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Simple Summary: Elevated levels of ubiquitin-specific protease 7 (USP7) are associated with poor
survival in many cancers. This protein impairs the balance of various cellular proteins and regulates
the anti-tumor immune response. Its inhibition affects regulatory T cells and tumor-associated
macrophages and decreases levels of various oncogenic markers. Thus, the application of USP7
inhibitors alone and in combination with cancer immunotherapeutics is highly promising. We review
the potential benefits of the application of USP7 inhibitors for cancer immunotherapy and their
interplay with other cancer therapeutics.

Abstract: Ubiquitin-specific protease 7 (USP7) regulates the stability of a plethora of intracellular
proteins involved in the suppression of anti-tumor immune responses and its overexpression is
associated with poor survival in many cancers. USP7 impairs the balance of the p53/MDM2 axis
resulting in the proteasomal degradation of the p53 tumor suppressor, a process that can be reversed
by small-molecule inhibitors of USP7. USP7 was shown to regulate the anti-tumor immune responses
in several cases. Its inhibition impedes the function of regulatory T cells, promotes polarization
of tumor-associated macrophages, and reduces programmed death-ligand 1 (PD-L1) expression in
tumor cells. The efficacy of small-molecule USP7 inhibitors was demonstrated in vivo. The synergistic
effect of combining USP7 inhibition with cancer immunotherapy is a promising therapeutic approach,
though its clinical efficacy is yet to be proven. In this review, we focus on the recent developments
in understanding the intrinsic role of USP7, its interplay with other molecular pathways, and the
therapeutic potential of targeting USP7 functions.

Keywords: ubiquitin-specific protease 7; cancer; immunotherapy; small-molecule inhibitors

1. Introduction

Ubiquitination is a crucial posttranslational modification (PTM) that supports intracel-
lular signal transduction and controls the localization, stability, and activity of numerous
proteins [1–3]. A certain class of proteases known as deubiquitinases (DUBs), or deubiqui-
tinating enzymes can reverse the ubiquitination process. The ubiquitin-specific protease
family (USP), represented by over 50 enzymes, is the largest and the most diverse among all
DUBs. USPs have a significant impact on the regulation of numerous biological processes
and cellular pathways, including the cell cycle, chromatin remodeling, deoxyribonucleic
acid (DNA) damage repair, ribonucleic acid (RNA) maturation, and protein synthesis [4].
A particular member of this family, USP7, also known as herpesvirus-associated protease
(HAUSP), has drawn significant attention from the research community in recent years
due to its important role in the regulation of anti-tumor responses [5]. Its significance
in carcinogenic pathways has led to substantial interest in the discovery of potent USP7
inhibitors with drug-like properties and well-defined mechanisms of action [6]. This is
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further reinforced by the involvement of USP7 in the modulation of the immune response,
considering the growing role of immunotherapy in cancer treatment.

Immunotherapy has become a preferred treatment modality for many cancers. It
employs a wide range of molecular mechanisms to normalize impaired antitumor immunity
and enable the patient’s own immune system to eliminate tumor cells [7–9]. Although
immunotherapy can also result in notable side effects, in general, it is better tolerated
than traditional chemotherapy. In many cases, the positive outcome persists for up to
several years after the immunotherapy treatment [10–13]. Immunotherapy was shown to
be effective in the treatment of multiple solid tumors such as melanoma, non-small cell lung
cancer, renal cell carcinoma, bladder cancer, etc. [14–16]. However, immunotherapy has not
become a panacea because not all cancers respond to the treatment equally well. Treatment
failure caused by the development of resistance is observed in up to 60% of patients with the
initial response to immunotherapy [17]. Even cutting-edge therapeutics such as checkpoint
inhibitors often demonstrate limited efficacy, which is attributed to the existence of multiple
pathways that allow tumor cells to evade immune surveillance. Therefore, searching for
novel therapeutic modalities that can enhance the efficacy of immunotherapy treatment is
of utmost importance.

USP7 represents a highly lucrative target since it modulates the degradation of multiple
proteins involved in the regulation of the antitumor immune response. Moreover, USP7
inhibition directly impacts the critical p53/MDM2 axis that controls the programmed death
of tumor cells. Here, we summarize the recent advances in our understanding of how USP7
inhibitors influence the anti-tumor immune response in vivo.

