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Simple Summary: Accurate preoperative cervical lymphnodemetastasis (CLNM)prediction in pap‑
illary thyroid cancer (PTC) patients is essential for clinical treatment effectiveness, particularly for
surgeons assessing the degree of surgical resection and the requirement for cervical lymph node dis‑
section. As a result, a definite diagnosis of CLNM before surgery can assist the surgeon in selecting
the best surgical technique and reducing the likelihood of reoperation. This research used several
machine learning models based on clinical risk factors in conjunction with radiomics features to pre‑
operatively evaluate CLNM in PTCpatients, which can assist clinicians to choose a suitable treatment
strategy for patients.

Abstract: We aim to develop a clinical‑ultrasound radiomic (USR) model based on USR features
and clinical factors for the evaluation of cervical lymph node metastasis (CLNM) in patients with
papillary thyroid carcinoma (PTC). This retrospective study used routine clinical and US data from
205 PTC patients. According to the pathology results, the enrolled patients were divided into a non‑
CLNMgroup and aCLNMgroup. All patientswere randomly divided into a training cohort (n = 143)
and a validation cohort (n = 62). A total of 1046 USR features of lesion areas were extracted. The fea‑
tureswere reduced using Pearson’s Correlation Coefficient (PCC) and Recursive Feature Elimination
(RFE) with stratified 15‑fold cross‑validation. Several machine learning classifiers were employed to
build a Clinical model based on clinical variables, a USR model based solely on extracted USR fea‑
tures, and a Clinical‑USR model based on the combination of clinical variables and USR features.
The Clinical‑USR model could discriminate between PTC patients with CLNM and PTC patients
without CLNM in the training (AUC, 0.78) and validation cohorts (AUC, 0.71). When compared to
the Clinical model, the USR model had higher AUCs in the validation (0.74 vs. 0.63) cohorts. The
Clinical‑USR model demonstrated higher AUC values in the validation cohort (0.71 vs. 0.63) com‑
pared to the Clinical model. The newly developed Clinical‑USR model is feasible for predicting
CLNM in patients with PTC.

Keywords: ultrasound radiomics; papillary thyroid carcinoma; cervical lymph node metastasis;
thyroid neoplasms; machine learning
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1. Introduction
Thyroid cancer is the most common endocrine neoplasm and the twelfth most com‑

mon type of cancer [1]. Papillary thyroid carcinoma (PTC) is the most common subtype,
accounting for approximately 80% of confirmed cases [2–6] and at least 85% of all well‑
differentiated follicular thyroid cancers. Studies have revealed that lymph node metas‑
tasis is linked to disease recurrence and that it occurs in between 30% and 80% of PTC
patients [7–9]. Cervical lymph node metastasis (CLNM) must be identified preoperatively
and postoperatively in patients with thyroid cancer since its detection is crucial for lim‑
iting tumor recurrence and survival [10–13]. Ultrasound (US) is a safe and non‑invasive
imaging tool that can be used to count thyroid nodules as a first step [14]. A real‑time
dynamic exploration of the internal structure of the lesion and neighboring sections of the
US has its own distinct advantages when compared to other examination methods. At the
same time, high‑frequency US is becoming a preferred method for detecting and diagnos‑
ing PTC patients’ CLNM, as previous research has shown that preoperative US can aid in
the diagnosis of PTC CLNM; however, some diagnostic limitations in US evaluation are
unavoidable [15,16].

The accuracy of US diagnosis is heavily dependent on different operators’ experience
and subjective judgment, different interpretations of the same image, and different ma‑
chine parameters. Moreover, it is worth noting that the human body contains approxi‑
mately 800 lymph nodes, 300 of which are located in the head and neck. Because the lym‑
phatic vessels and lymph nodes in the head and neck are so abundant, when PTC metas‑
tasizes along the lymphatic vessels to the cervical lymph nodes, there are often multiple
metastases. It is difficult to detect all metastatic lymph nodes through imaging [15]. Fur‑
thermore, patients with suspicious lymph nodesmust undergo fine‑needle biopsy and pre‑
ventive lymph node dissection to find lymph node metastasis. However, both processes
are invasive and unnecessary for most patients without lymph node metastasis, and sur‑
gical complications such as hypoparathyroidism and recurrent laryngeal nerve injury will
severely impact patients’ quality of life [17]. As a result, it is critical to develop a more
objective and accurate method for predicting CLNM in PTC patients prior to surgery in
clinical practice. US radiomics (USR) is a new tool that can extract hundreds of quantita‑
tive features from medical images and combine them into a radiomic signature, an image‑
based biomarker that can be used to diagnose diseases [18,19]. Machine learning based
on radiomics is quickly gaining ground in the medical field [20]. It aims to detect patterns
in imaging data and provide decision support by linking these patterns to treatment out‑
comes, allowing for greater precision in diagnosis and prognosis [21,22].

