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Simple Summary: This was a multicenter study on the development of a deep learning (DL) model sys-

tem to diagnose adnexal masses on ultrasound images. There were three innovation points. First, the DL 

system contained five models: a detector, a mass segmentor, a papillary segmentor, a type classifier, and 

a pathological subtype classifier. Therefore, the system could finish the entire diagnosis process for ad-

nexal masses on ultrasound images. Second, the DL system could discriminate borderline tumors from 

benign and malignant tumors with the assistance of annotations for papillary projections (which is a 

significant morphological feature of borderline tumors). Third, the benign tumors were classified into 

five pathological subtypes with different risks of clinical complication and accurate disease. 

Abstract: Appropriate clinical management of adnexal masses requires a detailed diagnosis. We 

retrospectively collected ultrasound images of 1559 cases from the first Center of Chinese PLA Gen-

eral Hospital and developed a fully automatic deep learning (DL) model system to diagnose ad-

nexal masses. The DL system contained five models: a detector, a mass segmentor, a papillary seg-

mentor, a type classifier, and a pathological subtype classifier. To test the DL system, 462 cases from 

another two hospitals were recruited. The DL system identified benign, borderline, and malignant 

tumors with macro-F1 scores that varied from 0.684 to 0.791, a benefit to preventing both delayed 

and overextensive treatment. The macro-F1 scores of the pathological subtype classifier to catego-

rize the benign masses varied from 0.714 to 0.831. The detailed classification can inform clinicians 

of the corresponding complications of each pathological subtype of benign tumors. The distinguish-

ment between borderline and malignant tumors and inflammation from other subtypes of benign 

tumors need further study. The accuracy and sensitivity of the DL system were comparable to that 

of the expert and intermediate sonographers and exceeded that of the junior sonographer. 

Keywords: deep learning; adnexal masses; borderline; pathological subtypes 

 

1. Introduction 

Adnexal masses are widespread in women. Most masses are benign and some may 

disappear spontaneously [1]. Conservative management is often advised [2]. However, 

some adnexal masses classified as borderline or malignant may pose a significant risk. 

Ovarian cancer is the most aggressive of gynecological malignancies; radical surgery and 

adjuvant chemotherapy are recommended according to stage [3,4]. Borderline tumors 
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present no destructive infiltrative growth and fertility-sparing surgery is appropriate 

[3,5]. According to the International Federation of Gynecology and Obstetrics (FIGO), 

there are varied pathological origins of adnexal masses [4]. Different pathological sub-

types of benign adnexal masses are associated with different complication risks [5,6]. En-

dometriomas affect fertility and may cause pelvic pain [7]. Dermoid cysts have the risk of 

adnexal torsion [8]. Sex cord-stromal tumors may present with hormonal change symp-

toms [9]. Patients with inflammation might require anti-inflammatory treatment to relieve 

symptoms such as abdominal pain. In order to monitor corresponding complications dur-

ing observation and perform intervention timely, accurate pathological subtype classifi-

cation is very important for appropriate management. 

Serum tumor markers can be used to detect the presence and risk of ovarian cancer, 

but they have limited utility in patients with early-stage disease and premenopausal women 

[10,11]. Due to the risk of disseminating malignant cells, preoperative biopsies are generally 

not performed [12]. Therefore, the primary diagnosis depends mainly on imaging tech-

niques. MRI provides the best means of evaluating ovarian masses but has low sensitivity 

for detection of masses [2]. In contrast, ultrasound is considered to be the first-line imaging 

modality to assess adnexal tumors [13]. To facilitate accurate diagnoses, many pattern-based 

approaches and logistical models based on image characteristics have been proposed for 

evaluating adnexal masses [3]. The pattern-based approaches include the simple ultra-

sound-based rules (SR), the gynecologic imaging reporting and data system (GI-RADS), and 

the three-step strategy [6,13–15]. In addition, extensive databases have been used to develop 

and validate logistical models such as the logistic regression (LR) model and the assessment 

of different neoplasias in the adnexa (ADNEX) model [16–19]. Of these various methods, 

subjective assessment (SA) by expert sonographers remains the most accurate ultrasound 

imaging diagnostic approach to distinguish between benign and malignant adnexal tumors, 

but there is a shortage of expert sonographers in clinical work [3]. Moreover, each of these 

approaches performs well in different clinical settings (AUC 0.92–0.94) but has limitations 

when assessing borderline tumors or pathologic subtypes of benign masses [20]. 

Deep learning (DL) is a state-of-the-art artificial intelligence (AI) technique for auto-

mated image analysis [21]. DL can detect subtle features beyond the ability of the human 

eye, thus enhancing the ability to diagnose and classify diseases from diagnostic images, 

as already demonstrated in the fields of diabetic retinopathy; echocardiography; fetal 

heart disease; and skin, thyroid, and gastric cancers [22–24]. There are also some reports 

on applying DL in the diagnosis of adnexal tumors [25–27]. However, other existing mod-

els in the literature only distinguished between benign and malignant tumors, and the 

discrimination of borderline tumors and classification of benign masses into detailed 

pathological subtypes has not yet been achieved using AI. 

