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Simple Summary: Artificial intelligence techniques have changed the traditional way of diagnosis.
The physicians’ consultation decisions can now be supported with a particular algorithm that is
beneficial for the patient in terms of accuracy and time saved. Many deep learning and machine
learning algorithms are being validated and tested regularly; still, only a few can be implemented
clinically. This review aims to shed light on the current and potential applications of deep learning
and machine learning in tumor pathology.

Abstract: The revolution of artificial intelligence and its impacts on our daily life has led to tremen-
dous interest in the field and its related subtypes: machine learning and deep learning. Scientists and
developers have designed machine learning- and deep learning-based algorithms to perform various
tasks related to tumor pathologies, such as tumor detection, classification, grading with variant stages,
diagnostic forecasting, recognition of pathological attributes, pathogenesis, and genomic mutations.
Pathologists are interested in artificial intelligence to improve the diagnosis precision impartiality
and to minimize the workload combined with the time consumed, which affects the accuracy of the
decision taken. Regrettably, there are already certain obstacles to overcome connected to artificial
intelligence deployments, such as the applicability and validation of algorithms and computational
technologies, in addition to the ability to train pathologists and doctors to use these machines and
their willingness to accept the results. This review paper provides a survey of how machine learning
and deep learning methods could be implemented into health care providers’ routine tasks and the
obstacles and opportunities for artificial intelligence application in tumor morphology.

Keywords: artificial intelligence; image analysis; deep learning; machine learning; pathology;
tumor morphology

1. Introduction

Artificial intelligence (AI) was a term introduced in the 1950s by McCarthy et al. [1],
describing a field in computer science that emulates human intelligence by computers
designed to think and act like humans in similar situations. The concept may also allude
to any device with human-like abilities, such as understanding and solving potential
problems. Currently, AI provides essential tools trusted by users and makes its way into
many areas of our daily lives, especially healthcare [2]. AI has a vital role in the medical field,
including diagnosing skin diseases, radiology, ultrasound, and histopathology depending
on image analysis technologies [3,4]. Enormous responsibilities and challenges for AI
require developers to comprehend and design flexible code to overcome the complex AI
algorithm, thus making it applicable to pathological diagnosis.

Prewitt and Mendelsohn [5], who pioneered visual pathology in the 1960s, took simple
microscopic images of a blood smear and scanned them. These images were processed
and transformed from optical data to a matrix of optical density values for image analysis.
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Whole-slide scanners were introduced in the late 1990s. Since then, AI-based models
used in digital pathology have expanded quickly to interpret whole-slide images (WSIs)
using numerous analytical methods. The construction of a wide range of digital-slide
databases, such as The Cancer Genome Atlas (TCGA), allowed scientists to quickly obtain
an abundant amount of selected and annotated data of pathological images connected to
medical diagnosis and genetic data, paving the way for significant AI research in oncology
and digital pathology [6,7]. In 2012, a team of researchers used TCGA data to discover a
unified genetic and morphological pattern consistent with the response of chemotherapy
treatment in ovarian cancer [8], including an elementary machine learning (ML) prototype
for WSIs from TCGA.

Deep learning (DL) and ML are subtypes of AI, and the experts have defined and
distinguished between the three terms for better understanding. AI refers to intelligent ma-
chines that think and act like human beings. ML refers to the systems that learn things based
on previous experience and provide defined data to make the proper decision. In contrast,
DL relates to machines that can think like human brains using artificial neural networks.

DL is easier to use than ML and has better accuracy, as it is suitable for a large set
of data, and the input of defined features is not required as the performance improves
with more data and practice (Figure 1) [9]. The continuous development of computational
systems and validated algorithms has increased the number of AI-based applications.
Therefore, pathologists use it broadly to prevail over the subjective visual assessment
obstacles and merge other computations for more exactitude in treating tumors [10]. DL
models have numerous advantages in the histopathology field, including the ability to
work with unstructured data and to generate new features with high quality from datasets
without human intervention, which improves the accuracy of diagnosis and leads to the op-
timization of the treatment protocol [11]. The multiple layers in the neural network enhance
the self-learning ability while operating intensive computational tasks. Additionally, DL
models utilize distributed and parallel algorithms, which effectively reduce model training
time by an average of 26% and enhance the process of the cluster while maintaining the
high accuracy result [12]. Barbieri et al. found in their designed algorithm for colorectal
cancer detection that the developed model reduces the time of diagnosis by almost half.
Moreover, the algorithm reduced the computational cost by four times less than the typical
normal diagnosis process while maintaining a 94.8% higher output result [13]. Finally,
DL models offer more advanced processor technology, allowing more accurate diagnostic
abilities in a shorter time [14].
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(WSIs) were obtained from the original specimen slides. Then, the ongoing Artificial Neural Network
(ANN) analysis process. Finally, the output of diagnosis or prognosis was based on the classification
and selected features.
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On the other hand, DL models have some drawbacks. They learn by practice and
gradually, requiring a large dataset volume to train the model effectively. In addition,
advanced learning processors require higher computational power demanding hardware
with high operating abilities. In some reported cases, DL models showed highly accurate
results for the training models while, at the same time, less accuracy for the real-life data.
Syrykh et al. reported a 10% accuracy difference between the internal training datasets
and other external practical cases in their lymphoma diagnosis model due to the lower
resolution and quality of datasets and the lower accuracy of the designed model between
63–69% [15].