Clinical risk factors and the USR combined machine learning model, which incorpo‑
rates clinical and radiomic features, can help provide complementary information for im‑
age features and collaborate to improve model performance by combining clinical and
US image features. As a result, the combination of clinical risk factors and USR may be
able to extract more valuable information from PTC US images, providing better predic‑
tion. The purpose of this research is to evaluate the diagnostic performance of a Clinical‑
USR machine learning model on conventional PTC US images in predicting CLNM in
PTC patients.

2. Materials and Methods
The local ethics committee at Jiangsu University’s Affiliated People’s Hospital ap‑

proved the retrospective study, and informed consent was waived. In total, 205 patients
from our hospital were selected retrospectively between January 2015 and April 2020. The
enrollment process is depicted in Figure 1.

All patients had routine 2‑dimensional US. The training cohort (n = 143) and valida‑
tion cohort (n = 62)were divided in a 7:3 ratio. The included caseswere divided into CLNM
and CLNM‑free groups based on pathological results. The inclusion criteria were (1) nod‑
ules that had clear surgery‑ and puncture biopsy pathology‑confirmed PTC; (2) routine US,
with complete images, clear quality; and (3) did not receive chemoradiotherapy or other
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cancer treatment prior to surgery. Exclusion criteria were (1) pathology results that could
not be identified as PTC nodules; (2) unclear imageswith incomplete nodules; (3) pregnant
and lactating women; and (4) patients with a severe allergic history or severe cardiopul‑
monary disease.
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Figure 1. Schematic diagram of the patient selection. PTC, papillary thyroid carcinoma.

2.1. Ultrasound Examination
All patients had a routine US examination prior to surgery, which was performed by

well‑trained technicians using a Philips Q5, Philips iU22 (both Healthcare, Eindhoven, The
Netherlands) or a GE LOGIQ s8, LOGIQ E20, LOGIQ E9 (GE Medical Systems, American
General, Boston, MA, USA) US system with a 5–12 MHz linear array transducer. The pa‑
tient was positioned supine with the pillow removed in order to lower and slightly recline
the head. This exposed as much of the neck as possible in order to perform a US exami‑
nation of the thyroid and cervical area using longitudinal, horizontal continuous scanning
and carefully scanning the lymph nodes in all areas of the neck.

This allowed for the measurement of thyroid tumor size or mass (maximum long axis
of the nodule), tumor location (left lobe, right lobe, or isthmus), tumor position (upper,
middle, or lower pole), aspect ratio (≤1 or >1), internal echo pattern (uniform or nonuni‑
form), tumor border (clear, less clear), shape (regular or irregular), US ETEdiagnosis (with‑
out ETE or with ETE), tumor peripheral blood flow (without or abundant), and tumor in‑
ternal vascularization (without or abundant).

2.2. Region of Interests (ROIs) Segmentation
ROIs were manually drawn on US images by one radiologist with 15 years of ex‑

perience in thyroid disease diagnosis using the software ITK‑SNAP (version 3.8.0, http:
//www.itksnap.org. Accessed 10 August 2021) to indicate focal areas within the thyroid
gland. The ROI was applied to the tumor’s solid component, avoiding necrotic, hemor‑
rhagic, and cystic areas. Thirty patients were chosen at random to assess the consistency
of the ROI placements, and a second physician with 8 years of experience in thyroid US
diagnosis independently placed ROIs on the relevant structures.

2.3. Radiomic Features Extraction
In total, 1046 USR features were extracted from these ROIs on US images using PyRa‑

diomics (Version 2.2.0, https://github.com/Radiomics/pyradiomics. Accessed 10 August
2021). These features included first‑order features, shape features, grey‑level run length
matrix (GLRLM) features, grey‑level size zone matrix (GLSZM) features, grey‑level de‑
pendencematrix (GLDM) features, neighborhoodgrey‑tone dependencymatrix (NGTDM)
features, grey‑level co‑occurrence matrix (GLCM) features, and features derived from
wavelet filter images containing first‑orderGLCM,GLRLM,GLSZM,GLDM, andNGTDM
features.

http://www.itksnap.org
http://www.itksnap.org
https://github.com/Radiomics/pyradiomics
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2.4. Feature Selection and Construction of USR Model
To reduce bias and over‑fitting in the study, the extracted features were normalized

using a standard scalar. Because of the high dimensionality of the feature space, the num‑
ber of features must be reduced to avoid the interference of a large number of redundant
features in the data analysis, which has an impact on model construction and raises com‑
putational costs. The dataset was partitioned into training and validation cohorts.