Borderline tumors often affect women of reproductive age. An accurate diagnosis is 

key to selecting the most appropriate surgical approach while preserving fertility [28]. 

Benign tumors of different pathologies differ in their risk of complications. Thus, detailed 

classification is crucial in clinical practice [1]. To overcome current diagnostic limitations, 

we attempted to establish a DL model system that could provide a complete diagnostic 

interpretation of ultrasound images, including: detecting and locating adnexal masses; 

distinguishing between benign, borderline, and malignant tumors; and distinguishing the 

pathological subtypes including endometriomas, other epithelial tumors except endome-

triomas, germ cell tumors, sex cord-stromal tumors, and inflammation for benign tumors. 

We also compared the diagnostic performance of the DL model system with that of the 

expert sonographer SA (recognized as the best method to diagnose adnexal tumors) and 

intermediate and junior sonographers.  
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2. Materials and Methods 

2.1. Ethical Approval 

In this retrospective study, the use of previously obtained sonographic images was 

approved by the ethical committees of all participating centers (the first Center of Chinese 

PLA General Hospital, the 7th Center of Chinese PLA General Hospital, and Hengshui 

People’s Hospital) via wavier of patient informed consent. 

2.2. Participants and Datasets 

We retrospectively reviewed transvaginal and abdominal ultrasound images taken 

at the first Center of Chinese PLA General Hospital from 2015 to 2021. The data from 2015 

to 2018 were used to create a training dataset while the data from 2019 to 2021 were used 

as the internal validation dataset. Patients were retrospectively recruited in the 7th Center 

of Chinese PLA General Hospital from 2020 to 2022 for external test dataset 1, and patients 

in Hengshui People’s Hospital from 2021 to 2022 were used for external test dataset 2. 

Consecutive images from patients with at least one adnexal mass who underwent 

surgery (providing histological diagnoses for ground truth) and had normal ovaries or 

ovaries that had been resected previously were eligible for inclusion. Pregnant patients 

were excluded. Grayscale and color doppler ultrasound images were acquired with Min-

dray Resona8T, Mindray Resona7, GE VolusonE8, EPIQ7, SAMSUNG, WS80A, HITA-

CHI, and SIEMENS machines equipped with transvaginal and transabdominal probes. 

The study included only one adnexal mass per patient. If more than one mass was de-

tected, then the mass with the most complex morphology or, in the case of a similar mor-

phology, the largest diameter, was used [16,17]. 

The pathological results provided the definitive diagnosis. The final pathological di-

agnosis results were classified into three types: benign, borderline, and malignant tumors. 

Benign masses were further categorized into five pathological subtypes: endometriomas, 

other epithelial tumors except endometriomas, germ cell tumors, sex cord-stromal tu-

mors, and inflammation. 

2.3. Annotation and Framework 

A sonographer annotated the adnexal mass and papillary areas on the ultrasound 

images. The annotation was checked by two expert sonographers and was decided upon 

their confirmation. The morphological feature of “papillary projection” was defined as 

any solid projection into the cyst cavity from the cyst wall with a height ≥3 mm. The hyper-

reflective area in dermoid cysts and “sludge” or blood clots in endometriomas were not 

regarded as a papillary projection [29]. A cyst with papillary projections is the most sig-

nificant ultrasound characteristic for borderline tumors [30]. We thus included the addi-

tional annotation of papillary projections to discriminate borderline adnexal masses from 

benign and malignant tumors [26,31,32]. 

We designed a deep learning (DL) system containing five models to complete the 

diagnosis for adnexal masses: a detector, a mass segmentor, a papillary segmentor, a type 

classifier, and a pathological subtype classifier (Figure 1). First, the detector aimed to find 

the ovaries with adnexal masses while discarding normal ovaries or ovaries resected. The 

detector focused on two-dimensional grayscale images because color doppler flow images 

are not available in normal ovaries. Second, the mass segmentor located the area of the 

tumor. Third, for masses with papillary projections, the papillary segmentor located the 

area of papillary projections based on the mass area. Fourth, the type classifier predicted 

the type (benign, borderline, or malignant) of the adnexal masses based on the infor-

mation for the mass area, papillary area, and original images. Finally, if the type was be-

nign, the pathological subtype classifier inferred the detailed pathology of the adnexal 

masses. The borderline and malignant types were output directly as the final result. No 

human intervention was performed in the entire process. All DL models except the 
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detector were compatible with both two-dimensional grayscale images and color doppler 

flow images; the detector used only two-dimensional grayscale images. 

 

Figure 1. Flowchart of the framework of the DL model system. Images imported into the system are 

indicated in dotted boxes. Grey boxes show the five parts of the DL model system. Diagnosis results 

are shown in solid boxes. Images were input into the DL system, and those with adnexal masses 

were picked out by the detector. The area of masses was recognized by the mass segmentor and 

papillary projections were located by the papillary segmentor if they existed. The results of these 

two segmentors and the original images were taken into consideration to make the classification. 

