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Simple Summary: MiR-155 appears to be a significant regulator of immune responses against
tumors. The aim of this review is to provide an overview of miR-155 function in distinct immune
cell populations and describe how the miR-155-mediated regulation can impact the process of cancer
immunoediting. Since miR-155 does not necessarily act only within a single cell, we also touch on the
role of miR-155 in cellular communication. Finally, we discuss current developments in the specific
targeting of this molecule in the tumor and immune cells and suggest its potential implications in
developing novel therapeutic algorithms to increase the efficacy of cancer therapy.

Abstract: MicroRNAs belong to a group of short non-coding RNA molecules that are involved in the
regulation of gene expression at multiple levels. Their function was described two decades ago, and,
since then, microRNAs have become a rapidly developing field of research. Their participation in the
regulation of cellular processes, such as proliferation, apoptosis, cell growth, and migration, made
microRNAs attractive for cancer research. Moreover, as a single microRNA can simultaneously target
multiple molecules, microRNAs offer a unique advantage in regulating multiple cellular processes
in different cell types. Many of these cell types are tumor cells and the cells of the immune system.
One of the most studied microRNAs in the context of cancer and the immune system is miR-155.
MiR-155 plays a role in modulating innate and adaptive immune mechanisms in distinct immune
cell types. As such, miR-155 can be part of the communication between the tumor and immune cells
and thus impact the process of tumor immunoediting. Several studies have already revealed its effect
on antitumor immune responses, and the targeting of this molecule is increasingly implemented
in cancer immunotherapy. In this review, we discuss the current knowledge of miR-155 in the
regulation of antitumor immunity and the shaping of the tumor microenvironment, and the plausible
implementation of miR-155 targeting in cancer therapy.
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1. Introduction

The immune system is responsible for maintaining the body’s homeostasis. This main-
tenance also includes the recognition and elimination of transformed, malignant cells [1].
However, the immune system could be hijacked by the transformed cells and, on the
contrary, promote their proliferation and survival in the human body. Many regulatory
molecules are known to impact the balance between the pro- and antitumorigenic activities
of the immune system. Although many of these molecules are proteins, there are also non-
protein molecules, such as non-coding RNAs (ncRNAs), which can substantially contribute
to the balance [1–3]. One group of ncRNAs is microRNAs (miRNAs). MiRNAs were found
to have a substantial regulatory impact on many distinct cellular processes, and research on
these molecules has been gaining increasing interest in the last two decades. As miRNAs
are often associated with the regulation of important cellular processes, such as apoptosis
and proliferation [4,5], which are dysregulated during tumorigenesis, it is no surprise
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that a large number of studies have been performed in the field of cancer research [6,7].
Nevertheless, despite their direct tumor suppressor or oncogenic functions, miRNAs also
participate in tumorigenesis by regulating the immune system [8].

The function of miRNAs is decreasing the messenger RNA (mRNA) levels of protein-
coding genes [9]. MiRNAs also participate in the post-transcriptional regulation of many
targets, including other regulatory molecules or even transcription factors [10], which make
miRNAs powerful players in the biology of the cell. Moreover, their distal transport in
extracellular vesicles allows them to be involved not only in the regulation of the single cell
in which they are transcribed but also in shaping the transcriptomes of other cells, thereby
forming a mode of distal cellular communication [11]. One of the miRNAs participating in
all the above-described mechanisms is miR-155, whose role in the tumor immune response
is discussed in detail in this review.

2. MiRNA Biology

MiRNAs are small (approximately 22 nucleotides), single-stranded ncRNA molecules
that participate in the regulation of gene expression at several levels and in cellular com-
munication [12,13]. MiRNAs are evolutionarily conserved among species and have been
identified in plants, animals, and even viruses [14,15]. These molecules were discovered
almost thirty years ago in Caenorhabditis elegans. The first noted miRNA was lin-4, de-
scribed as a negative regulator of the mRNA for the LIN-14 protein, which is essential for
controlling developmental events in C. elegans [13,16,17]. The mechanism of its regulatory
action was discovered to be based on the complementarity of lin-4 with the LIN-14 mRNA
sequence and RNA–RNA interaction [16,17]. One decade after this, the function of these
regulatory molecules was recognized. Initially, miRNAs were originally associated with
post-transcriptional regulation [18]. However, the functions of miRNAs have been con-
siderably expanded since then, as the mechanisms of their regulatory functions regarding
gene expression were found to occur on multiple levels.