This paper presents a survey of recent, up-to-date AI and DL studies and an analysis
of different tumor histopathology applications to determine the advantages and limitations.
Moreover, we discuss the future opportunities and challenges that might arise from the
cooperation between humans and machines in tumor histopathology.

2. Deep Learning Applications in Tumor Pathology

AI applications in tumor pathology cover nearly all types of tumors and are engaged in
prognosis, diagnosis, classification, grading, and staging. AI algorithms have been designed
to assess pathological attributes, genetic modifications, and biomarkers. Examples of AI
applications in tumor pathology are displayed in Table 1.

Table 1. AI applications in tumor pathology.

Training Set AI Determinants Outcomes Ref.

Breast cancer

Diagnosis

H&E-stained images (n = 249;
2040 × 1536 px)

-Model I *:
Carcinoma|Non-carcinoma
-Model II: Normal|Benign, CIS, IC

-Model I had higher accuracy than Model
II (83.3% vs. 77.8%)
-Overall sensitivity = 95.6%

[16]

WSIs of H&E-stained tissue
(n = 221; 0.243 µm × 0.243 µm)

-Model I *:
Malignant|Non-malignant
-Model II: Benign|DCIS, IDC

-Model I AUROC = 0.962
-Model II accuracy = 81.3%, a developing
model for routine diagnostics

[17]

H&E-stained tissue (n = 2387;
0.455 µm × 0.455 µm) Benign|IC

-↑AUROC = 0.962, depending only on
the stromal characteristics
-Estimate the amount of tumor-associated
stroma and its distance from grade 3 vs.
grade 1

[18]

H&E-stained biopsies (n = 240;
100,000 × 64,000 px; 40×) [19]

Non-
proliferative|Proliferative|Atypical
hyperplasia|CIS|IC

Maximum precision = 81% [20]

Tumor subtyping

Microscopic images (n = 7909;
700 × 460 px; 40–400×)

-Benign cancer:
Adenosis|Fibroadenoma|Tubular
adenoma|Phyllodes tumor
-Malignant cancer: Ductal
carcinoma|Lobular
carcinoma|Mucinous
carcinoma|Papillary carcinoma

Less magnification was association with
better accuracy (400× = 90.66%;
200× = 92.22%; 100× = 93.81%;
40× = 93.74%)

[21]

Tumor grading

H&E-stained breast biopsy tissue
(n = 106) Low, Intermediate, High

Overall accuracy: 69%
-Low vs. high = 92%-Low vs.
intermediate = 77%
-Intermediate vs. high = 76%

[22]

Tumor staging
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Table 1. Cont.

Training Set AI Determinants Outcomes Ref.

Overall set (n = 600; validation
TCGA = 200)

Regional heatmap of IC

-Dice coefficient = 75.86%
-PPV = 71.62%
-NPV = 96.77%

[23]

HASHI (n = 500) followed by
testing on TCGA studies (n = 195)

Dice coefficient = 76%, and its analyzing
power was ∼2000 in 1 min [24]

WSIs (n = 270; with nodal
metastases = 110) (n = 110)

Absence vs. presence of breast cancer
metastasis in lymph nodes

-AUROC range = 0.556 to 0.994
-The algorithm performance was better
than pathologists WTC [AUROC = 0.810
(0.738–0.884)***; p < 0.001]

[25]

WSIs of H&E-stained lymph nodes
(n = 399 patients) [25]

-LYNA AUROC = 99%
-Sensitivity = 91% at one false-positive
per patient

[26]

Digitized slides from lymph node
sections (n = 70) Metastatic regions in lymph node

-Sensitivity = 83% and avg. processing
time per image = 116 s
-With algorithm-assisted pathologists, the
sensitivity improved to 91% (p = 0.02),
and the processing time reduced to 61 s
(p = 0.002)

[27]

Evaluation of pathological features

Mitotic figures (n > 1000) Mitotic count -IDSIA was the highest-rank approach
-F1 score = 0.611 [28]

Sample images (n = 450; 315
training) Ki-67 index -GMM’s precision value = 93%

-F-score of 0.91%, and 0.88% recall value [29]

WSIs breast cancer (n = 821; 500
training)

-Model I: Predict mitotic scores
-Model II: Predict the gene expression
based on PAM50 proliferation scores