We used Pearson’s Correlation Coefficient (PCC) to reduce the row spatial dimension
of the feature matrix so that each characteristic is relatively independent of the training
data. Any two features with a PCC greater than 0.85 were considered redundant. Finally,
in the training cohort, representative features were chosen using Recursive Feature Elimi‑
nation (RFE)with 15‑fold cross‑validation. The Support VectorMachinewith the linear ker‑
nel (SVM‑L) [23], Support VectorMachinewith radial basis function kernel (SVM‑RBF) [23],
LogisticRegressionCV (LRCV) [23], and Linear Discriminant Analysis (LDA) [23] classi‑
fiers were used to build the prediction models using the RFE’s key features. In the valida‑
tion procedure, the same feature sets were selected, and they were fed into the model.

The model’s performance on the training and validation datasets was assessed using
standard clinical statistics such as the area under the curve (AUC), sensitivity, specificity,
negative predictive value (NPV), positive predictive value (PPV), and accuracy. The set
of models that performed the best on the validation dataset was identified and evaluated
by comparing diagnostic performance, and the best classifier was chosen. Figure 2 depicts
the radiomic and machine learning workflow.
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Figure 2. Schematic diagram of the radiomic workflow in building the machine learning models.

2.5. Construction of Clinical Model
In this study, basic clinical characteristics were analyzed, and then statistically signif‑

icant characteristics with p < 0.05 were chosen to construct a Clinical Model, using SVM‑L,
SVM‑RBF, LRCV, and LDA classifiers. The AUC and other relevant statistics were calcu‑
lated to evaluate the diagnostic efficiency.

2.6. Development of the Clinical‑USR Model
Statistically significant clinical factors were combined with extracted USR features

to form a new feature set. A Clinical‑USR model incorporating USR features and clinical
characteristics was built using SVM‑L, SVM‑RBF, LRCV, and LDA classifiers, and the diag‑
nostic efficacy of the combined predictionmodel was evaluated. The precision‑recall curve
shows the trade‑off between precision and recall for different thresholds. High precision
relates to a low false positive rate, and high recall relates to a low false negative rate.
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High scores for both show that the classifier returns accurate results (high precision),
as well as returning the majority of all positive results (high recall). Average precision
(AP) summarizes such a plot as the weighted mean of precisions achieved at each thresh‑
old, with the increase in recall from the previous threshold used as the weight [23]. The
precision–recall analysis of the model was assessed using the precision–recall curve. We
also investigated the rate of false positives and false negatives, using the confusion matrix.

2.7. Statistical Analysis
Statistical analyses were carried out using Python (version 3.7 https://www.python.

org/. Accessed 8 July 2021) and IBM SPSS Statistics for Windows version 26.0. (Armonk,
NY, USA). To compare differences in categorical characteristics, Pearson’s chi‑square or
Fisher’s exact test were used. For continuous factorswith normal distribution, the indepen‑
dent sample t‑test was used, whereas, for continuous factors without normal distribution,
the Mann–Whitney U test was used. A two‑sided p < 0.05 indicated statistically significant
differences.

PyRadiomics (version 2.2.0, https://github.com/Radiomics/pyradiomics. Accessed 10
August 2021) and scikit‑learn version 1.2 [23] were used to extract USR features and build
the prediction models. The AUC, sensitivity, specificity, accuracy, NPV, and PPV of each
prediction model were calculated. The scikit‑learn version 1.2 [23] was used to draw the
precision–recall curve.

3. Results
3.1. Clinical Characteristics

A total of 205 patients with PTCwere enrolled from ages 18–78 years, with an average
age of 47.22 ± 11.30 years, and a male‑to‑female ratio of 1:3.56. CLNM was excluded in
107 patients and confirmed in 98. Using stratified sampling, all patients were randomly
assigned to a training group (n = 143) and a validation group (n = 62). Table 1 displays the
clinical data for the training and validation groups. Table 2 displays the clinical data for
the CLNM and non‑CLNM groups. Age, US CLNM diagnosis, mass, capsular invasion,
shape, US ETE diagnosis, internal echo, aspect ratio, and tumor internal vascularization
(all p < 0.05) did differ significantly between the two groups.

Table 1. Patient characteristics of the training and validation cohorts.

Characteristic Training Cohort (n = 143) Validation Cohort (n = 62) p

Age, mean ± SD, years 47.29 ± 11.31 47.06 ± 11.36 0.981
Sex, n
Female 114 46
Male 29 16 0.242

Ultrasound Characteristic
Tumor size (mass) 9.22 ± 6.85 9.61 ± 6.70 0.662
Tumor location

Left lobe 60 18
Right lobe 48 29
Isthmus 35 15 0.142

Tumor position
Upper pole 73 25
Middle pole 5 2
Inferior pole 65 35 0.346

Internal echo pattern
0.312Uniform 29 10

Nonuniform 114 52
Tumor border

0.015 *Clear 48 11
unclear 95 51

https://www.python.org/
https://www.python.org/
https://github.com/Radiomics/pyradiomics
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Table 1. Cont.