A mature miRNA creates a complex with proteins, namely the ribonucleoprotein
(RNP), called the RNA-induced silencing complex (RISC) [19–21] (Figure 1). Being part of
RNP, miRNA works as a sequence-specific guide that leads RNP to the target sequence. The
target sequences are usually mRNAs but may also include other ncRNAs [22]. The miRNA
complementarily binds at least seven nucleotides of the target sequence. Longer regions
of complementarity are believed to strengthen the binding of the target sequence and
miRNA [23]. The interaction of miRNA and target mRNA can result either in the mRNA
degradation, its destabilization, or less efficient protein translation. These mechanisms
are promoted by the proteins of the RISC complex. Degradation of mRNA is catalyzed by
the argonaute protein [19,20], which is usually associated with its binding to the 3′UTR of
mRNA [24]. If mRNA is not degraded, its translation can then be controlled on several
levels, such as the inhibition of translation initiation, poly (A) shortening, decapping, or
altered cap protein binding [25,26].

In contrast to 3′UTR mRNA targeting, binding to the 5′UTR is more often associated
with the stabilization of the target mRNA, leading to increased protein translation [27,28].
In addition to mRNA binding, miRNAs can also affect DNA [29]. MiRNAs can even alter
the structure of chromatin, which is another mechanism through which miRNAs regulate
the expression of their targets [29,30]. The complexity of the gene expression regulation
promoted by miRNAs is due to the fact that each miRNA is responsible for the regulation
of multiple targets [31]. Moreover, these targets do not have to be transcribed in every
cell. Thus, each miRNA can have a different impact on the protein expression in distinct
cell types. Additionally, the expression levels of each miRNA differ among distinct cell
populations, and they can even differ within a certain cell type depending on the stage of
its differentiation. Generally, miRNA-mediated regulation is context dependent.
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Figure 1. The biogenesis and function of miRNAs are shown via the example of miR-155. The non-
coding B cell integration cluster (BIC), which encodes miR-155, is transcribed by polymerase II (poly 
II) into a double-stranded primary RNA transcript (pri-miR-155) after stimuli, such as stimulation 
of toll-like receptors (TLRs). Pri-miR-155 is cleaved by the ribonuclease—DROSHA and its cofactor 
binding protein, DGCR8—into precursor miRNA (pre-miR-155). Pre-miR-155 is transported by the 
GTP-dependent Exportin 5 from the nucleus to the cytoplasm, where the ribonuclease Dicer1 pro-
cesses it into mature but still double-stranded miR-155. After this, miR-155 and argonaut 2 (AGO2), 
together with other proteins, create an RNA-induced silencing complex (RISC). RISC unwinds the 
double-stranded miR-155, and one of its strands is degraded while the second remains and acts as 
a sequence-specific guide for proteins. MiR-155 in the RISC complex promotes target mRNA deg-
radation and destabilization or inhibits its translation. Created with BioRender.com (agreement 
number: DV24GT9WQS, accessed on 30 September 2022). 
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ber of miRNAs are classified into families determined by their 5′-end sequence homology 
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Figure 1. The biogenesis and function of miRNAs are shown via the example of miR-155. The non-
coding B cell integration cluster (BIC), which encodes miR-155, is transcribed by polymerase II (poly II)
into a double-stranded primary RNA transcript (pri-miR-155) after stimuli, such as stimulation of
toll-like receptors (TLRs). Pri-miR-155 is cleaved by the ribonuclease—DROSHA and its cofactor
binding protein, DGCR8—into precursor miRNA (pre-miR-155). Pre-miR-155 is transported by
the GTP-dependent Exportin 5 from the nucleus to the cytoplasm, where the ribonuclease Dicer1
processes it into mature but still double-stranded miR-155. After this, miR-155 and argonaut 2 (AGO2),
together with other proteins, create an RNA-induced silencing complex (RISC). RISC unwinds the
double-stranded miR-155, and one of its strands is degraded while the second remains and acts
as a sequence-specific guide for proteins. MiR-155 in the RISC complex promotes target mRNA
degradation and destabilization or inhibits its translation. Created with BioRender.com (agreement
number: DV24GT9WQS, accessed on 30 September 2022).