2. DUBs: Cellular Functions and Their Role in the UPS System

Ubiquitination is a process in which one or more small 8.6 kDa ubiquitin (Ub) molecules
are attached to protein substrates by a covalent isopeptide bond. Among other outcomes,
this leads to the degradation of the protein by means of 26S proteasome, a key component
of the UPS system that conducts cleavage of ubiquitinated target protein into smaller
peptide chains [18–21]. Such processes of protein recycling are essential for the elimination
of incorrectly folded or aggregated proteins as well as proteins that are no longer needed
for cell functioning [22]. Pathological alterations in the UPS pathway can cause malignant
cell transformations [23,24].

DUBs are the enzymes that mediate the removal of covalently attached Ub moieties
from the substrate proteins by hydrolyzing the isopeptide bond between them. DUBs
do not only counterbalance ubiquitin signaling by reversing the Ub attachment, but also
facilitate the recycling of Ub molecules and regulate their intracellular levels [25,26]. DUBs
often include several protein-interaction domains for binding specific target proteins; they
prefer to cleave specific ubiquitin branches, such as K48- or K63-linked chains (Lys48
or Lys63-linked Ub, respectively). DUBs have various expressions and the subcellular
localization in vivo indicating the possibility of substrate specificity [27].

DUBs activity is tightly regulated by substrate-induced conformational change, adap-
tor proteins binding, proteolysis, or by PTMs [28]. Such regulation is necessary to control
cell biology and physiology, whereas defects in DUBs turnover may cause neurodegenera-
tive diseases, inflammatory and autoimmune disorders, infections, and malignancies. It has
been reported that DUBs not only regulate the levels and activation of various oncogenes or
tumor suppressor proteins, and support tumor development by controlling key epigenetic
changes, but they also are involved in immune system regulation [29].

Over 100 DUBs are known to be encoded in the human genome [30,31]. Most of
them are cysteine proteases, which can be classified into five major families according to
their sequence and structural similarities: ubiquitin-specific proteases (USPs), ubiquitin
carboxyl-terminal hydrolases (UCHs), ovarian tumor proteases (OTUs), Machado–Joseph
(Josephin) domain-containing (MJD) proteases, and motif interacting with Ub-containing
novel DUB family proteases (MINDYs). Among them, ubiquitin-specific proteases form the
largest DUB family that has a common conservative domain architecture, which includes
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so-called Finger, Palm, and Thumb motifs. Palm and Thumb moieties form an active site of
the enzyme, while Finger coordinates the linker cleavage process [32].

USP7 is one of the most well-studied enzymes among the whole DUB class [29,33]. It
is a 135 kDa cysteine protease that consists of seven structural domains: N-terminal Tumor
necrosis factor Receptor-Associated Factor (TRAF)-like domain, catalytic core domain,
and five C-terminal ubiquitin-like domains (UBL1-5) [34–37]. The catalytic core domain
(residues 208–560), the largest domain of USP7, is located between TRAF-like and UBL
domains, linking Palm and Thumb motifs of the enzyme. The highly conservative catalytic
core is present in all USP family members, and its main function is to cleave an isopeptide
bond between Ub and the substrate protein [38,39]. In USP7 the core is formed by Cys223,
His464, and Asp481 amino acid residues that cooperatively participate in a substrate
deubiquitination process [32].

Within the whole USP enzyme family, only USP7 contains the unique TRAF-like
domain (residues 53–205) that is necessary for substrate recognition. The C-terminal
ubiquitin-like domain (residues 564–1102) contains five ubiquitin-like motifs. The end of
the C-terminal tail is formed by a disordered conservative peptide (residues 1080–1102),
which performs regulatory functions [40]. The catalytically active spatial arrangement
of these domains takes place upon interaction with a ubiquitinated substrate through
conformational change [32,40,41].

3. USP7 as a Regulator of Anti-Tumor Immune Response

Considerable progress has been made over the past several years in understanding the
role of USP7 in modulating the immune response in cancer patients. However, the precise
mechanism by which USP7 affects antitumor immunity remains to be elucidated.

Increased levels of USP7 were shown to enhance tumor progression by modulat-
ing the immunosuppressive functions of Forkhead box P3 (Foxp3)+ T-regulatory (Treg)
cells [42–46]. Accumulation of Foxp3+ Tregs within tumor tissue and/or draining lymph
nodes was confirmed as the negative prognostic factor in many solid tumors, including
lung and colon cancer. Thus, Treg depletion or functional suppression could be a promising
clinical strategy for cancer immunotherapy [47,48].