Characteristic Training Cohort (n = 143) Validation Cohort (n = 62) p

Tumor internal
vascularization

Without 75 38 0.155
Abundant 68 24

Tumor Peripheral blood
flow

Without 80 31
0.263Abundant 63 31

Ultrasound ETE
diagnosis

0.495Without ETE 133 57
With ETE 10 5

Aspect ratio
0.434≤1 91 38

>1 52 24
Shape

0.380Regular 106 44
Irregular 37 18

Ultrasound CLNM
diagnosis

0.367Without CLNM 80 37
With CLNM 63 25

Postoperative diagnosis
capsular invasion

0.432Negative 75 31
Positive 68 31

ETE, extrathyroidal extension; CLNM, cervical lymph node metastasis; SD, standard deviation. *: statistically
significant.

Table 2. Patient characteristics of the PTC with CLNM and PTC without CLNM groups.

Characteristic CLNM (−)
(n = 107)

CLNM (+)
(n = 98) p

Age, mean ± SD, years 48.97 ± 10.81 45.31 ± 11.56 0.035 *
Sex, n
Female 80 80
Male 27 18 0.154

Ultrasound Characteristic
Tumor size (mass) 7.30 ± 5.01 11.57 ± 7.74 0.00 *
Tumor location

Left lobe 44 34
Right lobe 40 37
Isthmus 23 27 0.515

Tumor position
Upper pole 53 45
Middle pole 4 3
Inferior pole 50 50 0.818

Internal echo pattern
0.033 *Uniform 26 13

Nonuniform 81 85
Tumor border

0.463Clear 30 29
unclear 77 69

Tumor internal vascularization 0.001 *
Without 71 42
Abundant 36 56
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Table 2. Cont.

Characteristic CLNM (−)
(n = 107)

CLNM (+)
(n = 98) p

Tumor Peripheral blood flow 0.236
Without 61 50
Abundant 46 48

Ultrasound ETE diagnosis
0.009 *Without ETE 104 86

With ETE 3 12
Aspect ratio

0.000 *≤1 55 74
>1 52 24

Shape
0.025 *Regular 85 65

Irregular 22 33
Ultrasound CLNM diagnosis

0.035 *Without CLNM 68 49
With CLNM 39 49

Postoperative diagnosis
Capsular Invasion

0.022 *Negative 63 43
Positive 44 55

ETE, extrathyroidal extension; CLNM, cervical lymph node metastasis; SD, standard deviation. *: statistically
significant.

3.2. Clinical Model Construction
Aclinicalmodelwas built using nine variables thatwere statistically significant. RFECV

was also used to select the best variables, and the final four key variables that were chosen
were age, mass, shape, and internal echo (Figures 3A–C and 4A–C).
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Figure 3. Selected features after RFE. (A) In the Clinical model, features were reduced to four fea-
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Figure 3. Selected features after RFE. (A) In the Clinical model, features were reduced to four fea‑
tures in the training cohort. (B) In the USR model, features were reduced to nine features in the
training cohort. (C) In the Clinical‑USR model, features were reduced to five features in the train‑
ing cohort.
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The SVM‑L classifier had the highest AUC (0.63) in the validation cohort compared
with the other classifiers, so it was selected as the Clinical model (Table 3 and Figure 5).

Table 3. Predictive performance of the machine learning models for the training and validation
cohorts.

Training Cohort Validation Cohort

ACC AUC SEN SPEC PPV NPV ACC AUC SEN SPEC PPV NPV

Clinical model
LDA 0.71 0.77 0.58 0.82 0.75 0.68 0.56 0.60 0.55 0.58 0.53 0.59
LRCV 0.71 0.77 0.61 0.81 0.75 0.69 0.55 0.59 0.55 0.55 0.52 0.58
SVM‑L 0.72 0.77 0.61 0.82 0.76 0.69 0.61 0.63 0.59 0.64 0.59 0.64

SVM‑RBF 0.73 0.79 0.78 0.69 0.70 0.77 0.56 0.60 0.69 0.45 0.52 0.63
USR model

LDA 0.76 0.83 0.75 0.77 0.75 0.77 0.66 0.74 0.52 0.79 0.68 0.65
LRCV 0.79 0.85 0.78 0.80 0.78 0.80 0.61 0.72 0.49 0.76 0.62 0.61
SVM‑L 0.73 0.85 0.77 0.70 0.71 0.76 0.66 0.72 0.52 0.79 0.68 0.65