3. MiRNA Biogenesis

MiRNAs can be encoded in the genome as a single unit or they can be clustered.
Clustered miRNAs are transcribed together as polycistronic transcripts that are processed
into individual mature miRNAs that usually target mRNAs with the related function.
MiRNAs are also often coded in introns and intergenic non-coding DNA sequences: “junk
DNA” [25,32]. Moreover, their expression can be altered with alternative splicing. A
number of miRNAs are classified into families determined by their 5′-end sequence homol-
ogy [33]. The expression of miRNAs can be tissue specific, and their roles in the regulation
of cell processes can differ depending on the cell type [33,34].

The biogenesis of miRNAs is a complex process that begins in the nucleus (Figure 1) [35].
MiRNAs are usually transcribed by RNA polymerase II into double-stranded primary
RNA transcripts (pri-miRNAs) with a 5′cap and 3′poly (A) tail. Pri-miRNAs are signifi-
cantly longer than their mature forms and need to be cleaved by a nuclear microprocessor
containing ribonuclease (RNase III) Drosha and its cofactor double-stranded binding pro-
tein DiGeorge critical region 8 protein (DGCR8). In the nucleus, pri-miRNA is processed
by this microprocessor complex into precursor miRNAs (pre-miRNAs) with a length of
60 to 70 nucleotides [36–38]. Thenceforth, pre-miRNAs are transported to the cytoplasm
through GTP-dependent protein complex Exportin 5 (XPO5) [39,40]. In the cytoplasm,
pre-miRNAs are cleaved and processed into their mature double-stranded miRNAs forms
by the RNase III enzyme Dicer [41,42]. However, there are some alternative forms of this
miRNA processing pathway [43,44]. The mature, but still double-stranded, miRNAs in
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the cytoplasm create RISC containing AGO family proteins. One of the miRNA strands is
degraded while the second strand remains within RISC [41]. When integrated into the RISC
complex, miRNA interacts with complementary RNA and works as a sequence-specific
guide for the proteins [45].

4. MiRNAs in Tumors and Antitumor Immunity

MiRNA-mediated regulation is important in numerous cellular processes, such as pro-
liferation, differentiation, apoptosis, and metabolism [35]. Dysregulation of miRNAs’ gene
expression is involved in several diseases, including cancer. During tumor progression,
miRNAs can act similarly as tumor suppressors or oncogenic molecules, depending on their
targets [46]. MiRNAs with an oncogenic function are responsible for the downregulation
of tumor suppressor genes while miRNAs that act as tumor suppressors are involved in
the downregulation of oncogenes and their products [47]. Whereas upregulated levels of
oncogenic miRNA are associated with oncogenic diseases, the tumor suppressor miRNA
levels are often downregulated during tumorigenesis [48]. For this reason, miRNAs are
very often considered to be potential biomarkers in cancer [49]. Moreover, they can also be
valuable targets in cancer therapy [50–52].