-Model I’s κ score = 0.567 (95% CI:
0.464, 0.671)
-Model II’s R-value = 0.617 (95% CI:
0.581 0.651)

[30]

A set of super px images
(n = 123,442)

-Model I: Identify regions of immune
cell-rich and immune cell-poor
-Model II: Quantify
immune infiltration

-Model I, CNN’s F-score of 0.94
(0.92–0.94) ***
-Model II, only 200 images were used,
and the CNN was compared to
pathologists and achieved a similar
agreement level of 90% with κ values of
0.79 and 0.78

[31]

Evaluation of biomarkers

A cohort of breast tumor resection
samples (n = 71)

HER2 status:
Negative|Equivocal|Positive

-Overall accuracy = 83% (95% CI:
0.74–0.92)
-Cohen’s κ coefficient = 0.69 (95% CI:
0.55–0.84)
-Kendall’s tau-b correlation
coefficient = 0.84 (95% CI: 0.75–0.93)

[32]

Cervical cancer

Diagnosis

-Herlev Dataset: Abnormal and
normal cell image (n = 100 and 280)
-HEMLBC Dataset: Abnormal and
normal cells (n = 989 and 1381)
Both dataset
sizes = 256 × 256 × 3 px

Normal|Abnormal

-Accuracy = 98.3%
-Specificity = 98.3%.
-↑AUC = 0.99.
-Higher results were reproducible on the
HEMLBC dataset

[33]

Tumor subtyping
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Table 1. Cont.

Training Set AI Determinants Outcomes Ref.

Original image group
(n = 3012 datasets) and
augmented image group
(n = 108432 datasets), 227 × 227 px

Keratinizing|Non-
keratinizing|Basaloid squamous
cell carcinoma

The original images displayed
significantly higher accuracy (p < 0.05)
than the augmented group, with values
of 93.33% and 89.48%, resp.

[34]

Colorectal cancer

Diagnosis

H&E-stained images (n = 165;
0.62 µm; 20×) [35]

Benign|Malignant -Accuracy ≥ 95%
-↑F1-score > 0.88, and the false-positive
benign cases were zero

[36]

Pixel-based DNN for gland [37]
trained on digitized
H&E-stained images

-Model I (diagnosis) *:
Normal|Cancer
-Model II (grading):
Normal|Low|High

Model I (diagnosis) had higher accuracy
than Model II (grading), with 97% and
91%, resp.

[38]

Tumor subtyping

Reference standard dataset
(n = 2074)

Hyperplastic polyp|Sessile serrated
adenoma|Traditional serrated
adenoma|Tubular
adenoma|Tubulovillous|
Villous adenoma

The methodology of the residual network
architecture yielded superior results in
classifying the six major determinants
with a value of 93.0%
(95% Cl = 89.0–95.9%)

[39]

Evaluation of pathological features

Pan-cytokeratin-stained WSI
(n = 20) No. tumor budding

-Spontaneously detected the absolute
number of tumor buds for each image,
R2 = 0.86
-Nodal status was neither associated with
tumor buds at the invasive front nor the
number of hotspots

[40]

Evaluation of genetic changes

-Dataset I: Large patient cohorts
from TCGA (n = 315)
-Dataset II: FFPE samples of
stomach adenocarcinoma (n = 360)

MSI|MSS

The AUC of dataset I (0.84,
95% CI = 0.72–0.92) was higher than the
AUC of dataset II (0.75,
95% CI = 0.63–0.83)

[41]

Gastric cancer

Diagnosis

H&E-stained images (n = 606;
0.2517 µm/px; 40×) Normal|Dysplasia|Cancer

RMDL = 0.923, good accuracy of 86.5%.
The outcomes of this method were better
than those implemented by MISVM [42]
and Attention-MIP [43] with values of
0.908, 82.5%, and 0.875, 82%, resp.

[44]

Evaluation of genetic changes

Original uncropped images
(n = 21,000) were used to produce
testing dataset (n = 231,000) and for
detection of necrosis (n = 47,130)

HER2 status:
Negative|Equivocal|Positive

The CNN approach had higher
performance detecting necrosis than the
overall HER2 classification with values of
81.44% and 69.90% resp.

[45]

Glioma

Tumor grading

Digitized WSIs obtained
from TCGA

-Lower-grade glioma:
Grade II|Grade III
-Glioblastoma multiforme: Grade IV

-CNN distinguished lower-grade glioma
from glioblastoma multiforme with
accuracy = 96%
-Grade II and Grade III classification
accuracy lowered to 71%

[46]
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Table 1. Cont.

Training Set AI Determinants Outcomes Ref.