USP7 deubiquitinates and stabilizes histone acetyltransferase tat-Interactive protein
(Tip60) and transcriptional regulator Foxp3, which are essential for the survival of Treg
cells [49]. This results in the Tip60-mediated formation of Foxp3 dimers that bind to DNA
and activate the transcription of anti-inflammatory cytotoxic T-lymphocyte-associated
protein 4 gene (CTLA4) and interleukin (IL-10) genes while inhibiting the expression of
pro-inflammatory IL-2 and interferon-gamma (IFN-γ) genes. This suggests that therapeutic
USP7 inhibition may reduce the immunosuppressive functions of Tregs within the tumor
microenvironment and thereby facilitate the elimination of tumor cells [49,50].

USP7 was identified as an important and highly expressed gene in the homeostasis of
M2, but not M1 macrophages. Specific suppression of USP7 by small interfering ribonu-
cleic acid (siRNA) or USP7 inhibitors was found to result in phenotypic and functional
alterations in M2 macrophages, which promoted the cluster of differentiation CD8+ T
cell proliferation in vitro [51]. When evaluated in mice with Lewis lung carcinoma, USP7
inhibitor P5091 slowed tumor growth and promoted the infiltration of M1 macrophages
and IFN-γ-expressing CD8+ T cells. Depletion of tumor-associated macrophages (TAMs)
diminished these therapeutic effects. It has been demonstrated that USP7 inhibition medi-
ates macrophage reprogramming by activating the p38 mitogen-activated protein kinase
(MAPK) pathway. The administration of USP7 inhibitors increased the expression of
programmed cell death PD-L1 in tumors, which, in combination with the inhibition of
programmed cell death protein 1 (PD-1), elicited a potent antitumor response. The results
of this study show that targeting USP7 can modulate the immunosuppressive effects within
the tumor microenvironment and improve the efficiency of lung cancer immunotherapy.
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USP7 is overexpressed in some cancer types, e.g., gastric tumor cells, and its levels
often correlate with the expression of PD-L1 immune checkpoint inhibitor, which suggests
that USP7 might facilitate the stabilization of PD-L1 [51].

4. USP7 and the p53/MDM2 Axis

In addition to its immunomodulatory functions, USP7 regulates the activity of crucial
transcription factors, such as p53, enabling synergistic targeting of different molecular
mechanisms. The well-known tumor suppressor protein p53 is essential for cell cycle
regulation, DNA repair, cell differentiation, and apoptosis. E3 ubiquitin ligase MDM2 is a
negative regulator of p53 and primarily functions via forming a negative feedback loop
with p53.

Importantly, USP7 was first discovered as a p53-interacting protein that strongly
stabilized p53 by direct deubiquitination even in the presence of excess MDM2 and in-
duced p53-dependent tumor cell growth suppression and apoptosis [52]. USP7-mediated
deubiquitination plays a primary role in the maintenance of the p53/MDM2 axis via the sta-
bilization of both p53 and MDM2. However, USP7 overexpression leads to more profound
deubiquitination of MDM2 compared to that of p53, which results in p53 degradation and
progression of tumorigenic processes [53]. Therefore, the inhibition of USP7 to enhance p53
stabilization is one of the promising strategies for anticancer therapy with high efficiency
demonstrated both in vitro and in vivo [54].

USP7 overexpression stabilizes p53 even in the presence of excess MDM2, whereas
USP7 downregulation renders endogenous p53 unstable [55]. USP7 also binds and stabilizes
MDM2 under normal conditions, resulting in p53 turnover in an MDM2-dependent manner.
When a decrease in USP7 levels leads to MDM2 degradation, the available MDM2 levels
become insufficient for ubiquitination, which stabilizes p53.

The USP7/p53/MDM2 axis remains one of the cornerstones of the USP7 pathway in
the nucleus, and fresh studies continue to illustrate how USP7 promotes p53-dependent
apoptosis in disease. For example, in esophageal cancer USP7 inhibition increased phorbol-
12-myristate-13-acetate-induced protein 1 (NOXA) expression, which then resulted in
p53-dependent apoptosis [56].

The regulatory link between USP7 activity and p53 status is considered an important
area of research for the development of novel antitumor therapeutics. USP7 inhibition
was shown to induce tumor cell death caused by the accumulation of DNA damage in
chronic lymphocytic leukemia (CLL) [57]. Based on mouse xenograft models, CLL was
found to be associated with upregulated USP7 that contributed to aberrant homologous
recombination repair, and sensitized p53-deficient, chemotherapy-resistant CLL to clinical
doses of chemotherapeutic agents. Targeting USP7 with specific inhibitors may thus have
therapeutic promise even in tumors with faulty p53 or resistant to ibrutinib chemotherapy.