The type classification would diagnose the adnexal masses into the three types: benign, borderline, 

and malignant. The borderline and malignant tumors were directly output as the final result. Benign 

tumors were further distinguished as endometriomas, other epithelial tumors except endometrio-

mas, germ cell tumors, sex cord-stromal tumors, and inflammation. 

2.4. Model Architecture 

The backbone structure of the detector was LKResnet-18, which is a combination of 

ResNet-18 [33] and LKNet [34]. Resnet-18 consists of eight residual blocks, each of which 

contains two convolutional layers and a residual link. Each convolution layer of ResNet-

18 has a convolution kernel size of 3 × 3 (excluding the first convolutional layer), and the 

small convolution kernel can only focus on the texture features of the image. In contrast, 

the larger convolution kernel can focus on the shape information of the image, while the 

human recognition of objects is based more on shape cues than texture cues [34]. We used 

the convolution kernel size of 15 × 15 instead of 3 × 3. At the same time, we use depthwise 

convolution to balance the kernel size and GPU memory. In addition, we replaced the 

ReLU activation function and batch normalization with the more efficient and robust 

GeLU and layer normalization. 

We adopted LKResnet-18 for two reasons: first, a small convolutional kernel might 

lead to extracting texture-based features rather than structure-based features while large 

convolutional kernels, such as 15 × 15 and 31 × 31 kernels, can achieve better performance 

[32]; second, for ultrasound images, the texture of the image can provide limited infor-

mation, and the structure and contour information is of much importance. Therefore, the 

large kernel convolutional network (LKNet) was a very suitable solution. 

The convolutional layers could extract 512 latent features from each image; then a 

fully-connected classifier identified the probability of having a tumor in the image based 

on the pattern of latent features. In the training stage, we adopted the following data 
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augmentations to improve the robustness of the model: random shift, random scale, and 

random rotation. The model parameters were updated in 20,000 iterations with a batch 

size of eight. The loss function adopted cross-entropy, which is defined as: 

L�� = −
1

�
���(�)log��(x(�)|θ)��,

�

�

 (1)

where N is the number of samples,  is the parameter of the detector model, y(i) represents the 

tumor label of sample I, and p(x(i) | ) is the probability of the tumor prediction x(i) of sample i. 

The purpose of the mass segmentor was to segment the specific location of the tumor 

in the image. The segmentor model structure was U-net [35] and the backbone was LKRes-

net-18. As shown in the Table S1, we compared the performances of different segmenta-

tion models. It turned out that U-net with LKResnet-18 outperformed the other segmen-

tation models. U-net contains a decoder and an encoder; the former extracted high-level 

semantic features of the image and reduced the resolution while the latter fused high-level 

semantic features with low-level texture features and restored the resolution. In the train-

ing stage, we adopted the following data augmentations: random shift, random scale, ran-

dom rotate, horizontal flip, and vertical flip. The model parameters were updated in 

20,000 iterations with a batch size of four. The loss function adopted cross-entropy loss 

and boundary loss [36]. Boundary loss used boundary matching to supervise the segmen-

tor. The settings for the mass segmentor were also used for the papillary segmentor. 

The model structure of the type classifier and pathological subtype classifier was 

LKResnet-18, as shown in Figure 2. The input to the classifier was the combination of the 

outputs of the mass segmentor and papillary segmentor. We adopted the following data 

augmentations for training: random shift, random scale, random rotation, Gaussian blur, 

random brightness, random contrast, horizontal flip, and vertical flip. The model param-

eters were updated in 10,000 iterations with a batch size of four. The loss function adopted 

cross-entropy loss as given in Equation (1). 

Each case contained multiple two-dimensional sonographic images and color dop-

pler flow images. The type and pathological subtype classifiers scored each image, which 

provided multiple predictions for each case. As shown in Figure 2, the model used major-

ity voting, a rule-based case-wise strategy, to generate the case-wise prediction. 

The five models used the AdamW [37,38] optimizer with a learning rate of 3 × 10−5 

and weight L2 regularization of 3 × 10−4. All experiments were performed on two NVIDIA 

GeForce RTX 3090 graphics processing units. 

 

Figure 2. The framework of the type and pathological subtype classifiers. “LKB (c,s)” refers to a 

basic large kernel block containing two depthwise–pointwise convolutions with output channels of 
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c and strides of s. For each image, including color doppler flow images and two-dimensional sonographic 

images, the mass segmentor was used to locate the tumor region. Then the image was cropped to just the 

tumor region. The papillary segmentor was used to locate the papillary region in the tumor area. The 

papillary region and tumor region were concatenated as the input into the classifier. 

2.5. Evaluation and Comparison with Sonographers 

The diagnostic performance of the DL system containing five models was evaluated 

using the internal validation dataset, external test dataset 1, and external test dataset 2. 

Three reviewers assessed all images in the external test set 1 and external set 2 inde-

pendently. All reviewers were certificated sonographers. Reviewer A was an expert gy-

necological sonographer with 37 years of clinical experience. Reviewer B was an interme-

diate sonographer with 16 years of experience. Reviewer C had 2 years of clinical experi-

ence as a junior sonographer. All reviewers were blinded to the clinical information, orig-

inal ultrasound reports, and pathological results. The diagnostic performance of the so-

nographers was evaluated and compared with the DL model system in external test sets. 