Prognosis prediction

Dataset obtained from TCGA
(n = 769) Risk: Low|Intermediate|High

The prognostic power of SCNN median c
index = 0.754, and it was comparable
with manual models, median c
index = 0.745, p = 0.307

[47]

Lung cancer

Tumor subtyping

Multiple images (n = 298;
2040 × 1536 px; 40×)

-Model I **: Small and non-small
cell cancer
-Model II:
Adenocarcinoma|Squamous
cell|Small cell carcinoma

-Model I had a substantial accuracy of
86.6%, and it was higher than Model II
with an overall accuracy of 71.1%
-The lowest accuracy rate was in the
determination of squamous cell
carcinoma, with a value of 60%, while the
highest was for adenocarcinoma, with a
value of 89%
-The accuracy of small cell carcinoma was
moderate at a value of 70.3%

[48]

WSI dataset obtained from Genomic
Data Commons database (n = 1635)

-Model I:
Adenocarcinoma|Squamous cell
carcinoma
-Model II (gene prediction):
STK11|TP53|EGFR|SETBP1|
KRAS|FAT1

-Model I performance was high
(AUC = 0.97) to classify the
three subtypes
-Six out of ten of the most mutated genes
were predicted, AUC = 0.733–0.856 ***

[49]

Image tiles (n = 19,924) obtained
from 78 slides from two institutions:
CSMC and MIMW

Solid|Micropapillary|Acinar|
Cribriform|Non-tumor

Overall, slides from CSMC had higher
quality; their accuracy level was
significantly higher (p < 2.3 × 10−4) than
MIMW with values of 88.5% and
84.2%, resp.
Overall accuracy in differentiating the
five classes was 89.24%

[50]

Digitized WSIs (n = 143) Lepidic|Solid|Micropapillary|
Acinar|Cribriform

-The results were compared with a group
of pathologists (n = 3), with κ score of
0.525 and an agreement of 66.6%
-The performance was marginally higher
than the inter-pathologist κ score of 0.485
and agreement of 62.7%

[51]

Dataset obtained from NCTD
Tissue Bank (n = 39) stained for
markers CD3, CD8, and CD20 and
stained all T-cells, cytotoxic T cells,
and B-cells, resp.

Immune cell count

-The accuracy of the augmented patch
level was 98.6%
-The stained tissues with T-cells were
successfully classified with a sensitivity
of 98.8% and specificity of 98.7%
-The false-positive and false-negative
detection rates were 1.30% and
1.19%, resp.

[52]

Evaluation of biomarkers

Training set (n = 130 patients;
training = 48) PD-L1 status: Negative|Positive

-AUROC = 0.80, p < 0.01, and it persisted
effectively over a range of PD-L1 cutoff
thresholds (AUROC = 0.67–0.81, p ≤ 0.01)
-AUROC was slightly decreased when
dissimilar proportions of the labels were
randomly shuffled for simulating
inter-pathologist disagreement
(AUROC = 0.63–0.77, p ≤ 0.03)

[53]
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Table 1. Cont.

Training Set AI Determinants Outcomes Ref.

Prognosis prediction

Independent patient cohort
(n = 389) Risk: Low|High

-The predicted low-risk group had better
survival than the high-risk group
(p = 0.0029)
-It serves as an independent prognostic
factor (high-risk vs. low-risk, HR = 2.25,
95% CI: 1.34–3.77, p = 0.0022)

[54]

Prostate cancer

Tumor grading

A discovery cohort (n = 641
patients) and independent test
cohort (n = 245 patients)

Gleason scoring

The inter-annotator agreements between
the model and each pathologist,
quantified via κ score of 0.75 and 0.71,
resp., compared with the
inter-pathologist agreement (κ = 0.71)

[55]

Evaluation of genetic changes

H&E-stained slides from TCGA
cohort (n = 177) SPOP mutation|SPOP non-mutant -AUROC = 0.74

-Fisher’s Exact Test p = 0.007 [56]

Thyroid cancer

Diagnosis

Original image dataset (n = 279) Model I **: PTC|Benign nodules
The accuracy of VGG-16 and
Inception-V3 in the test group was
97.66% and 92.75%, resp.

[57]

Tumor subtyping

Fragmented images (n = 11,715;
training = 9763)

Normal tissue|Adenoma|Nodular
goiter|PTC|FTC|MTC|ATC

Both MTC and nodular goiter had an
accuracy of 100% and decreased
gradually: 98.89% for FTC, 98.57% for
ATC, 97.77% for PTC, 92.44% for
adenoma, and 88.33% for normal tissue

[58]

Miscellaneous Applications

Diagnosis for esophageal lesion

WSIs with high resolution (n = 379) Barrett esophagus|Dysplasia|Cancer The DL model accuracy = 0.83
(95% CI = 0.80–0.86) [59]

Diagnosis for melanocytic lesion

H&E-stained WSIs (n = 155) were
used to extract pathological patches
(n = 225,230)

Nevus|Aggressive malignant
melanoma

-The result of the model differed from the
extracted patches and WSIs since the
latter had higher sensitivity, specificity,
and accuracy (94.9%, 94.7%, and 95.3% vs.
100%, 96.5%, and 98.2%, resp.).
-WSIs had a higher AUROC value [0.998
(95% CI = 0.994 to 1.000) vs. 0.989
(95% CI = 0.989 to 0.991)]

[60]

Diagnosis of urinary tract lesion

WSIs of liquid-based urine cytology
specimens (n = 217) Risk: Low|High Sensitivity of 83% with a false-positive

rate of 13% and AUROC of 0.92 [61]

Subtyping for ovary cancer
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Table 1. Cont.

