2 31 ± 5

kobs,5 44 ± 2 54 ± 5

kobs,6 60 ± 1 54 ± 9

kobs,7 26 ± 1 20 ± 2
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a Vehicle-treated time courses were fit to Scheme 4. Pol III multi-nucleotide addition time courses were collected
in triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.
b BMH-21-treated time courses were fit to Scheme 4. Pol III multi-nucleotide addition time courses were collected
in triplicate and globally fit. The resultant mean and standard deviation of the optimized parameters are reported.
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We observed a small, but clear right-shift in the time courses in the presence of BMH-
21 compared to the vehicle (Figure 4). This observation indicates that BMH-21 decreases
the rate of nucleotide addition by Pol III at one or more steps in the multi-nucleotide
addition reaction which results in a ~20% reduction of the average kobs from ~49 s−1

(vehicle) to ~39 s−1 (BMH-21) (Table 3). Despite the decrease in some of the observed rate
constants, BMH-21- and vehicle-treated data sets did not require an alternative reaction
scheme, as was observed for Pol I. Reduced rate constants for individual steps in nucleotide
addition demonstrate that BMH-21 has a slight, but observable inhibitory effect on Pol
III transcription.

3.4. BMH-21 Does Not Destabilize Pol I, II, or III Elongation Complexes

Previous studies show that BMH-21 causes Pol I pausing/arrest [47,48] and a decrease
in occupancy of the rDNA [48]. Consistently, we observed a persistence of the 11-mer
and 12-mer in the presence of BMH-21, which could also be due to pausing/arrest. It
is possible that this is achieved by destabilizing the ECs, which results in the eviction of
some Pol I molecules from the DNA. To test this hypothesis, we employed an EC stability
assay [49,50,54] (Figure 5A). Pol I, II, or III radiolabeled ECs were incubated in high salt
conditions (1 M KCl), RNase A (10 µM), and BMH-21 (1 µM) or vehicle at t = 0. Time
points were collected to monitor EC collapse over time. If an EC is intact at a given time
point, the EC protects the 10-mer from RNase A cleavage, and 10-mer RNA is detected
on the gel (Figure 5B). If the EC has disassembled, RNase A will cleave the exposed
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10-mer and we will observe a 7-mer (Figure 5B). The fraction of 7-mer over total RNA was
calculated at each time point for Pols I, II, and III over three independent reactions. We
plotted EC disassembly over time and found that the stability of Pol I, II, and III ECs were
unaffected by BMH-21 treatment (Figure 5C). This result affirms that BMH-21 does not
have off-target effects on Pol II and III stabilities, and that BMH-21 does not reduce rRNA
synthesis through eviction of Pol I molecules from the template DNA.
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Figure 5. Pol I, II, and III EC stability in the presence of vehicle or BMH-21. (A) Schematic for EC
stability assay. Pol I, II, or III radiolabeled ECs are mixed with vehicle or BMH-21 (1 µM), RNase
A (10 µM), and KCl (1 M) at t = 0. Reactions were collected continuously and quenched in loading
dye. Reactions were run on polyacrylamide sequencing gels to resolve the 10-mers and 7-mers that
evidence intact or collapsed ECs, respectively. (B) Representative gels of Pol I EC stability time
courses collected in the presence of vehicle, top, or BMH-21, bottom. (C) Plot of the fraction of EC
collapse over time for each Pol in presence of vehicle and BMH-21. Time courses were collected
in triplicate and the mean value is plotted with error bars corresponding to the standard deviation
about the mean.

4. Discussion
4.1. BMH-21 Significantly Impairs Pol I Transcription Elongation

In this study, we have shown that BMH-21 perturbs the reaction scheme for Pol I
transcription elongation, while BMH-21 modestly inhibited Pol III and had no effect on
Pol II. These in vitro results do not exclude the possibility that BMH-21 may influence
Pol II transcription at some genetic loci in vivo, especially at G-rich loci; however, this
work demonstrates that Pol II is inherently less sensitive to the effects of BMH-21. Our
EC stability results indicate that BMH-21 does not destabilize Pol I, II, or III ECs. Our
results are compatible with previous in vivo observations [47,48]. Together, these in vitro
findings explain how BMH-21 activates a Pol I regulatory checkpoint: BMH-21 induces
pause pathways that increase the amount of stalled Pol I ECs [29,47,48] which results in
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their ubiquitination (Pitts, et. al, accepted) and subsequent degradation in vivo [47] in a Pol
I-specific manner.

4.2. BMH-21’s Modest Inhibitory Effect on Pol III May Be Therapeutically Advantageous

Here, we revealed that both transcription elongation by Pol I and Pol III are inhib-
ited by BMH-21. While Pol I is most severely inhibited, the modest effect on Pol III is
an important discovery. The rationale for targeting Pol I for therapeutic benefit is similar
to the rationale for targeting Pol III [56]. Like Pol I, Pol III transcription is tightly linked
to translation levels [57]. Pol III synthesizes 5 S rRNA, essential for the formation of the
large ribosomal subunit, and transfer RNA (tRNA), RNA molecules that serve as adapters
during translation of mRNA by the ribosome. Similarly to Pol I, Pol III transcription is
dysregulated in cancer cells [58,59] which results in increased levels of 5 S rRNAs and
tRNAs [60,61]. Ultimately, we know that the dysregulation of Pol III transcription is
a requirement for malignant cells to promote tumorigenesis [62]. Therefore, it is pos-
sible that while BMH-21 is preferentially selective for Pol I, partial inhibition of Pol III
transcription could enhance its anti-cancer effects.

4.3. Intrinsic Biochemical Properties of the Pols Render Them More or Less Sensitive to BMH-21

While Pols I, II, and III are structurally homologous enzymes, we have shown that Pol
I is the most sensitive to BMH-21 treatment in vitro. How can this be explained? Our recent
comparisons of the Pols suggests that over the course of evolution, selective pressures
unique to each Pol have led to three biophysically distinct molecular machines [49,50]. We
hypothesize that their unique enzymatic properties render them more or less vulnerable to
BMH-21. Previously, we revealed that nucleotide addition rate constants describing Pol I,
II, and III transcription elongation varied substantially [49,50]. Pol I is the fastest, followed
by Pol III, and Pol II is the slowest. Interestingly, we found that while Pol I is capable of
the fastest elongation kinetics of the Pols, it is also the most sensitive Pol to EC collapse,
identity of encoded nucleotides, and alterations in reaction conditions [50]. Taken together,
we theorize that BMH-21 intercalation inhibits Pol I most severely by exploiting Pol I’s high
sensitivity to perturbations of the DNA environment, relative to the other Pols.

5. Conclusions

In conclusion, there is a need to define novel cancer therapeutics that are selective
for Pol I transcription. Preclinical studies show that BMH-21 is a promising anti-cancer
compound and its derivatives are progressing toward clinical trials. Here, we showed that
Pol I is the most vulnerable Pol to BMH-21, exemplified by a reduction in elongation rate
and induction of pausing pathways. While BMH-21 slowed Pol III elongation, its effect
did not fundamentally alter the reaction scheme. Finally, Pol II was unaffected by BMH-21.
This work supports BMH-21’s continued preclinical development, ultimately empowering
selective inhibition of ribosome biosynthesis in a variety of cancer types.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225544/s1, Figure S1: Pol I multi-nucleotide addition
in the presence of BMH-21. Representative data set of each RNA species over time fit to Scheme 1;
Table S1: Resultant parameter values from Pol II vehicle- and BMH-21-treated multi-nucleotide time
courses fit to Scheme 3; Detailed Materials.
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