MiRNAs are often transported from cells in vesicles called exosomes. These miRNA-transferring
exosomes can be derived from cancer cells or, vice versa, from immune cells [53]. Recently,
Wang et al. described exosomal crosstalk between cancer cells and tumor-associated fi-
broblasts and showed that exosomal miR-155, together with miR-146a, contributed to
colorectal carcinoma metastasis [54]. The miR-155 exosomal crosstalk was also described
between immune cells, such as dendritic cells [11]. This intercellular communication makes
miRNAs a powerful tool in shaping the tumor’s progression and microenvironment [53,55].
Therefore, although research on miRNAs has mostly remained within the field of oncol-
ogy, these molecules have received considerable attention also in the field of immunology.
MiRNAs were found to be involved in the regulation of immune cells [56,57], and since
immune cells play a crucial role in antitumor defense mechanisms, a process called immu-
noediting [58], many miRNA-affecting immune cells are also involved in immunoediting,
their involvement in which could be either pro- or antitumorigenic [7,59]. Under some
circumstances, miRNAs can even act as immune checkpoint inhibitor molecules [60]. For
this reason, all these characteristics make miRNAs an attractive study subject for research
on immunoediting in cancer, and one of the currently most studied miRNAs in this field
is miR-155.

5. MiR-155

MiR-155 is one of the most commonly studied miRNA molecules since its dysregula-
tion is involved in many pathological processes. Its expression levels were shown to control
pathways related to essential cellular processes, such as cell proliferation, apoptosis, differ-
entiation, stemness, growth, migration, and angiogenesis [61,62]. Such broad regulatory
potential in so many important cellular mechanisms makes miR-155 highly attractive for
research and clinical applications [63].

As for genome localization, miR-155 is incorporated within the non-coding B cell
integration cluster (BIC) gene, which, in humans, is located on chromosome 21. The
sequence coding miR-155 is also known as the MIR155 host gene (MIR155HG). The highest
expression profile of miR-155 was found in the thymus and spleen, and increased levels of
miR-155 were also found in CD34+ hematopoietic stem cells [64]. This finding led to the
hypothesis that miR-155 could inhibit the differentiation of these cells [65]. The same study
also suggested that a number of molecules participating in the hematopoietic differentiation
are targets of miR-155 as their 3′UTR of mRNA includes the binding side for this miRNA.
Similar miR-155 expression patterns were reported during erythropoiesis, where high
expression levels of miR-155 were associated with lower differentiation states of erythroid
cells, whereas their mature counterparts had these levels significantly decreased [66]. In
addition, miR-155 plays a role in lymphocyte development [67,68]. Generally, miR-155
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has been shown to play important roles in the regulation of myelopoiesis, lymphopoiesis,
and erythropoiesis [65,69], and its dysregulation can negatively impact the development of
cells derived from these lineages [70]. Recent studies also showed that miR-155 promotes
the proliferation of tumor cells and inhibits their apoptosis through PTEN/PI3K/AKT
targeting [62,71]. In addition, this mechanism was reported even upon cellular crosstalk
when miR-155 was transferred in exosomes [71].

The function of miR-155 can be explained by its target genes. MiR-155 expression is
regulated by several proteins that usually directly bind the promoter region of BIC. The
tumor suppressor protein BRCA1 was described to negatively regulate the expression of
miR-155 via inducing the deacetylation of histones on the miR-155 promoter [72]. Another
transcriptional regulator of miR-155 is SMAD family member gene 4 (SMAD4), which can
cause the repression of miR-155 expression as a result of TGF-β1 signaling [73]. NF-κB
and TP53 were also shown to regulate miR-155 expression by directly interacting with
the promoter [74,75]. Regulation of miR-155 levels does not necessarily always rely on
interaction with the BIC promoter. The reduction of miR-155 levels can also be elicited post-
transcriptionally by decreasing the stability of the miR-155 precursor and its maturation.
An example of the negative regulation of miR-155 on the post-transcriptional level could
be represented by the anti-inflammatory cytokine IL-10 [76,77].

MiR-155 is mostly considered an oncogenic miRNA in the field of oncology. In many
studies, its upregulation was found to correlate with tumor occurrence and often with poor
prognosis for many cancers [78,79]. Since miR-155 plays a role in the primary differentiation
of myeloid progenitors, it is no surprise that its oncogenic property was mostly revealed in
hematologic malignancies [80,81]. In addition, its oncogenic potential was also described
in solid tumors, such as breast cancer [79,82,83] or gliomas [84].