SVM‑RBF 0.77 0.86 0.77 0.77 0.76 0.78 0.63 0.70 0.78 0.76 0.64 0.63
Clinical‑USR model

LDA 0.71 0.79 0.65 0.76 0.71 0.70 0.61 0.68 0.55 0.66 0.60 0.63
LRCV 0.70 0.78 0.61 0.78 0.72 0.68 0.68 0.71 0.62 0.73 0.67 0.69
SVM‑L 0.71 0.80 0.65 0.76 0.71 0.70 0.65 0.69 0.59 0.70 0.63 0.66

SVM‑RBF 0.73 0.80 0.64 0.82 0.77 0.71 0.63 0.69 0.55 0.70 0.62 0.63
AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPEC, specificity; NPV, negative predictive value;
PPV, positive predictive value; USR, ultrasound radiomic; SVM‑L, support vector machine with linear kernel;
SVM‑RBF, support vector machine with radial basis function kernel; LDA, linear discriminant analysis; LRCV,
logistic Regression CV.
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Based on US findings evaluated by an experienced sonographer, the US‑reported sta‑
tus of CLNM by an experienced sonographer in directly detecting suspicious malignant
cervical lymph node had an AUC of 0.568 (Figure 6), a sensitivity of 0.500, specificity of
0.636, NPV of 0.581, and PPV of 0.557.
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3.3. Construction of USR Model
A total of 1046USR featureswere extracted fromeach 2‑DUS image. Any two features

with a PCC > 0.85 were considered redundant. Nine features were selected in the training
cohort using RFE and stratified 15‑fold cross‑validation (Figures 3B and 4B).
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The features chosen were exponential_firstorder_Kurtosis, gradient_glszm_Large
AreaEmphasis, lbp_2D_glrlm_RunLengthNonUniformity, lbp_2 D_glszm_SmallArea
Emphasis, logarithm_glrlm_LongRunLowGrayLevelEmphasis, logarithm_glszm_Zone
Entropy, square_glszm_SizeZoneNonUniformityNormalized, wavelet_LH_firstorder_
Skewness, and wavelet_HL_glcm_ClusterShade. In the validation cohort, the LDA clas‑
sifier had the highest AUC (0.74) value compared with the other classifiers. The LDA was
chosen for the USRmodel. Figure 7 shows the ROC curves of the USRmodel using various
classifiers. Table 3 displays detailed information about the classifiers’ prediction perfor‑
mance. LDA decision function is given as follows:

Decision value = 0.919× exponential_firstorder_Kurtosis− 1.327× gradient_glszm_
LargeAreaEmphasis − 0.886 × lbp_2D_glrlm_RunLengthNonUniformity + 0.736 × lbp_
2D_glszm_SmallAreaEmphasis + 0.596 × logarithm_glrlm_LongRunLowGrayLevel
Emphasis + 1.273 × logarithm_glszm_ZoneEntropy − 0.512 × square_glszm_SizeZone
NonUniformityNormalized + 0.856×wavelet_LH_firstorder_Skewness− 0.520×wavelet
_HL_glcm_ClusterShade.

Cancers 2022, 14, 5266 13 of 19 
 

 

3.3. Construction of USR Model 

A total of 1046 USR features were extracted from each 2-D US image. Any two fea-

tures with a PCC > 0.85 were considered redundant. Nine features were selected in the 

training cohort using RFE and stratified 15-fold cross-validation (Figures 3B and 4B). 

The features chosen were exponential_firstorder_Kurtosis, gradi-

ent_glszm_LargeAreaEmphasis, lbp_2D_glrlm_RunLengthNonUniformity, lbp_2 

D_glszm_SmallAreaEmphasis, logarithm_glrlm_LongRunLowGrayLevelEmphasis, log-

arithm_glszm_ZoneEntropy, square_glszm_SizeZoneNonUniformityNormalized, wave-

let_LH_firstorder_Skewness, and wavelet_HL_glcm_ClusterShade. In the validation co-

hort, the LDA classifier had the highest AUC (0.74) value compared with the other classi-

fiers. The LDA was chosen for the USR model. Figure 7 shows the ROC curves of the USR 

model using various classifiers. Table 3 displays detailed information about the classifiers’ 

prediction performance. LDA decision function is given as follows: 

Decision value = 0.919 × exponential_firstorder_Kurtosis − 1.327 × gradi-

ent_glszm_LargeAreaEmphasis − 0.886 × lbp_2D_glrlm_RunLengthNonUniformity + 

0.736 × lbp_2D_glszm_SmallAreaEmphasis + 0.596 × logarithm_glrlm_LongRunLow-

GrayLevelEmphasis + 1.273 × logarithm_glszm_ZoneEntropy − 0.512 × 

square_glszm_SizeZoneNonUniformityNormalized + 0.856 × wave-

let_LH_firstorder_Skewness − 0.520 × wavelet_HL_glcm_ClusterShade. 