Another study found that the USP7-specific submicromolar reversible inhibitor,
HBX41108, was able to stabilize p53 and p21, as well as block the proliferation of HCT116
colorectal carcinoma cells [58]. HBX41108 stabilized p53, stimulated transcription of p53
target genes without causing genotoxic stress, and suppressed cancer cell growth at a level
comparable to the effect of RNA interference-mediated USP7 silencing.

Andrew Turnbull et al. reported two compounds, FT671 and FT827, which inhibited
USP7 in vitro and in vivo in human cells with high affinity and specificity [59]. In con-
trast to other USP deubiquitinases, co-crystal structures suggested that both compounds
target a dynamic region near the catalytic core of the protein. Consistent with the ex-
pected USP7/target interaction mode in cells, FT671 destabilized USP7 substrates including
MDM2, increased p53 levels, enhanced transcription of p53 target genes, and suppressed
tumor development in mice.

As mentioned earlier, USP7 inhibitors increase PD-L1 levels, which renders tumor cells
more amenable to anti-PD-1 therapy. The combination of USP7 inhibition with anti-MDM2
therapy and PD-1 blockade may appear highly effective in enhancing cancer immunother-
apy. The role of p53 in immune modulation and combination therapy with PD-1 blockade
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was investigated using APG-115, a small molecule MDM2 antagonist in clinical devel-
opment as a pharmacological p53 activator [60]. The results indicate that p53 activation
mediated by APG-115 promoted antitumor immunity within the tumor microenvironment
(TME) irrespective of the TP53 mutation status. This effect was dependent on the activa-
tion of p53 in immune cells with wild-type p53 residing in TME. A Phase 1b clinical trial
(NCT03611868) evaluating the combination of APG-115 and pembrolizumab is ongoing for
solid tumor patients including those with mutant p53 tumors.

5. USP7 as a Therapeutic Target

USP7 engages in numerous signaling pathways and regulates the stability of many pro-
teins engaged in mitosis, apoptosis, DNA replication and reparation, cell cycle, epigenetic
regulation, and immune response [61]. Over the past decade, more than 70 binding partners
and potential substrates of USP7 have been discovered, among them tumor suppressors,
oncoproteins, viral proteins, transcription factors, chromatin-associated proteins, cell cycle
checkpoint proteins, and epigenetic modulators [62]. This list is regularly updated with
new USP7 substrates. During the past two years, several new proteins were confirmed as
USP7 substrates, including Protein phosphatase 2A (PP2A) [63], MAX dimerization protein
(MGA) [64], Pleckstrin homology domain interacting protein (PHIP) [64], X-linked inhibitor
of apoptosis protein (XIAP) [65], ATP binding cassette subfamily B member 1 (ABCB1) [66],
and RAF proto-oncogene serine/threonine-protein kinase (Raf-1) [67]. Emerging evidence
supporting the key role of USP7 in multiple diseases leads to its recognition as a promising
target for drug development [68].

As described earlier, normal USP7 functions are necessary for the maintenance of
cellular homeostasis, while its aberrant expression may lead to the development of cancer.
USP7 overexpression in tumors is often associated with metastasis, drug resistance, and
reduced patient survival [69,70].

USP7 contributes to the development of drug resistance by stabilizing proteins in-
volved in certain signaling pathways. Therefore, USP7 inhibition in combination with
other therapeutic approaches not only has a synergistic impact that improves the treatment
efficacy, but also helps overcome tumor chemoresistance [70,71]. Cartel et al. demonstrated
the role of the USP7/Checkpoint kinase 1 (CHK1) axis in the formation of resistance in
acute myeloid leukemia [71]. Elevated levels of CHK1 protein, generated as a result of
USP7-mediated deubiquitination, facilitate the reset of the replication fork during DNA
replication and the adaptation of cells to cytarabine-induced DNA damage. The combina-
tion of cytarabine with the USP7 inhibitor P22077 has a synergistic impact on promoting
anti-leukemic activity and can help overcome chemoresistance in cancer cells.