6. MiR-155 in Antitumor Immunity

MiR-155 significantly impacts immune cells by targeting important regulatory molecules
and transcriptional factors that regulate the immune system (Figure 2). Generally, the
miR-155 expression increases after immune cell activation [85,86].
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6.1. Danger Signals

MiR-155 levels increase in macrophages and dendritic cells after their response to
danger signals: pathogen-associated molecular pattern (PAMP) or damage-associated
molecular pattern (DAMP) molecules [86–89]. Several PAMP and DAMP molecules have
been described in connection with miR-155 upregulation, such as lipopolysaccharide (LPS),
polyinosinic–polycytidylic acid (poly I:C), and interferon beta (INF-β) [86,88,90]. This up-
regulation can be mediated by NF-κB signaling [91] or the loss of Notch signaling [92]. High
levels of miR-155 maintain the activated phenotypes of immune cells by inhibiting the ex-
pression of negative immune regulators, including inositol-polyphosphate-5-phosphatase-1
(SHIP-1) [93], and also contribute to the increased production of pro-inflammatory cy-
tokines, such as TNF-α and IL-1β [93].

6.2. Dendritic Cells

Dendritic cells (DCs) are professional antigen-presenting cells and linkers of innate
and adaptive immunity, which is accomplished via their unique ability to induce naïve
T cell activation [94]. Monocyte-derived DCs upregulate miR-155 during their maturation,
which is suggested to be part of a negative feedback loop, since miR-155 targets the toll-
like receptor and IL-1 inflammatory pathways [95]. Increased levels of miR-155 are also
associated with the enhanced ability of DCs to induce T cell proliferation [96]. DCs lacking
miR-155 display an antigen presentation deficiency, downregulated production of IL-12,
and decreased expression of the chemokine receptor CCR7. Hence, these DCs display
deficiencies in their maturation, migration, and ability to induce T cell activation [67,97–99].
MiR-155 targeting c-Fos was suggested to be the mechanism mediating DC maturation [100].
However, other miR-155 targets, such as the suppressor of cytokine signaling-1 (SOCS-1),
arginase 1, and Jarid2, can contribute to these mechanisms as well [67,97–99].

DCs can amplify their functions through mutual communication, which is mainly pro-
moted by exosomes. Functional microRNAs can be transferred in exosomes (nanovesicles)
and thus influence the phenotype of the acceptor DC. Therefore, mature DCs can even affect
the maturation phenotypes of other acceptor DCs [101]. Overall, the miR-155-induced mat-
uration of DCs is associated with their antitumor phenotype, as it leads to the production
of pro-inflammatory cytokines.

The most important regulatory role of miR-155 in DC functionality was further con-
firmed in other studies, both in vitro and in vivo. The in vitro studies showed that DCs
treated with miR-155-enriched exosomes produced more IL-12 and IFN-γ, the cytokines
that significantly contribute to the DCs’ antitumor activities [102]. These exosome-treated
DCs were found to be superior in inducing the differentiation, proliferation, and cyto-
toxicity of T cells [103]. Moreover, in vivo studies in a mouse model of colorectal cancer
showed that adoptively transferred miR-155-treated DCs promoted increased tumor in-
filtration with cytotoxic and helper lymphocytes, whereas infiltration with regulatory
lymphocytes was decreased [103]. These findings show that miR-155 in DCs appears to act
in an antitumorigenic manner.