Training Set AI Determinants Outcomes Ref.

H&E-stained tissue sections of
ovarian cancer obtained from
FAHXMU (n = 85; 1360 × 1024 px)

Serous|Mucinous|Endometrioid|
Clear cell carcinoma

Two models were designed based on the
training of the original images (n = 1848)
and augmented images (n = 20,328)
The accuracy of the model increased from
72.76% to 78.20% when utilizing the
augmented images as training data

[62]

Biomarker for pancreatic neuroendocrine neoplasm

A set of WSIs (n = 33) Ki-67 index
The DL model employed 30 high-power
fields and had a high sensitivity of 97.8%
and specificity of 88.8%

[63]

Abbreviations: ATC—anaplastic thyroid carcinoma; Attention-MIP—attention-based deep multiple instance learn-
ing; AUC—area under the curve; AUROC—area under the receiver operating characteristic curve; CIS—carcinoma
in-situ; CNN—convolutional neural networks; CSMC—Cedars-Sinai Medical Center; DCIS—ductal carci-
noma in-situ; DNN—deep neural network; FAHXMU—First Affiliated Hospital of Xinjiang Medical Uni-
versity; FFPE—formalin-fixed paraffin embedded; FTC—follicular thyroid carcinoma; GMM—gamma mix-
ture model; H&E—hematoxylin and eosin; HASHI—high-throughput adaptive sampling for whole-slide
histopathology image analysis; HEMLBC—People’s Hospital of Nanshan District; Herlev university hospital;
IC—invasive carcinoma; IDC—invasive ductal carcinoma; IDSIA—Istituto Dalle Molle di studi sull’intelligenza
artificiale; MIMW—Military Institute of Medicine in Warsaw; MISVM—multiple-instance support vector ma-
chines; MSI—microsatellite instability; MSS—microsatellite stability; MTC—medullary thyroid carcinoma;
NCTD—National Center for Tumor Diseases; NPV—negative predictive values; PPV—positive predictive val-
ues; PTC—papillary thyroid carcinoma; px—pixels; RMDL—recalibrated multi-instance deep learning method;
s—seconds; SCNN—survival convolutional neural networks; WOTC—without time constraint; and WTC—with
time constraint. * binary model. ** cytology. *** data represented as (range).

2.1. Diagnosis of Tumor

Pathologists must differentiate cancer from healthy cells and malignant from benign
tumors, and these distinctions may significantly impact clinical decisions for various
therapeutic approaches. Researchers have been able to develop AI algorithms for that
purpose; for instance, convolutional neural network (CNN)-based AI algorithms have been
designed by Bardou et al. [64] (Figure 2).
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Figure 2. Different types of Neural Networks Architecture [65]: (a) Fully-Connected Neural Network
(FCNN); (b) AlexNet is a Deep Neural Network [66]; and (c) LeNet refers to LeNet-5 and it is a simple
CNN [67].
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To distinguish the WSIs of breast cancer into two groups (cancer and non-cancer) with
a precision level of 83.3% and categorize the result into four groups (healthy tissue, benign
lesions, cancer in situ, and invasive cancer) with 77.8% precision, a stacked CNN was first
trained to identify relatively lower attributes and then used as an input dataset to build a
higher level of the stacked network. This program was developed by Bejnordi et al. [17].
They could differentiate breast malignancy from typical lesions with a 0.962 of the regions
under the recipient operating curve (AUC or AUROC) and characterize invasive ductal
cancer, ductal cancer in situ, and benign lesions with a precision of 81.3% using this CNN
model. Bejnordi et al. [18] developed an algorithm based on the CNN system to integrate
known stroma attributes to differentiate benign lesions from breast cancer, taking into
account the impact of stroma on tumors. Skilled pathologists and DL-based AI algorithms
were able to distinguish between malignant and benign tissues of colorectal tumors [36,38],
as well as skin cancer from nevi (the plural of nevus) [60]. Mercan et al. [20] categorized
breast tumors as proliferative, non-proliferative, atypical hyperplasia, cancer in situ, and
invasive cancer based on breast biopsy WSIs with an 81% accuracy. This was made by using
weakly supervised DL models that significantly decreased the burden of labeling. With an
86.5% precision, Wang et al. [44] categorized lesions of gastric tissues into normal, dysplasia,
and cancer, while Tomita et al. [59] classified esophageal tissue as cancer, dysplasia, and
Barrett esophagus with an 83% precision. Pathologists should conduct cytology analysis
parallel with biopsy and excision specimens as part of their regular work. In the images
diagnosed based on liquid and smear samples for the cervical cytology, AI could identify
cells as normal or abnormal with a precision of 98.3% and 98.6%, respectively [33]. Based on
the attributes of the cell [61] or WSI level features [68], AI-based algorithms have the power
to distinguish high-grade urothelial carcinoma and its suspected cases from other urine
cytology. According to the cytological images, AI also demonstrated promising potential in
the comparative diagnosis of thyroid tumors [57].