2.6. Statistical Analysis 

Continuous measures are presented as mean. Categorical measures are presented as 

proportion with 95% CIs and were compared using the chi-squared test. The frequency of 

the morphological characteristic of papillary projection for different adnexal mass types 

was compared using pairwise differences. 

We evaluated the diagnostic efficiency of the DL system based on the discrimination 

and calibration performance. For the detector, accuracy in identifying adnexal masses was 

measured. The dice score was computed to estimate the performance of the mass and pa-

pillary segmentors. We constructed the confusion matrix for the type classifier and the 

pathological subtype classifier. The accuracy, sensitivity, specificity, positive predictive 

value, negative predictive value, and macro-F1 scores were calculated for both classifiers 

[39]. The calibration plot and the Brier score were used to estimate the calibration of the 

type classifier and the pathological subtype classifier. 

The accuracy, sensitivity, specificity, positive predictive value, negative predictive 

value, and macro-F1 scores of the sonographers were also computed for comparison with 

the DL system. Statistical analysis was done using Python; p < 0.05 was considered to in-

dicate a statistically significant difference. 

3. Results 

3.1. Data and Patients 

A total of 1099 cases (4497 images) were included in the training dataset and 460 cases 

(1217 images) in the internal validation set. External test set 1 contained 490 images of 198 

cases; external test set 2 had 761 images of 264 cases. The baseline characteristics of each 

dataset are shown in Table 1.  
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Table 1. Baseline characteristics of datasets in the study. 

Patients 
Type Classifica-

tion 

Patho-

logical 

Sub-

type 

Classi-

fication 

Training Dataset 
Internal Vali-

dation Dataset 

External Test 

Dataset 1 

External Test 

Dataset 2 

Mean age   43.43 (11, 81) 44.50 (11, 81) 48.87 (15, 77) 43.26 (19, 50) 

Healthy cases * 

(images) 
  508 (1100) 255 (564) 96 (178) 105 (233) 

Cases (images) 

with adnexal 

masses † 

  591 (3397) 205 (653) 102 (312) 159 (528) 

 Benign  374 (1117) 134 (377) 51 (151) 126 (401) 

  END † 117 (332) 39 (102) 13 (35) 18 (51) 

  OET 103 (342) 45 (127) 16 (49) 48 (157) 

  GCT 102 (272) 31 (82) 14 (50) 49 (156) 

  SCST 33 (107) 9 (32) 5 (11) 5 (18) 

  INF 19 (64) 10 (34) 3 (6) 6 (19) 

 Borderline  50 (917) 15 (57) 8 (27) 8 (30) 

 Malignant  167 (1363) 56 (219) 43 (134) 25 (97) 

Total   1099(4497) 460(1217) 198(490) 264(761) 

The age is given as the mean value (min, max); the number of cases (number of images) is given 

for each category. * Healthy cases: cases with normal ovaries and ovaries resected previously. † 

END: endometrioma; OET: other epithelial tumors except endometrioma; GCT: germ cell tumors; 

SCST: sex cord-stromal tumors; INF: inflammation. 

3.2. Papillary Projections 

Papillary projections are more frequent in borderline than in benign and malignant 

tumors. Benign and malignant tumors do not differ in papillary projection frequency. 

In the training dataset, the frequency of papillary projection was 5.61% (21/374) in 

benign adnexal masses, 54.00% (27/50) in borderline tumors, and 8.98% (15/167) in malig-

nant tumors. Borderline tumors had a higher rate of papillary projections than benign 

tumors (p < 0.001) and malignant tumors (p < 0.001). There was no statistical difference in 

the presence of papillary projections between benign and malignant tumors (p = 0.147). 

In the internal validation dataset, papillary projections presented in 5.22% (7/134) of 

benign tumors, 66.67% (10/15) of borderline tumors, and 12.50% (7/56) of malignant tu-

mors. The frequency was higher in borderline tumors than in benign (p < 0.001) and ma-

lignant tumors (p < 0.001). There was no statistical difference between benign and malig-

nant tumors (p = 0.080). 

In external test dataset 1, 5.88% (3/51) of benign tumors and 50% (4/8) of borderline 

tumors showed the morphological characteristic of papillary projection, while no malig-

nant tumors presented with that ultrasound feature. There was a higher rate of papillary 

projections in borderline tumors than benign (p < 0.001) or malignant tumors (p < 0.001). 

No statistical difference was detected between benign and malignant tumors (p = 0.106). 

In external test dataset 2, the rate of papillary projections was 3.17% (4/126) in benign 

tumors, 75.00% (6/8) in borderline tumors, and 12.00% (3/25) malignant tumors. More bor-

derline tumors had papillary projections than benign (p < 0.001) and malignant tumors (p < 

0.001). There was no statistical difference between benign and malignant tumors (p = 0.055). 

3.3. Diagnostic Performance for the DL Model System 

The performance of each of the five models in the DL system was considered in turn. 