6.3. Macrophages

Macrophages are thought to be the most common myeloid cells present in the tu-
mor microenvironment. Herein, the macrophages can display either a pro-tumorigenic
or antitumorigenic role. Pro-tumorigenic (M2) macrophages support the growth of the
primary tumor and the spread of metastases. The correlation between their abundance in
the tumor and prognosis has been described for many cancers [104–106]. Antitumorigenic
(M1) macrophages, on the other hand, can promote infiltration with cytotoxic lymphocytes
or the antitumor activities of the tumor-infiltrating DCs [107]. MiR-155 was found to di-
rectly target and downregulate the phosphatase SHIP-1. The overexpression of miR-155 in
macrophages was shown to repress SHIP-1 activity, leading to enhanced AKT signaling
in stimulated cells [108]. In addition, the overexpression of miR-155 in tumor-associated
macrophages (TAMs) led to macrophages’ re-polarization into pro-inflammatory (antitu-
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morigenic) M1 macrophages [109]. However, these data contrast with the role of SHIP-1 in
macrophage differentiation because SHIP-1-deficient mice were found to profoundly skew
macrophage differentiation into the M2 phenotype [110]. However, regardless of the role
of SHIP-1, genetic miR-155 overexpression was demonstrated to promote the generation of
M1-skewed TAMs [109].

Tumor-infiltrating macrophages are also frequent producers of exosomal miRNAs,
which significantly shape the cellular crosstalk in the tumor microenvironment [111]. This
mechanism is also used by tumors, as many tumor cells are also producers of miR-155,
therefore impacting the immune cells in the tumor milieu [112,113].

6.4. Myeloid-Derived Suppressor Cells

MiR-155 impacts the functions of myeloid-derived suppressor cells (MDSCs), a popula-
tion of immature myeloid cells with an immunosuppressive function [114]. The presence of
MDSCs in the tumor microenvironment is often associated with worse antitumor immune
responses and disease prognosis [115]. Loss of miR-155 in MDCSs was found to increase
their migration and immunosuppressive potential [116]. This potential can even override
the tumor growth inhibition mediated by the loss of miR-155 [117]. This override was
demonstrated by a finding that showed that although the inhibition of miR-155 in the
tumor cells suppressed their growth, the loss of miR-155 in the tumor microenvironment
promoted tumor growth [117]. In contrast, the study by Li et al. suggested that the loss of
miR-155 could be associated with worse MDSC proliferation by showing that the upregula-
tion of miR-155 was linked to enhanced MDCS expansion [118]. Chen et al. also revealed
that the loss of miR-155 was associated with the reduced infiltration of MDSCs into the
tumor microenvironment [119]. Mechanistically, miR-155 was suggested to contribute
to the MDSC suppressor activity in two ways: by inhibiting SOCS-1 and weakening the
capacity of MDSCs to induce regulatory T cells (Tregs) [119]. However, the role of miR-155
in MDSCs is ambiguous, since miR-155 produced by leukemia was found to induce MDSCs
and enhance their function [120].

6.5. Natural Killer Cells

Another important role in miR-155-mediated antitumor immunity is played by natural
killer (NK) cells. The number of NK cells is often associated with favorable clinical outcomes
of the disease [121,122]. NK cells are also regulated by miR-155. The miR-155 levels in NK
cells were found to be elevated after their stimulation and associated with the production
of IFN-γ, which was mechanistically promoted by the miR-155-mediated inhibition of
SHIP-1 [123]. The miR-155-mediated inhibition of SHIP-1 was also found to regulate NK
cell chemotaxis and migration. An miR-155 deficiency followed by SHIP-1 overexpression
resulted in impaired F-actin cytoskeleton polymerization, which then negatively impacted
tumor infiltration with NK cells [124]. In addition, increased levels of miR-155 were found
to be associated with enhanced cytotoxicity of NK cells towards tumors [125]. Taken
together, these findings indicate that miR-155 may be a positive regulator of NK cells in
antitumor immunity and suggest an ability to migrate into the tumor microenvironment.