USP7 inhibition may be important in overcoming therapeutic resistance. Yu et al.
demonstrated that combining the USP7i compound with trastuzumab slows down tumor
growth in patient-derived xenografts (PDX) from a patient with a positive human epidermal
growth factor receptor 2 (HER2+). This justifies the use of combination therapy in cancers
with high levels of HER2 signaling, such as HER2+ breast cancer that do not respond to
anti-HER2 therapy [72]. Furthermore, in chemotherapy-sensitive PDX models of small-cell
lung cancer, Grunblatt et al. observed that overexpression of either MYCN or MYCL
conferred chemoresistance to cisplatin–etoposide. USP7i resensitized chemoresistant mice
in vivo to chemotherapy, either alone or in combination with cisplatin–etoposide [73].

However, the development of candidate molecules was slow largely due to difficulties
related to suboptimal activity and selectivity [74]. Since Colland et al. reported in 2009 the
pioneering series of USP7 inhibitors [58], numerous types of ligands have been designed to
target either the active site of the protein, the nearby catalytic cleft, or the allosteric palm
site of the catalytic domain in both covalent and non-covalent mode (Figure 1) [3,5,53,75,76].
Although the influence of these compounds on various pathways in the development of
cancer malignancies has been investigated thoroughly, their ability to modulate anti-tumor
immune response was evaluated only for a small number of previously reported USP7
inhibitors (Figure 2; Table 1).
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binding site.
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Figure 2. Small molecule inhibition of USP7 and its effect on anti-tumor immune response: (A) Ini-
tiation of p53-dependent apoptosis in tumor cells via p53/MDM2 pathway. (B) Decreasing PD-L1
levels sensitize tumor cells to T cell-mediated cytotoxicity by reducing PD-L1 interaction with PD-1.
(C) Overcoming the immune tolerance of tumor via lowering IL-10 levels. (D) Reducing immunosup-
pressive functions of Tregs via destabilization of Tip60 and Foxp3. (E) Promotion of local anti-tumor
immune response in tumor microenvironment via polarization of macrophage phenotype from
anti-inflammatory M2 to proinflammatory M1.
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Table 1. Biological properties of the selected USP7 inhibitors with demonstrated effect on anti-tumor
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Among them, by far the most extensively studied one is the electron-deficient thio-
phene derivative P5091 [77,78]. Others include structurally related sulfide P217564 [49,79],
4-hydroxypiperidine derivative Almac4 [80], covalently binding 9-chloro-1,2,3,
4-tetrahydroacridine derivative HBX19818 [81], and tricyclic 4-ethylpyridine derived ligand
GNE-6776 [82,83] (Table 1).
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All covalent USP7 inhibitors target Cys223, which forms the catalytic triad together
with His464 and Asp481, and partially occupies the nearby so-called “catalytic cleft”
(Figure 1, purple) by binding to USP7 in the catalytic center (Figure 1, green). Various
structural types of non-covalent inhibitors were developed; however, only two major
modes of binding appear to be possible: binding inside the catalytic cleft typically forming
interaction with Val296 (e.g., Almac4) (Figure 1, purple); and binding to the allosteric site
(e.g., GNE-6776) (Figure 1, blue).

Dai et al. investigated the possibility of reprogramming TAMs to treat lung ade-
nocarcinoma [51]. Depending on the microenvironmental cues, the macrophages can
differentiate into two major phenotypes: tumor-suppressing M1 and tumor-promoting M2
phenotype [84,85]. To explore whether USP7 inhibition leads to the selective elimination of
M2 macrophages, three USP7 inhibitors P5091, HBX19818, and GNE-6776 were assessed.
These compounds did not exhibit any notable cytotoxic effects (at concentrations up to
10 µM). USP7 inhibition significantly lowered the levels of the M2-associated marker CD206
but did not affect the M1-associated marker CD86. Altogether this led to the conclusion
that USP7 inhibition suppresses M2 macrophages. Furthermore, P5091 was used for the
treatment of mice bearing a subcutaneous Lewis tumor. Its administration (40 mg/kg)
caused a reduction in tumor growth by 73%. The mechanism of P5091-mediated anti-tumor
effects was shown to be related to the activation of the p38 MAPK signaling pathway. A
detailed examination showed that the proportion of M1 macrophages and the M1/M2
ratio increased significantly (by factors of 2.1 and 5.3, respectively). CD4+ T cell count
was decreased, while an increase in the number of CD8+ cytotoxic T lymphocytes was
detected. Levels of certain cytokines in the tumor microenvironment were also affected:
tumor necrosis factor-alpha (TNF-α), IFN-γ, IL-2, and IL-5 were elevated, while IL-6 was
decreased. USP7 inhibition contributed to TAMs polarization into proinflammatory M1
macrophages and promoted the local anti-tumor immune response in TME in vivo, while
also inducing systemic adaptive anti-tumor immunity. Finally, it is noteworthy that P5091-
mediated USP7 inhibition resulted in increased PD-L1 expression in tumor cells. Thus, the
combination therapy based on USP7 inhibitors and anti-PD-1 antibodies could provide a
synergistic impact on the efficacy of this approach.