2.2. Classification of Tumor

Different subtypes of cancer have different therapeutic approaches. Images from
biopsy samples, frosted tissues, and formalin-fixed paraffin-embedded (FFPE) tissues
showed a high AUC (0.83–0.97) in a study that used a CNN-based algorithm to directly
separate non-small cell lung cancer (NSCLC) into squamous cell carcinoma, large cell
carcinoma, adenocarcinoma, and normal lung tissue [49]. Bearing in mind the divergent
patterns of lung adenocarcinoma cell growth that have been linked to patient clinical results,
the CNN model designed by Gertych et al. [50] and Wei et al. [51] was used to classify
every single image tile considering the pattern of growth for each individual and produce a
likelihood map for the WSI, making it easier for pathologists to describe the principal and
malignant elements of lung adenocarcinoma, including papillary, micropapillary, solid, and
acinar components, quantitatively. Cervical squamous cell carcinoma, colorectal polyp [13],
thyroid tumor [58], ovarian cancer [62], and breast tumor [21] were all multi-classified
using a DL-based AI. This ability allowed the AI-based models to identify the different
lung cancer histological subtypes with a precision of 60% to 89% based on cytological
images [48].

2.3. Grading of Tumor

Pathologists evaluate tumor grades mainly depending on the tumor cell variation,
cell division, necrosis, glandular structure, and other contextual factors affecting treat-
ment decisions and clinical surveillance. To determine the grade of gliomas, Ertosun and
Rubin [69] designed two different CNNs: one was able to correctly classify the patients
with low-grade glioma or with glioblastoma multiforme with a 96% accuracy, while the
other was able to distinguish the grade II glioma from grade III with a 71% accuracy.
A CNN-based algorithm correctly identified medium-, moderate-, and high-grade breast
cancers in 69% of breast biopsy images [22]. With a 91% precision, pathologists have used
DL-based methods effectively to distinguish between the grades of colorectal adenocarci-
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noma into normal tissue, low-grade, and high-grade [38]. In the prostate cancer area, AI
and ML algorithms have shown accurate and promising models in the grading process
of prostate cancer. Several studies found that these models can achieve pathologist-level
performance. One of the famous prostate cancer competitions is the PANDA challenge,
which stands for Prostate cANcer graDe Assessment using the Gleason grading system [70].
The PANDA challenge involved 12,625 whole-slide images (WSIs) of prostate biopsies from
6 different areas and engaged 1010 groups from more than 60 countries, making it the most
significant histopathology competition. The challenge system proved efficient, resulting
in the first team achieving pathologist-level grading performance in only ten days. The
PANDA challenge, hosted on the Kaggle platform in April–July 2020, rigorously validated
the top-performing algorithms across international patient cohorts. Perincheri et al. devel-
oped a model from 118 cases to detect high-grade prostatic intraepithelial neoplasia with a
97.7% sensitivity and 99.3% specificity [71]. By using 549 slides for training and 2501 slides
for testing, Pantanowitz et al. developed a model with 99.7% accuracy to detect atypical
small acinar proliferation (ASAP) and perineural invasion (PNI) [72]. Moreover, Ström et al.
created a model for prostate cancer detection and Gleason score using 6953 biopsies for
training and 1718 biopsy for testing, resulting in a model with an AUC of 0.997 [73].

2.4. Staging of Tumor

Pathologists should have as many details as possible about excision samples for
tumor node metastases (TNM) staging to achieve the proper treatment decisions. The
developed CNN-based algorithm was able to identify three categories of the region of
interest (ROI) in osteosarcomas, such as a tumor, non-tumor, and necrotic portion (e.g.,
cartilage, bones), on the patch level (around 64,000 patches from 82 WSIs) with a precision
of 92.4% [74]. Additionally, it is possible to measure the rate of necrosis, a variable element
in prognosis. For that purpose, numerous DL-based models were established to identify
breast cancer tumor areas [20,23,24]. Pathologists must evaluate lymph node metastasis
as part of tumor staging, but unfortunately, this process consumes time, and there is a
possibility of false outcomes. Two AI models outperformed the pathologists’ findings in
the Cancer Metastases in Lymph Nodes Challenge (CAMELYON16). The challenge aimed
to compare the performance of AI systems and human pathologists in evaluating novel
algorithms that detect the metastasis of cancer cells to lymph nodes in breast cancer. In
slide-level diagnosis (recognizing whether cancer metastasis has existed), the best model
achieved an AUC of 0.994.