The detector was implemented in the training test to distinguish sonographic images with 

adnexal masses from those without lesions. The detector performed very well, achieving 

an accuracy of 0.965 (95% CI: 0.933–0.975) on the internal validation dataset. For external 



Cancers 2022, 14, 5291 8 of 16 
 

 

test dataset 1, the accuracy was 0.943 (0.922–0.951); for external dataset 2, the accuracy was 

0.931 (0.919–0.952). 

The mass segmentor was created to ascertain the location of the adnexal masses. It 

performed well, achieving a dice score of 0.945 in the internal validation dataset. It re-

mained stable in the multicenter test datasets. The dice score for the mass segmentor was 

0.923 for external test dataset 1 and 0.912 for external test dataset 2. 

The papillary projection segmentor located the projections accurately. The dice score 

was 0.864 for the internal validation dataset, 0.852 for external test dataset 1, and 0.855 for 

external test dataset 2. Figure 3 shows the results of four cases of the mass segmentor and 

the papillary segmentor. 

 

Figure 3. Case one shows a borderline tumor with papillary projections; case two shows a benign 

tumor without papillary projections; case three shows a malignant tumor with a papillary projec-

tion; case four shows a malignant tumor without papillary projections. The top three rows show the 

process of the mass segmentor; the three rows below show the process of the papillary segmentor. 

Yellow line: the result of the mass segmentor or the papillary segmentor; red area: ground truth. 

The type classifier was used to classify adnexal masses as benign, borderline, and ma-

lignant. According to the confusion matrixes of the type classifier in Figure 4, most predicted 

results of the adnexal masses were in accordance with the ground truth. For the internal 

validation dataset, the macro-F1 score was 0.791. For external test dataset 1, the classifier 

had a macro-F1 score of 0.749. For external test dataset 2, the macro-F1 score was 0.684. 

The pathological subtype classifier could discriminate among the five pathological 

subtypes of benign adnexal tumors. The results were visualized in the confusion matrix 
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shown in Figure 4. The macro-F1 score in the internal validation dataset to distinguish 

among endometriomas, other epithelial tumors except endometriomas, germ cell tumors, 

sex cord-stromal tumors, and inflammation was 0.831. For external dataset 1, the macro-

F1 score was 0.826. For external dataset 2, the macro-F1 score of the pathological subtype 

classifier was 0.714. 

 

Figure 4. Confusion matrixes of the type classifier for (a) the internal validation dataset, (b) external 

test dataset 1, and (c) external test dataset 2. Confusion matrixes of the pathological subtype classi-

fier for (d) the internal validation dataset, (e) external test dataset 1, and (f) external test dataset 2. 

The lateral axis represents the predictive result of the type classifier or the pathological subtype 

classifier; the vertical axis represents the ground truth (pathological diagnosis) of the adnexal 

masses. END: endometriosis; OET: other epithelial tumors except endometriosis; GCT: germ cell 

tumors; SCST: sex cord-stromal tumors; INF: inflammation. 

Comprehensive diagnostic performance parameters of the type classifier and the 

pathological subtype classifier are presented in Tables 2 and 3. The calibration plots fur-

ther indicated that the type classifier and the pathological subtype classifier fit the data 

very well (Figure 5). The Brier score of the type classifier was 0.090 for the internal valida-

tion dataset, 0.102 for external test dataset 1, and 0.082 for external test dataset 2. The Brier 

score for the pathological subtype classifier was 0.056 for the internal validation dataset, 

0.064 for external test dataset 1, and 0.058 for external test dataset 2. Figure 6 shows the 

final classification of the type classifier and the pathological subtype classifier. 
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Table 2. Diagnostic performance parameters for the type classifier. 

Variable 
Internal Validation Dataset External Test Dataset 1 External Test Dataset 2 

Benign Borderline Malignant Benign Borderline Malignant Benign Borderline Malignant 

Accuracy 

0.888 

(0.875–

0.902) 

0.946 

(0.940–0.957) 

0.883 

(0.875–0.897) 

0.863 

(0.846–

0.879) 

0.941 

(0.934–0.956) 

0.843 

(0.824–0.868) 

0.849 

(0.832–

0.867) 

0.937 

(0.930–0.951) 

0.836 

(0.825–0.853) 

Sensitivity 

0.896 

(0.882–

0.913) 

0.733 

(0.667–0.786) 

0.804 

(0.780–0.837) 

0.824 

(0.795–

0.864) 

0.375 

(0.286–0.500) 

0.907 

(0.892–0.944) 

0.825 

(0.809–

0.847) 

0.625 

(0.571–0.714) 

0.800 

(0.762–0.857) 

Specificity 

0.873 

(0.855–

0.902) 

0.963 

(0.959–0.971) 

0.913 

(0.902–0.926) 

0.902 

(0.886–

0.933) 

0.989 

(0.988–1.000) 

0.797 

(0.769–0.830) 

0.939 

(0.926–

0.967) 

0.954 

(0.948–0.964) 

0.843 

(0.828–0.860) 

Positive pre-

dictive value 

0.930 

(0.921–

0.947) 

0.611 

(0.563–0.688) 

0.776 

(0.750–0.811) 

0.894 

(0.875–

0.927) 

0.750 

(0.667–1.000) 

0.765 

(0.733–0.800) 

0.981 

(0.978–

0.990) 

0.417 

(0.364–0.500) 

0.488 

(0.444–0.528) 

Negative pre-

dictive value 

0.816 

(0.794–

0.843) 

0.979 

(0.976–0.983) 

0.925 

(0.916–0.939) 

0.836 

(0.813–

0.872) 

0.949 

(0.943–0.966) 

0.922 

(0.909–0.953) 

0.584 

(0.551–

0.625) 

0.980 

(0.977–0.985) 

0.958 

(0.952–0.972) 

Table 3. Diagnostic performance parameters for the pathological subtype classifier. 