The application of P5091 for the treatment of colorectal cancer was investigated using
a mouse CT26 xenograft model [15]. The study showed that the administration of USP7
inhibitors could potentiate the efficacy of tumor vaccine therapy. Simultaneous treatment
with an adenovirus-based vaccine and USP7 inhibitor demonstrated superior results com-
pared to each agent separately. The tumor growth was reduced significantly, and the effect
of a 10 mg/kg dose of P5091 was close to that of anti-PD-1 monoclonal antibodies (mAb)
(5 mg/kg). P5091 decreased the levels of anti-inflammatory cytokine IL-10 and increased
proinflammatory IFN-γ and TNF-α in tumor tissue and TME. Cytotoxic effects of CD4+
and CD8+ T cells against tumor cells were enhanced. Furthermore, the Foxp3 levels in
CD4+ T cells were downregulated, indicating potential suppression of Tregs.

Based on the chemical structure of P5091 second-generation dual USP7/47 inhibitors
were developed exhibiting improved affinity and DUB selectivity profile [86]. The most
investigated among them was P217564, which possesses the α,β-unsaturated ester moiety
allowing USP7 inhibition in an irreversible manner [49,79]. Both P5091 and P217564 were
evaluated for their ability to block the immunosuppressive functions of Treg cells. The
compounds demonstrated a long-lasting inhibitory effect on murine Treg cells in vitro
at 10 µM. USP7 inhibition downregulated both Foxp3 and its positive regulator Tip60.
Moreover, the inhibitors impaired the suppressive impact of Tregs on the proliferation
of co-transferred effector T cells (Teffs) and obstructed the Treg-dependent permanent
allograft survival. Together, these results show that USP7 inhibition by P5091 and P217564
selectively interferes with the immunosuppressive functions of regulatory T cells, while
preserving other important host T cell antitumor responses. Additionally, the influence
of USP7 inhibition on tumor growth was assessed using a mouse model of E7+ TC1 lung
adenocarcinoma for which the growth is Treg-dependent. For this purpose, P217564 was
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utilized at 1 and 6 mg/kg daily doses. Tumor growth was significantly abrogated in the
case of wild-type (WT), but not immunodeficient, mice. The detailed analysis showed
that at higher P217564 doses the intratumoral accumulation of Tregs was reduced; in both
cases, tumor infiltration by CD8+ T cells was increased. Further, USP7 inhibitors were used
to treat AE.17 mesothelioma, which is another Treg-dependent cell line. As for the TC1
tumor, the administration of USP7 inhibitors impaired tumor growth in WT mice but had
no significant effect on immunodeficient mice. The negligible effect of USP7 inhibition
on the growth of TC1 and AE.17 tumors in immunodeficient mice may be attributed
to the lesser importance of both USP7 itself and its substrates p53 and MDM2 in these
cell lines. The desired tumor suppression could be achieved only by means of immune
response enhancement. This effect may be expressed in contrasting ways for different
cell lines, such as MM.1S, which is hypersensitive to USP7 inhibitors. The administration
of USP7 inhibitors was also found to potentiate the efficacy of adenovirus-based tumor
vaccine therapy [49]. The combined treatment hindered the growth of TC1 tumor cells
more efficiently than either component alone. The number of CD8+ T lymphocytes and the
release of proinflammatory IFN-γ was increased significantly, while the accumulation of
Foxp3+ Treg cells within the tumor was reduced. In addition, USP7 inhibition improved
the efficacy of anti-PD-1 mAb therapy in mice bearing the TC1 lung tumor.

Another USP7 inhibitor Almac4 was shown to decrease PD-L1 levels in several tumor
cell lines in a dose-dependent manner [87]. A similar effect was found for P5091; its
application decreased membrane levels of PD-L1 in tumor cells. Importantly, inhibiting
USP7 not only sensitized tumor cells to T cell-mediated cytotoxicity by reducing cell
surface PD-L1 levels and attenuating its interaction with PD-1, but it also decreased their
proliferation by stabilizing p53 in vitro and in vivo. The latter effect was associated with
the modulation of USP7 downstream targets, including p53, MDM2, and p21 proteins.