Moreover, another two algorithms surpassed pathologists’ skill in detecting the level of
lesions (identifying all metastases without discrete tumor cells) with the best mean accuracy
obtained over six false-positive rates of 0.807 [25]. Furthermore, using the same dataset and
sorting out artifacts, the more efficient algorithm, Lymph Node Assistant (LYNA), obtained
a better AUC and sensitivity with values of 0.996 and 91%, respectively. It also revised
and fixed two slides the producers had incorrectly diagnosed as “natural” [26]. Finally, the
detection of micro-metastases in lymph nodes was significantly improved using LYNA,
with the average accuracy increased by 8% (p = 0.02) to obtain 91% instead of 83% for all
samples with a slightly faster assessment period [27].

In the last decade, several studies revealed that circulating tumor cells (CTCs) could be po-
tential determinants in estimating cancer cells’ growth and development in metastatic [75,76],
even with cancer patients at the early stages [77]. CTC counts above a certain threshold are
linked to serious illness, heightened metastasis, and a shorter time to relapse [78]. CTCs
are intended for use as a tool to measure tumor growth and facilitate clinical treatment,
along with signaling treatment success, due to the ease and limited intrusion of blood
collection [79]. Nevertheless, hindrances in technical matters, including limited supply and
shortage of standard assays for detection and validated markers, hinder its therapeutic
use [80]. According to Zeune et al. [81], DL-based CTC detection was comparatively stable
with better precision than usual human opinions. In contrast, human reviewers and count-
ing programs differed in their manual counting of CTCs from NSCLC and prostate cancer
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using images with fluorescence. Considering AI’s current role in recognizing tumor areas,
identifying lymph node metastasis, and detecting CTCs, as well as its ability to process
vast quantities of data, AI models could assist pathologists and oncologists in the process
of tumor staging.

2.5. Assessment of Pathological Attributes

A tumor cell’s tendency to multiply is represented by mitosis. Though, counting mito-
sis takes time. Therefore, an effective algorithm was generated in the Assessment of Mitosis
Detection Algorithms 2013 (AMIDA13) challenge to identify the mitoses of breast cancers at
high-power fields (HPFs) with an 0.611 F1 score using 1000 images that could be compared
to the inter-observer agreement [28] known protein structure. The Tumor Proliferation
Assessment Challenge 2016 (TUPAC 16) [30] published breast cancer proliferation scores
based on WSI-level AI recognition. Tumor budding is considered an offensive behavior
of tumors; therefore, its analysis is crucial. Weis et al. [40] used CNN-based models to
calculate the actual figure of tumor budding in cases of colorectal carcinoma. Moreover,
they could determine the association between the hotspot and lymph node conditions. The
type and quantity of tumor-penetrating immune cells have been linked to immunotherapy
susceptibility and diagnostic stratification in cancer patients [82,83]. In breast cancer, a DL
approach with a cluster of differentiation (CD)45 marked digital images could measure
immunity cells and differentiate between areas rich in immune cells and regions poor in
immune cells [31]. Therefore, one of the DL-based AI advantages is the ability to identify
and recognize domain-agnostic and hand-crafted attributes that could be used in different
diseases and types of tissues [52].

2.6. Assessment of Biomarkers

The DL-based model was designed by Saha et al. [29] to identify high proliferation
areas and measure the severity of cancer metastasis in breast cells using the Ki-67 scale.
In contrast, an AI-based model was designed by Vandenberghe et al. [32] to segment
both interstitium and normal pancreatic tissues from tumor regions on uneven Ki-67
immunoreactive WSIs to calculate the severity of pancreatic tumors accurately, especially in
neuroendocrine cells using the Ki-67 index. Moreover, several biomarkers match the patient
profile with the adequate therapeutic regimen. Trastuzumab is a monoclonal antibody
(Herceptin) used in treating gastric and breast cancer according to the human epidermal
growth factor receptor 2 (HER2) condition. A CNN-based model with pathologist assistance
achieved an average accuracy of 83% in determining the status of HER2 [84]. However,
the results improved after dividing the cell membranes as the natural expression position
of HER2. Likewise, in gastric cancer, an AI-based model was designed to evaluate HER2-
negative regions (0 and 1+), HER2-positive regions (2+ and 3+), and regions with no
tumor at all with 69.9% precision [45]. An AI-based model could detect the presence of
programmed death-ligand 1 (PD-L1; positive or negative) by using hematoxylin and eosin
(H&E)-stained images of adenocarcinoma or squamous carcinoma lung cancers with an
AUC of 0.80. The result was reasonable compared to pathologist assessments depending
on PD-L1 immunohistochemistry images to identify possible patients who may have
sensitivity to pembrolizumab medication [13]. A DL-based AI model evaluated biomarkers
engaged in the prognosis, diagnosis, and prediction of drug interactions depending on
immunohistochemical dye or fluorescent dye WSIs and HE dye WSIs.