6.6. T Cells and Immune Checkpoint Inhibitors

Very early, in 2002, Haasch et al. found that miR-155 expression was significantly
increased in CD4+ T cells after their activation [85]. Subsequent studies showed that this
miRNA plays a crucial role in the proliferation and differentiation of lymphocytes [126,127].
MiR-155 was also found to promote CD4+ T cell differentiation into the Th17 pheno-
type [67,128], and this differentiation was induced by STAT3 [129]. Vice versa, CD4+ T cell
differentiation into the Th2 phenotype is suppressed by the miR-155-mediated downregu-
lation of c-Maf, which is a Th2 response-promoting transcription factor and an inhibitor
of the Th1 response [130]. Therefore, miR-155 promotes the Th1 differentiation of CD4+ T
cells [131,132].
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MiR-155 also affects the function of Tregs. Tregs play an essential role in tumor
immune escape as they promote a pro-tumorigenic environment via cytokine production
and cell–cell communication [133,134]. MiR-155 is highly expressed in Tregs, and its
decrease leads to a reduction in their numbers [135]. The Treg-specific transcriptional
factor, FoxP3, also regulates BIC’s transcription [136–138]. It was further demonstrated that
miR-155 could enhance CD4+ T cell differentiation towards Tregs [139] and that reduced
miR-155 levels in Tregs can shorten their survival [136]. However, contrasting data were
obtained with an miR-155 inhibitor (antagomir), which was found to modulate the balance
between Tregs and Th17 via the Jarid2/Wnt/β-catenin pathway. The miR-155 inhibitor
enhanced Tregs in vitro whereas Th17 cells were decreased [140]. Although contrasting,
these findings point to the fact that miR-155 can significantly impact the functionality of
Tregs and thus shape their role in antitumor immunity.

CD8+ T cells are critical effector cells of antitumor activities in the immune system [141].
These cells were found to be much less efficient in tumor growth control in the absence of
miR-155 expression [142]. On the other hand, increased expression of miR-155 promoted
their antitumor activity. The mechanism behind this regulation of CD8+ T cell effector
function was based on the miR-155 targeting of SOCS-1 [142].

Immune checkpoint inhibitors such as cytotoxic T lymphocyte-associated antigen-4
(CTLA-4), programmed cell death protein 1 (PD-1), and its ligands PDL-1 and PDL-2
participate in the inhibition of T cell activation [143]. Inhibitors of these molecules enhance
antitumor immune responses and are widely used in the current cancer immunotherapy
approach, which is considered to be one of the most successful cancer immunotherapy
strategies of the past decade [144]. The expression of these inhibitors can also be regulated
by miR-155, as demonstrated in a study where the direct binding of miR-155 to the 3′UTR of
PDL-1 mRNA downregulated the expression of this critical regulator of T cell function [145].

7. MiR-155 in Cancer Immunotherapy

Linking the above-described characteristics of miR-155 together, it is undoubtable
that this molecule has potential clinical relevance in cancer therapy, especially in im-
munotherapy. There are many potential options for the usage of miR-155 in different
immunotherapeutic modalities.

One of the most promising approaches relates to active cellular immunotherapy based
on DCs. In these cells, miR-155 was shown to improve the efficacy of DC-based cancer
vaccines in a mouse model. In this study, miR-155 overexpression in DCs enhanced their
ability to increase CD8+ T cell antitumor responses [96]. In vivo, the proteasome inhibitor
Bortezomib, approved for multiple myeloma treatments, was also found, in addition to
other mechanisms, to induce the miR-155-mediated downregulation of SOCS-1 and SHIP-1.
Suppression of these immune system regulators in the final stages led to the suppression of
PD-1-mediated T cell exhaustion [146]. Another in vivo study showed that miR-155 derived
from breast cancer cells was recently described to enhance the recruitment of antitumor
immune cells, as the repression of SOCS-1 is associated with the upregulation of several
chemokines. Moreover, miR-155 was reported to change a “cold tumor” into a “hot one”
and thus sensitize the tumor for checkpoint blockage immunotherapy [147]. Bioinformatics
analysis also revealed that higher levels of miR-155 in tumors were correlated with an
enhanced antitumor immune profile and favorable outcomes. Moreover, the study also
revealed that high miR-155 levels in serum were a good prognostic marker for breast cancer.
The authors of this study suggested that increasing the levels of miR-155 in breast tumors
could improve the efficacy of cancer immunotherapy by increasing tumor infiltration
with immune cells [147]. Indeed, the potential of miR-155 as a predictive biomarker for
immunotherapeutic efficacy has already been reported [148]. The mechanisms involved
in this process are presumably based on the potential of miR-155 to modify the tumor
microenvironment, namely the immune cells within. An example of this modification was
demonstrated by the repolarization of the tumor-infiltrating macrophages (TAMs) [149].
This study showed that miR-155-overexpressor redox/pH dual-responsive hybrid polypep-
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tide nanovectors that targeted TAMs repolarized immunosuppressive macrophages into
M1 macrophages with antitumor properties. These properties were displayed via robust
tumor regression, which was also associated with increased T and NK cell activation in the
regressing tumors [149].