Variable 
Internal Validation Dataset External Test Dataset 1 External Test Dataset 2 

END OET GCT SCST INF END OET GCT SCST INF END OET GCT SCST INF 

Accuracy  

0.940 

(0.933–

0.950) 

0.903 

(0.892–

0.917) 

0.918 

(0.908–

0.933) 

0.985 

(0.983–

0.992) 

0.955 

(0.950–

0.967) 

0.922 

(0.911–

0.956) 

0.863 

(0.844–

0.889) 

0.922 

(0.911–

0.956) 

0.961 

(0.956–

0.978) 

0.980 

(0.978–

1.000) 

0.913 

(0.903–

0.929) 

0.897 

(0.885–

0.912) 

0.937 

(0.929–

0.947) 

0.960 

(0.956–

0.973) 

0.960 

(0.956–

0.973) 

Sensitivity  

0.897 

(0.879–

0.939) 

0.956 

(0.947–

0.976) 

0.806 

(0.778–

0.852) 

0.778 

(0.714–

0.875) 

0.400 

(0.333–

0.500) 

0.769 

(0.700–

0.833) 

0.875 

(0.846–

0.933) 

0.857 

(0.818–

0.923) 

0.800 

(0.667–

1.000) 

0.667 

(0.500–

1.000) 

0.611 

(0.538–

0.688) 

0.979 

(0.976–

1.000) 

0.878 

(0.857–

0.907) 

0.600 

(0.500–

0.750) 

0.167 

(0.000–

0.250) 

Specificity  

0.958 

(0.952–

0.976) 

0.876 

(0.859–

0.899) 

0.951 

(0.944–

0.967) 

1.000 

(1.000–

1.000) 

1.000 

(1.000–

1.000) 

0.974 

(0.969–

1.000) 

0.857 

(0.833–

0.900) 

0.946 

(0.935–

0.970) 

0.978 

(0.975–

1.000) 

1.000 

(1.000–

1.000) 

0.962 

(0.958–

0.979) 

0.846 

(0.826–

0.871) 

0.974 

(0.970–

0.986) 

0.975 

(0.972–

0.982) 

1.000 

(1.000–

1.000) 

Positive pre-

dictive value 

0.897 

(0.879–

0.938) 

0.796 

(0.771–

0.833) 

0.833 

(0.808–

0.885) 

1.000 

(1.000–

1.000) 

1.000 

(1.000–

1.000) 

0.909 

(0.875–

1.000) 

0.737 

(0.688–

0.813) 

0.857 

(0.818–

0.923) 

0.800 

(0.667–

1.000) 

1.000 

(1.000–

1.000) 

0.733 

(0.667–

0.800) 

0.797 

(0.769–

0.830) 

0.956 

(0.947–

0.976) 

0.500 

(0.400–

0.600) 

1.000 

(1.000–

1.000) 

Negative 

predictive 

value 

0.958 

(0.952–

0.976) 

0.975 

(0.971–

0.986) 

0.942 

(0.934–

0.957) 

0.984 

(0.982–

0.991) 

0.954 

(0.948–

0.966) 

0.925 

(0.912–

0.946) 

0.938 

(0.926–

0.966) 

0.946 

(0.935–

0.970) 

0.978 

(0.975–

1.000) 

0.980 

(0.977–

1.000) 

0.937 

(0.929–

0.950) 

0.985 

(0.982–

1.000) 

0.926 

(0.915–

0945) 

0.983 

(0.981–

0.991) 

0.960 

(0.955–

0.973) 

END: endometriosis; OET: other epithelial tumors except endometriosis; GCT: germ cell tumors; 

SCST: sex cord-stromal tumors; INF: inflammation.  
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(d) -(e) (f) 

Figure 5. Calibration plots of the type classifier for (a) the internal validation dataset, (b) external 

test dataset 1, and (c) external test dataset 2. Calibration plots of the pathological subtype classifier 

for (d) the internal validation dataset, (e) external test dataset 1, and (f) external test dataset 2. 

 

Figure 6. Example ultrasound images of different types of adnexal masses and different pathological 

subtypes of benign tumors. 

3.4. Comparison with Sonographers 

The diagnostic performance parameters of three reviewers with different experience 

were evaluated using the external test datasets (Table 4).  
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Table 4. Diagnostic performance of sonographers using external test datasets. 