The synergistic effect of RRx-001 and P5091 was demonstrated in studies by Das et al.
where multiple myeloma (MM) cells have been demonstrated to benefit from increased lev-
els of DNA (cytosine-5)-methyltransferase 1 (DNMT1), the primary enzyme that promotes
DNA methylation. USP7 enhanced DNMT1 activity, while USP7-siRNA inhibited DNMT1
functions and reduced the survival of MM cells [88].

According to Du et al. increased expression of DNMT1 correlates with high expression
of USP7 in human colon cancer cells. USP7 inhibition reduced the activity of DNMT1,
which had a detrimental impact on cancer cell survival. In both tissue culture and tumor
xenograft models, USP7 knockdown improved the susceptibility of colon cancer cells to
histone deacetylase 1 (HDAC) inhibitors. HDAC1 and USP7 maintained DNMT1, whereas
Tip60 acetyltransferase destabilized it, resulting in ubiquitination by E3 ligase UHRF1 and
DNMT1 proteasomal degradation. These findings suggest that a combination of HDAC1
and USP7 inhibitors might be effective in cancer treatment [89].

Lin et al. found that USP7 is a viable therapeutic target for treating triple-negative
breast cancer (TNBC) chemoresistance. USP7 overexpression boosted TNBC chemoresis-
tance, but USP7 knockdown substantially increased the chemo-sensitivity of chemoresis-
tant TNBC. In chemoresistant TNBC, the GNE-6776 USP7 inhibitor successfully caused
apoptosis and inhibited metastasis. The authors demonstrated that USP7 is a specific deu-
biquitinating enzyme for ABCB1, which plays a crucial role in drug resistance development.
USP7 interacted with ABCB1 directly and controlled its stability, resulting in enhanced
chemoresistance [66].

6. Conclusions

The concept of targeting proteins by modulating their half-life is an emerging strategy
in drug discovery. The field of the ubiquitin–proteasome system is on the continuous
rise with more therapeutically relevant targets being discovered and more drugs entering
clinical trials. Both ubiquitination and deubiquitination are highly dynamic processes that
are required to maintain cellular homeostasis in health and disease. Abnormal expression
of DUBs can lead to cancer, viral infections, immunological disorders, and other diseases.
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USP7, one of the most important DUBs, stabilizes many proteins crucial to tumor cell
viability, and therefore it is gaining attention as a potential target for cancer treatment.

In this review, we briefly covered the status of USP7-targeted drug development with
the focus on cancer immunotherapy and combination with other therapeutic approaches.
This included information on the USP7 structure and mechanism of action, the regulatory
role in anti-tumor immune response and interplay with the p53/MDM2 axis, and the
discovery of inhibitors and prospective clinical applications.

Non-clinical studies of USP7 inhibitors revealed Treg modulation as the potential
mechanism of action in immunotherapeutic applications. USP7 inhibition stabilizes Foxp3,
reduces Treg immunosuppression, and enables immune-mediated tumor suppression.
Tregs contribution to immune tolerance is well known, and anti-CTLA-4 monoclonal
antibodies were used to target them in cancer patients with some success [90]. In animal
models, USP7 inhibition effectively reduced the immunosuppressive function of regulatory
T cells; although, further clinical validation of these findings is necessary.

Another immune evasion mechanism exploited by many tumors and targeted by
USP7 inhibitors is mediated by TAMs. TAMs are also known to promote angiogenesis and
metastasis in many cancers [91]. USP7 inhibition leads to TAM polarization towards pro-
inflammatory M1 macrophages, potentiating anti-tumor immune responses. The diversity
and plasticity of TAMs obstruct the clinical application of therapeutic approaches that
selectively target mononuclear phagocytes. The complex activity of USP7 inhibitors in
multiple immune cell subsets may help overcome this challenge.

USP7 inhibition leads to the modulation of multiple immune-oncology targets, offer-
ing a promising opportunity to improve the efficacy of cancer immunotherapy. The efficacy
of PD-1/PD-L1 checkpoint inhibitors is limited due to multiple additional mechanisms pro-
moting tumor immune tolerance. Thus, the development of combinatorial immunotherapy
approaches has been a priority in the last decade. However, incremental gains achieved
with the addition of any targeted immunotherapy to PD-1/PD-L1 inhibitors remain rel-
atively small. The use of agents that can block multiple immune tolerance mechanisms
is therefore preferable. Growing evidence suggests that combining USP7 inhibitors with
immunotherapies such as anti-PD1 or anti-CTLA4 antibodies, and cancer vaccines has
the potential to significantly increase antitumor immune responses. However, the efficacy
of USP7 inhibitors has yet to be shown in a cancer patient population carefully selected
with the use of genetic and immunological markers that reflect the complex biological role
of USP7.