On the other hand, another study suggested that miR-155 should be therapeutically
downregulated because high levels of miR-155 were found to be associated with cancer
resistance to chemotherapy and radiotherapy [150]. Therefore, under these circumstances,
miR-155 inhibitors might seem to represent a novel therapeutic approach to sensitizing
tumors to chemotherapy or radiotherapy [150]. This avenue is tempting and might appear
promising, but, as demonstrated by other studies discussed above, the performance of
miR-155 in tumors can be ambivalent, and the flat downregulation of miR-155 can trigger
multiple mechanisms with different impacts on the disease state. Downregulation of miR-
155 could indeed sensitize tumors to chemotherapy or radiotherapy on the one hand, but,
on the other, this intervention could remodel the tumor’s immune microenvironment, and
the tumor could become resistant to the immune system and immunotherapy. The outcome
of this flat intervention could finally be the chemo/radiotherapy-induced disappearance of
large masses of the tumor while simultaneously rendering the remaining (surviving) tumor
mass more resistant to the immune system and immunotherapy, which could, in the end,
cause a disease relapse.

8. Future Perspectives

A large number of studies related to the field of cancer research have shown the onco-
genic nature of miR-155 [83,151]. Being upregulated in many cancers and promoting the
stemness of cancer cells, which is strongly associated with poor prognosis, and increasing
their resistance to chemotherapy and radiotherapy [150], the systematic downregulation of
miR-155 was initially a convenient therapeutic approach. However, being deeply immersed
in immune system regulation and participating in the antitumor response, mainly by af-
fecting many distinct immune cell populations, the harvesting of the regulatory powers
of miR-155 for cancer therapy needs to be reconsidered based on the implementation of
novel therapeutic algorithms. These algorithms should stem not only from the disease
severity, including the tumor staging and grading, but also from the tumoral/paratumoral
immune signatures inflicted by the disease or its treatment [152–156]. Guided by these
signatures, the design of the therapeutic algorithm could then even include both miR-155
downregulation and upregulation, each corresponding to the time of treatment and the
type of therapeutic modality. For instance, intratumoral miR-155 downregulation could be
initially indicated as a neoadjuvant therapy before chemotherapy to sensitize the tumor
to chemotherapy or radiotherapy [150]. Then, following chemotherapy or radiotherapy,
miR-155 upregulation in a specific immune cell population, such as tumor-infiltrating
macrophages [149], could become the basis of adjuvant immunotherapy.

However, these algorithms will presumably require the precise targeting of miR-155 in
specific cell types, namely the immune cell populations. This precision targeting could rely
on novel technologies, such as nanovectors or adoptive cellular immunotherapy, where
individual immune cell types could be produced ex vivo and modified accordingly. Such
differential miR-155 targeting could be a promising avenue to enhance antitumor immunity
and the efficacy of cancer therapy.

9. Conclusions

MiR-155 is involved in the regulation of immunoediting processes on many levels,
participates in changes in cancer cells and immune cells, and plays a role in their crosstalk,
and its expression levels can significantly shape the severity and therapeutic resistance
of the patient’s disease. These characteristics make miR-155 a potential target in cancer
diagnostics, prognostics, and treatment. This review showed the promising implications of
miR-155 targeting in cancer therapy. With an increasing understanding of miR-155′s func-
tions in both cancer and immune cells and its precision targeting using newly developing
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technologies, miR-155 could become an immune checkpoint molecule of interest. As such,
its targeting could be implemented in novel algorithms of cancer therapy in the near future.
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