 

Figure 7. ROC curve of the classifiers used in building the USR model. ROC, receiver operating 

characteristic. (A) Support vector classifier with radial basis function kernel. (B) Support vector clas-

sifier with linear kernel. (C) Logistic regression classifier. (D) Linear discriminant analysis. 

3.4. Construction of Clinical- USR Model 

We created a new feature set by combining the extracted USR features and nine clin-

ical parameters. 

Figure 7. ROC curve of the classifiers used in building the USR model. ROC, receiver operating
characteristic. (A) Support vector classifier with radial basis function kernel. (B) Support vector
classifier with linear kernel. (C) Logistic regression classifier. (D) Linear discriminant analysis.

3.4. Construction of Clinical‑USR Model
Wecreated a new feature set by combining the extractedUSR features andnine clinical

parameters.
Through PCC and RFE (Figure 4C), five key features, namely original_glszm_Zone

Entropy, original_ngtdm_Busyness, exponential_glszm_LargeAreaEmphasis, wavelet‑LH
_glszm_LargeAreaLowGrayLevelEmphasis, and mass (Figure 3C, Table 4) were selected
to construct the Clinical‑USR model.
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Table 4. Selected features and their coefficients during the recursive feature elimination procedure.

Feature Name Coefficient

original glszm ZoneEntropy GLSZM 0.642
original ngtdm Busyness NGTM 0.766

exponential glszm
LargeAreaEmphasis GLSZM −0.652

waveletLH glszm
LargeAreaLowGrayLevelEmphasis GLSZM −0.782

Tumor mass N/A 1.132
N/A: Not applicable.

In the validation cohort, the LRCV classifier had the highest AUC (0.71) and ACC
(0.68) values compared with the other three classifiers. The LRCV was chosen for the
Clinical‑ USR model. Figure 8 shows the ROC curves of the Clinical‑ USR model using
various classifiers.

Cancers 2022, 14, 5266 14 of 19 
 

 

Through PCC and RFE (Figure 4C), five key features, namely origi-

nal_glszm_ZoneEntropy, original_ngtdm_Busyness, exponential_glszm_LargeAreaEm-

phasis, wavelet-LH_glszm_LargeAreaLowGrayLevelEmphasis, and mass (Figure 3C, Ta-

ble 4) were selected to construct the Clinical-USR model. 

Table 4. Selected features and their coefficients during the recursive feature elimination proce-

dure. 

 Feature Name Coefficient 

original glszm ZoneEntropy GLSZM 0.642 

original ngtdm Busyness NGTM 0.766 

exponential glszm LargeAreaEmphasis GLSZM −0.652 

waveletLH glszm LargeAreaLowGrayLevelEm-

phasis 
GLSZM −0.782 

Tumor mass N/A 1.132 

N/A: Not applicable. 

In the validation cohort, the LRCV classifier had the highest AUC (0.71) and ACC 

(0.68) values compared with the other three classifiers. The LRCV was chosen for the Clin-

ical- USR model. Figure 8 shows the ROC curves of the Clinical- USR model using various 

classifiers. 

Detailed information about the prediction performance of the classifiers is shown in 

Table 3. 

LRCV decision function of the Clinical-USR model is given as follows: 

Decision value = 0.642 × original_glszm_ZoneEntropy + 0.766 × original_ngtdm_Bus-

yness − 0.652 × exponential_glszm_LargeAreaEmphasis − 0.782 × wave-

letLH_glszm_LargeAreaLowGrayLevelEmphasis + 1.132 × mass. 

On the training cohort containing 143 patients, the classifier correctly classified 42 (true 

positive) out of 69 without CLNM, and correctly classified 58 (true negative) out of 74 

patients having CLNM (Figure 9A,B). 

 

Figure 8. ROC curve of the classifiers used in building the Clinical-USR model. ROC, receiver oper-

ating characteristic. (A) Support vector classifier with radial basis function kernel. (B) Support vec-

tor classifier with linear kernel. (C) Logistic regression classifier. (D) Linear discriminant analysis. 
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ing characteristic. (A) Support vector classifier with radial basis function kernel. (B) Support vector
classifier with linear kernel. (C) Logistic regression classifier. (D) Linear discriminant analysis.

Detailed information about the prediction performance of the classifiers is shown in
Table 3.

LRCV decision function of the Clinical‑USR model is given as follows:
Decision value = 0.642 × original_glszm_ZoneEntropy + 0.766 × original_ngtdm_

Busyness− 0.652× exponential_glszm_LargeAreaEmphasis− 0.782×waveletLH_glszm_
LargeAreaLowGrayLevelEmphasis + 1.132 ×mass.