USP7 inhibitors increase p53 levels, induce cell cycle arrest, and ultimately cause
cell death in cellular and animal models. The potential synergy of immune modulation
and restoring p53 function via USP7 inhibition is of particular interest. The p53/MDM2
axis remains an attractive target for drug developers, despite multiple failed attempts to
prove the clinical efficacy of this approach. Both USP7 and MDM2 inhibition approaches
have demonstrated impressive results by restoring p53 in cancer cells in vitro and in vivo
and reducing chemotherapy-induced damage. Patients with MDM2 overexpression and
immunosuppressive tumor microenvironment may have the largest benefit from the use of
USP7 inhibitors.

The key hurdle that obstructs the progress toward wider clinical application of small
molecule USP7 inhibitors is related to the complexity of DUB’s biological function [53]. Dif-
ferent DUBs may have opposite effects on crucial immune response mechanisms. Therefore,
the selectivity of USP7 inhibitors should be considered early in their development. A re-
cently reported series of molecules with an excellent potency and selectivity profile [92–95],
as well as anti-USP7 proteolysis targeting chimera (PROTAC) compounds U7D-1 [96] and
CST967 [97] represent an effort to expand a range of novel approaches for USP7 inhibition.

The large number of USP7 targets inevitably leads to potential on-target side effects
of USP7 inhibitors. Therefore, this class of compounds requires thorough toxicological
testing; clinical studies of USP7 inhibitors should be conducted in patients with a higher
benefit/risk ratio. Patients with p53 mutations resistant to multiple previous lines of
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therapy, including immunotherapy, would be a suitable population for early-phase clinical
trials of USP7 inhibitors.

Therefore, further studies should focus on identifying synergistic DUB inhibition
mechanisms and developing combinatorial therapeutic approaches for cancer therapy. The
development of novel bioassays and disease models will also facilitate this progress.
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Abbreviations

ABCB1 ATP binding cassette subfamily B member 1
anti-CTLA4 Anti-cytotoxic T lymphocytes A4 antibodies
Asp Aspartic acid
CD8 Cluster of differentiation 8
CHK1 Checkpoint kinase 1
CLL Chronic lymphocytic leukemia
CTLA Cytotoxic T-lymphocyte-associated protein gene
Cys Cysteine
DNA Deoxyribonucleic acid
DNMT1 DNA (cytosine-5)-methyltransferase 1
DUBs Deubiquitinases
Foxp3 Forkhead box P3
Gly Glycine
HAUSP Herpes virus-associated protease
HDAC Histone deacetylase 1
His Histidine
IFN-γ Interferon-gamma
IL Interleukin
mAb Monoclonal antibodies
MAPK Mitogen-activated protein kinase
MDM2 Mouse double minute 2 homolog
MGA MAX dimerization protein
MINDY Motif interacting with ubiquitin-containing novel deubiquitinase family proteases
MJD Machado–Joseph (Josephin) domain containing proteases
MM Multiple myeloma
NOXA Phorbol-12-myristate-13-acetate-induced protein 1
OTU Ovarian tumor proteases
PD-1 Programmed cell death protein
PD-L1 Programmed death-ligand 1
PDX Patient-derived xenografts
PHIP1 Pleckstrin homology domain interacting protein
PP2A Protein phosphatase 2A
PROTAC Proteolysis targeting chimera
PTM Posttranslational modification
Raf-1 RAF proto-oncogene serine/threonine-protein kinase
RNA Ribonucleic acid
siRNA Small interfering ribonucleic acid
TAMs Tumor-associated macrophages
Teffs Effector T cells
Tip60 Tat-Interactive Protein
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TME Tumor microenvironment
TNBC Triple-negative breast cancer
TNF-α Tumor necrosis factor-alpha
TP53 Tumor protein p53
TRAF Tumor necrosis factor Receptor-Associated Factor
Tregs Regulatory T cells
Ub Ubiquitin
UBL Ubiquitin-like domain
UCH Ubiquitin carboxyl-terminal hydrolases
UPS Ubiquitin-proteasome system
USP Ubiquitin-specific protease
USP7 Ubiquitin-specific protease 7
WT Wild type
XIAP X-linked inhibitor of apoptosis protein
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