Variables 

Benign Borderline Malignant 

External Test Dataset 

1 

External Test Dataset 

2 

External Test Dataset 

1 

External Test Dataset 

2 

External Test Dataset 

1 

External Test Dataset 

2 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Re-

viewer 

A 

Re-

viewer 

B 

Re-

viewer 

C 

Accuracy 0.814 0.843 0.578 0.855 0.818 0.780 0.892 0.912 0.902 0.943 0.893 0.918 0.882 0.873 0.559 0.899 0.824 0.811 

Sensitivity 0.824 0.784 0.451 0.921 0.825 0.802 0.500 0.375 0.000 0.250 0.125 0.000 0.814 0.930 0.698 0.680 0.680 0.760 

Specificity 0.804 0.902 0.706 0.606 0.788 0.697 0.926 0.957 0.978 0.980 0.934 0.967 0.932 0.831 0.458 0.940 0.851 0.821 

Positive predic-

tive value 
0.808 0.889 0.605 0.899 0.937 0.910 0.364 0.429 0.000 0.400 0.091 0.000 0.897 0.800 0.484 0.680 0.459 0.442 

Negative pre-

dictive value 
0.820 0.807 0.563 0.667 0.542 0.479 0.956 0.947 0.920 0.961 0.953 0.948 0.873 0.942 0.675 0.940 0.934 0.948 

For discrimination of benign tumors, the DL system had a higher accuracy (0.863 vs. 

0.578, p < 0.001), sensitivity (0.824 vs. 0.451, p < 0.001), and specificity (0.902 vs. 0.706, p = 

0.013) than the junior reviewer for external test dataset 1. For external test dataset 2, the 

specificity of the DL system for benign tumors was higher than that of the expert (0.939 

vs. 0.606, p = 0.001) and the junior sonographer (0.939 vs. 0.697, p = 0.011) but the sensitivity 

was lower than that of the expert sonographer (0.825 vs. 0.921, p = 0.023). 

For classification of borderline tumors, the DL system achieved a higher sensitivity 

(0.625 vs. 0.000, p = 0.026) than that of the junior reviewer in external test dataset 2. 

For classifying malignant tumors, the accuracy, sensitivity, and specificity of the DL 

system also exceeded that of the junior reviewer (accuracy: 0.843 vs. 0.559, p < 0.001; sen-

sitivity: 0.907 vs. 0.698, p = 0.015; specificity: 0.797 vs. 0.458, p < 0.001) in external test da-

taset 1. The specificity of the DL system was lower than that of the expert sonographer 

(0.797 vs. 0.932, p = 0.031) when discriminating malignant tumors in external dataset 1. 

The specificity of the DL system was lower than that of the expert reviewer when classi-

fying malignant tumors in external test dataset 2 (0.843 vs. 0.940, p = 0.011). 

In the external test datasets, the diagnostic performance of the DL system was com-

parable to that of the intermediate sonographer. 

4. Discussion 

We established a DL system that comprised five models (a detector, a mass segmen-

tor, a papillary segmentor, a type classifier, and a pathological subtype classifier) to auto-

matically diagnose adnexal masses in sonographic images. The DL model system could 

identify the existence of the tumor and recognize the area of the mass and papillary pro-

jection precisely. Masses were correctly classified into benign, borderline, and malignant 

tumors; benign tumors were further categorized into one of five pathological subtypes. 

Our DL system had the ability to complete multiple tasks. This allowed the DL model 

system to automatically implement the complete diagnostic process for adnexal masses 

and provide abundant information for clinical therapy [31]. 

The DL system showed good discrimination in the internal validation dataset and 

the external test datasets 1 and 2 with macro-F1 scores of 0.791, 0.749, and 0.684, respec-

tively. According to the confusion matrixes, the DL system was able to distinguish benign 

and malignant adnexal tumors precisely. The discrimination between benign and malig-

nant tumors could also be achieved through deep learning in other studies [22]. However, 

previous DL models for adnexal masses never discriminated borderline tumors from be-

nign and malignant mimics. The ability to discriminate borderline tumors is essential in 

choosing the appropriate treatment for patients with adnexal masses. Fertility-sparing 

surgery is the gold standard therapeutic modality for women with borderline tumors who 

wish to maintain their fertility without impacting overall survival [28,40]. If borderline 

tumors are misdiagnosed as benign tumors, clinical treatment may be delayed [30]. The 

commonly used radical surgery for patients with malignant tumors may be excessive 

given that borderline tumors have a better overall 5-year survival than malignant tumors 
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[4,28]. Therefore, we tried to discern borderline tumors from benign and malignant tumors 

by annotating morphological features of the masses, which could direct the DL models to 

extract more valuable imaging information for medical diagnosis. The papillary projection 

was a morphological characteristic that appeared more frequently in borderline tumors than 

in benign or malignant tumors (p < 0.001). In addition, papillary projections could be seg-

mented successfully in our study. Accurate information on papillary projections might al-

low the DL system to improve its ability to distinguish borderline tumors. In this study, we 

correctly classified 11 of 15 borderline tumors in the internal validation dataset. However, 

the type classifier was not reliable in the external test datasets. According to the confusion 

matrixes, there were only three of eight and five of eight borderline tumors diagnosed cor-

rectly in the two respective external datasets. Moreover, most of the borderline tumors that 

were misdiagnosed were predicted as malignant tumors. In previous studies in which bor-

derline adnexal tumors were difficult to discriminate, it was recognized that borderline tu-

mors should be classified as malignant tumors to improve the survival rates. In this condi-

tion, the poor performance in classifying borderline tumors may be acceptable. We re-

viewed all the borderline tumors that were misdiagnosed in the external datasets. All nine 

cases diagnosed as malignant tumors presented as multilocular cysts with or without a solid 

component. Therefore, further study regarding adnexal masses with multiple septations 

may improve the distinguishment between borderline and malignant tumors. 