On the training cohort containing 143 patients, the classifier correctly classified 42
(true positive) out of 69 without CLNM, and correctly classified 58 (true negative) out of
74 patients having CLNM (Figure 9A,B).
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Figure 9. Confusion matrix. The 2 × 2 contingency table reports the number of true positives, false
positives, false negatives, and true negatives: Training cohort (A) and validation cohort (B).

In the validation cohort containing 62 patients, the Clinical‑USR model correctly clas‑
sified 18 (true positive) out of 29 patients with no CLNM, and correctly classified 24 (true
negative) out of 33 patients having CLNM (Figure 9B). The precision–recall curve of the
Clinical‑USR model is shown in Figure 10.
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Figure 10. Precision–recall curve of the Clinical‑USR model.

Further multivariate analysis of the features used in building the Clinical‑USR model
indicated that original glszm ZoneEntropy, original ngtdm Busyness, WavletLH glszm
LargeAreaLow GrayLevelEmphasis, and mass are independent predictors of CLNM in
PTC (Table 5).

Table 5. Results of multivariate regression analysis of selected features in diagnosis of CLNM in PTC
patients.

Feature Name B SE Wald df p Exp (B)

Original glszm ZoneEntropy 0.696 0.237 8.627 1 0.003 2.006
Original ngtdm Busyness 1.248 0.546 5.215 1 0.022 3.482

exponential glszm
LargeAreaEmphasis −2.294 2.013 1.298 1 0.254 0.101

WaveletLH glszm
LargeAreaLow

GrayLevelEmphasis
−896 0.459 3.812 1 0.051 0.408

tumour size(mass) 1.264 0.300 17.726 1 0.000 3.541

4. Discussion
Early diagnosis of tumors with lymph nodemetastatic potential is crucial for prevent‑

ing the fast progression of PTC. It also serves as a key marker for monitoring PTC pro‑
gression and a predictor of a poor prognosis. Surgery is presently the first‑line therapy for
PTC patients who have received a clinical diagnosis. Individuals with a suspected risk of
CLNMmust have cervical preventative lymph node dissection; nevertheless, it is question‑
able what PTC patients can gain from prophylactic lymph node dissection. According to
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studies, early detection of lymph node metastases results in fewer recurrences and a better
prognosis in PTC patients, who have a higher chance of surviving cancer [10,12]. People
with PTCwhohaveCLNMhave higher rates of death and recurrence than patientswithout
CLNM [24,25]. Furthermore, surgery might potentially impair postoperative parathyroid
function and increase the chance of laryngeal recurrent nerve damage. It is alsomore stren‑
uous on the surgeon and demands a greater degree of skill [26,27]. Therefore, a definitive
diagnosis of CLNM before surgery can help the surgeon choose the optimal surgical strat‑
egy and reduce the chance of reoperation.

For clinical treatment to be effective, accurate preoperative CLNM prediction in PTC
patients is crucial, especially for the surgeons to assess the extent of surgical resection and
the need for cervical lymph node dissection [28,29]. In many patients, CLNM may not
reveal any aberrant findings in preoperative US examination [30] due to USʹs unreliabil‑
ity in visualizing deep anatomic structures or structures that are acoustically shadowed
by air and bone [31]. Additionally, because US examination is an empirical diagnostic
that is greatly impacted by the operatorʹs experience, it is subject to interobserver variabil‑
ity when determining CLNM [32]. We employed the Clinical‑USR approach to identify
CLNM before surgery in our study. The developed Clinical‑USR model is a simple‑to‑use
diagnostic and prognostic tool that could help patients without CLNM avoid unnecessary
surgery. The AUC values revealed that the Clinical‑USR model could discriminate be‑
tween PTC patients with CLNM and PTC patients without CLNM in the training (AUC:
0.78) and validation (AUC: 0.71) cohorts. When compared to the Clinical model, the USR
model had higher AUCs in both the training (0.83 vs. 0.77) and validation (0.74 vs. 0.63) co‑
horts. In both the training (AUC: 0.78 vs. 0.77) and validation (AUC: 0.71 vs. 0.63) cohorts,
the Clinical‑USR model showed higher AUC values than the Clinical model.

Original glszmZoneEntropy, original ngtdmBusyness, exponential glszmLargeArea
Emphasis, andwavelet LH glszm LargeAreaLowGrayLevelEmphasis are the selected USR
features that were used in constructing the Clinical‑USR model. In an image, GLSZM
measures gray level zones. The number of related voxelswith the same gray‑level intensity
is defined as a gray‑level zone. If the distance between two voxels is 1 according to the
infinity norm, they are considered linked (26 connected regions in 3D, 8 connected regions
in 2D) [33]. The surrounding gray‑tone difference matrix is used to calculate the difference
between a gray value and its close neighbors’ average gray values [34]. The distribution of
zone widths and gray levels is measured for uncertainty/randomness using original glszm
ZoneEntropy. More heterogeneity in the texture patterns is indicated by a higher value.
Exponential glszm LargeAreaEmphasis is a measurement of how big area size zones are
distributed, with a higher value indicating larger size zones and coarser textures.

Wavelet‑LH glszm LargeAreaLowGrayLevelEmphasis glszm measures the fraction
of the image’s combined distribution of bigger size zones with lower gray‑level values.
Original ngtdm Busyness is a measure of the difference between a pixel and its neighbor.
A high busyness rating suggests a ‘busy’ image, with fast changes in intensity between
pixels and their surroundings.

This suggests that the newly constructed Clinical‑USRmodel contains additional data
that are significantly associated with PTC with CLNM but not a standard risk factor. PTC
density and increased nonuniformity, for example, are features that are difficult to mea‑
sure with the naked eye. However, in PTC, these characteristics are linked to tissue het‑
erogeneity. For CLNM evaluation, the Clinical‑USRmodel considers PTC heterogeneity, a
measurable trait associated with the degree of malignancy in PTC. As a result, the quanti‑
tative Clinical‑USR approach not only overcomes the subjectivity of standard US imaging
diagnosis, but also makes use of a great deal of data that the naked eye cannot see.

According to postoperative pathology results, the US‑reported status of CLNM by an
experienced sonographer in directly detecting suspicious malignant cervical lymph node
had an AUC of 0.568, a sensitivity of 0.500, specificity of 0.636, NPV of 0.581, and PPV
of 0.557. There are approximately 200 lymph nodes distributed in the neck. Because the
lymphatic vessels and lymph nodes in the neck are so numerous, when PTC metastasizes
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to the cervical lymph nodes, multiple metastases are common, and it is difficult to detect
all metastatic lymph nodes with US. In this study, the clinical‑USR model outperformed
an experienced sonographer’s US‑reported CLNM status.

Li et al. [35] developed a deep learning‑based computer‑aidedmodel for the diagnosis
of CLNM in patients with PTC, and then tested the model’s accuracy with a validation set.
In the validation cohort, the AUC of their model for the diagnosis of CLNM was higher
than that of the current study (0.79 vs. 0.71). The reason for this could be the deep learning
approach they used in their research. In our research, we used machine learning. Most of
the applicable features in traditional machine learning approaches must be identified by
a domain expert in order to minimize data complexity and make patterns more obvious
for learning algorithms to work. Deep learning algorithms have the biggest benefit in that
they aim to learn high‑level features from data incrementally. This reduces the need for
domain expertise and the extraction of hardcore features.

In their study, Tian et al. [36] developed a CLNM prediction model based on clinical
risk variables. The AUC of their model for the diagnosis of CLNM in the validation cohort
was slightly lower than that of the current study (0.70 vs. 71). Zou et al. [37] used machine
learningmodels based onUS data to determine the probability of CLNM. TheAUCof their
model for the diagnosis of CLNM was slightly higher in the validation cohort compared
with the current study (0.73 vs. 0.71). The slightly higher AUCs in the preceding stud‑
ies could be attributed to the larger number of patients included in their studies. Large
datasets improve predictive model performance in machine learning. Many studies, in‑
cluding the abovementioned studies, have focused on predicting CLNM based on either
US clinical risk factors or USR features, but not their combination. We developed a joint
predictive model incorporating clinical risk factors and USR features, using four different
machine learning algorithms in our study. In this study, we also built three different mod‑
els: The Clinical model, the USR model, and the Clinical‑USR model, and we employed
and compared the performances of several machine learning classifiers in the construction
of eachmodel, and the best‑performing classifier was chosen to represent the models. One
statistic for evaluating the excellence of a model’s output is precision–recall. While recall
assesses the number of really relevant results returned, precision evaluates the relevance
of the results. In the stairstep portion of Figure 6, recall and precision are inversely cor‑
related; near the margins of these steps, a tiny adjustment in the threshold significantly
affects precision while only slightly increasing recall. From the precision–recall analysis of
the Clinical‑USR model, the AP of the model was 0.63, which is satisfactory.

5. Conclusions
Because this was a retrospective study, there may have been a case selection bias that

influenced the study results. Furthermore, we established and validated our Clinical‑USR
model for distinguishing CLNM in a single hospital and employed only greyscale US im‑
ages in our Clinical‑USR model. We do, however, intend to integrate multimodal USR
characteristics in future studies. In summary, for the prediction of CLNM, a Clinical‑USR
model based on clinical factors and USR features was developed. The newly developed
Clinical‑USR model is non‑invasive and feasible for predicting CLNM in PTC patients.
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