Observation is preferred for patients with benign adnexal tumors to minimize the 

potential risks and complications of surgery [2]. During observation, 20.2–39% of benign 

tumors spontaneously resolve and the risk of malignancy is lower than 0.5% [1,41,42]. 

However, the risk of potential complications such as cyst rupture and torsion and the 

presence of clinical symptoms remain the primary reasons for surgery [1]. Different sub-

types of benign adnexal masses have various complications, and doctors should pay at-

tention to the corresponding complications of each subtype of benign tumors. Thus, it is 

significant in clinical work to distinguish among different pathological subtypes of benign 

tumors. Morphological features of benign tumors were previously used only for exclud-

ing malignant tumors, but they can also help with classification into detailed pathological 

subtypes. The subtype classifier of the DL system was able to discern most subtypes of 

benign tumors with macro F1-scores of 0.831 in the internal validation dataset, 0.826 in 

external test dataset 1, and 0.714 in external test dataset 2. The pathological subtype clas-

sifier performed well when distinguishing endometriomas, other epithelial tumors except 

endometriomas, germ cell tumors, and sex cord-stromal tumors: the diagnostic parame-

ters were satisfactory, as shown in Table 3. An accurate diagnosis may assist with the 

decision on whether an operation is necessary. When endometriomas are diagnosed, in-

tervention is advised for those with unrelieved pelvic pain and desire for fertility, and 

follow-up is required to survey for recurrence [7]. Dermoid cysts (benign germ cell tu-

mors) are the most frequent adnexal mass to twist. This accurate discrimination can pre-

vent potential ovarian torsion via a timely operation, especially for those tumors with 

larger diameter. In contrast, torsion does not often occur in endometriomas or malignant 

tumors [8]. The precise diagnosis of sex cord-stromal tumors may allow clinical signs of 

hormonal production such as virilization, precocious puberty, and menstrual changes to 

be explained and settled [9]. When inflammation is diagnosed, the proper anti-inflamma-

tory drug therapy can effectively relieve symptoms, preventing unnecessary surgery. 

However, the ultrasound manifestations of inflammation present variously at different 

stages of the disease. In addition, the low rate of inflammation among benign tumors also 

increases the difficulty in discriminating inflammation reliably. The sensitivity was only 

0.400 in the internal validation dataset and 0.167 in the external dataset 2. In real clinical 

work, experienced sonographers would take the patients’ clinical symptoms into consid-

eration to assist in the diagnosis of inflammation. 

The DL system had an excellent diagnostic performance, exceeding the accuracy and 

sensitivity of the junior sonographer and matching that of the intermediate and expert 

sonographers. The sensitivity of the DL system to benign and malignant tumors was 
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higher than that of the junior sonographer in external test dataset 1 and the sensitivity to 

borderline tumors was higher for the DL system in external test dataset 2. Using the DL 

system would thus be practical in clinical work and improve the ability of a sonographer 

lacking experience. Moreover, the stability of the DL system was proved by testing it using 

external datasets from different centers. 

Chen et.al established DL algorithms to distinguish malignant from benign adnexal 

tumors with a diagnostic performance comparable to expert subjective assessment, simi-

lar to our study [26]. However, Chen’s study did not involve the distinguishment of bor-

derline tumors or a comparison with expert assessments. 

Our DL system had some limitations. First, we hoped to separate primary adnexal 

cancer from secondary metastasis cancer, but our DL model was unsuccessful at achieving 

this. The insufficient number of cases of secondary metastasis cancer was likely the key 

reason for this. In addition, more morphological features had to be found to distinguish 

primary from metastatic adnexal cancer. Second, the performance of the DL system in 

discerning borderline tumors and inflammation were not satisfactory enough. More val-

uable ultrasound characteristics for borderline tumors and a larger sample may improve 

this condition. Third, this was a retrospective study, so prospective external validation 

needs to be implemented in the future. 

5. Conclusions 

In this multicenter study, we implemented a DL model system to perform the complete 

diagnostic process for adnexal masses. The masses were detected and segmented automat-

ically and classified into benign, borderline, and malignant types. The benign tumors were 

then further classified into different pathological subtypes. This DL system matched the 

abilities of expert and intermediate sonographers and outperformed the junior sonographer. 

Supplementary Materials: The following supporting information can be downloaded at: 

https://www.mdpi.com/article/10.3390/cancers14215291/s1, Table S1: The comparison of dices 

among different segmentation models. 
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