2.7. Assessment of Genetic Modifications

During WSI analysis, morphological variations are examples of fundamental genetic
changes. Schaumberg et al. [56] used a group of 177 patients diagnosed with prostate cancer
from the TCGA, 20 of them had mutant speckle-type POZ protein (SPOP), to train several
groups of the CNN model to determine whether a mutation occurred in the SPOP gene of
prostate cancer or not. Then the obtained results could be validated and confirmed based
on an independent cohort from MSK-IMPACT. Furthermore, since the SPOP gene mutation
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and TMPRSS2-ERG gene fusion are strictly incompatible [85], the estimation of SPOP
mutation status offered indirect knowledge about TMPRSS2-ERG. Thus elucidating the
importance of determining the SPOP gene mutation condition and its potential contribution
to targeted therapy accuracy. Using the lung adenocarcinoma pathological images from
TCGA, Coudray et al. [49] developed a DL-based model to anticipate the most common ten
genes that had mutated. They pointed six of these genes (AUCs = 0.733–0.856), including
epidermal growth factor receptor [EGFR], serine/threonine kinase 11 [STK11], SET binding
protein 1 [SETBP1], FAT atypical cadherin 1 [FAT1], Kirsten rat sarcoma two viral oncogene
homolog [KRAS], and TP53. Moreover, an AI-based algorithm was designed using the
images of gastrointestinal cancer stained with H&E stains to determine microsatellite insta-
bility (MSI) or microsatellite stability (MSS) without conducting assays on microsatellite
instability. The model tested 185 slides from Asian patients and showed robust snap-frozen
samples and endometrial cancer with elevated AUC (0.77–0.84) [41]. They found that
models tested and used on FFPE performed better than those tested on frozen and FFPE
samples. A similar result appeared with colorectal cancer samples. Despite the designers
mentioning that Asian patients have different histological gastric cancer than non-Asian
patients, this model potentially provides beneficial immunotherapy solutions to a wide
range of gastrointestinal cancer patients. It could be implemented lowly and not require
testing for the tissues in laboratories to efficiently determine MSI tumors [41]. Therefore,
patients with particular genetic alterations were classified using these AI-based models
depending on inherent genetic-histologic associations, which assisted the medical team in
providing the precise therapy regime.

2.8. Prognosis Prediction

Bychkov et al. [86] developed a DL-dependent approach for grouping patients into
high- and low-risk classes based on images of colorectal cancer tissues stained with H&E
stains. The technique achieved better results when using small tissue areas as input (hazard
ratio [HR] 2.3; 95% CI: 1.79–3.03; AUC 0.69) compared with human experts (HR 1.67;
95% CI: 1.28–2.19; AUC 0.58) and WSIs (HR 1.65; 95% CI: 1.30–2.15; AUC 0.57), and it was
proven to be an individual prognosis element using the multivariate Cox comparative
analysis to examine hazard. In multicenter samples, Kather et al. [87] found that combined
interstitium features (with lymphocytes, debris, adipose, desmoplastic stroma, and muscles)
that were extracted using CNN might independently predict the survival rate and survival
without relapse of colorectal cancer patients (HR = 2.29 vs. HR = 1.92, respectively),
despite the stage of the clinical level. In lung adenocarcinoma [54] and glioma [47], it
has been shown that DL-based models could estimate the risk of prognosis by learning
and understanding histological characteristics. Kather et al. [41] designed an MSI-based
model to predict overall survival in gastrointestinal cancer, the model was tried, and
the results were impressive. According to the mentioned findings, AI-based models are
suitable to be used as a predictor of health outcomes of cancer patients in addition to
pathological diagnosis.

2.9. Different Algorithm Models for Tumors Detection

Many ML and DL algorithms in tumor detection are based on different ML methods
such as Decision Trees (DTs), Artificial Neural Networks (ANNs), K-nearest neighbor
(KNN), and Support Vector Machines (SVMs) [88]. One of these models is known as Deep
Transfer Learning (TL), and a study used a bunch of grained classification approaches to
detect the different types of brain tumors, including glioma and meningioma, with a model
accuracy of 98.9% [89]. Another designed a CNN-based model called the Bayesian-YOLOv4
and was created to detect breast tumors with a scoring accuracy exceeding 92% in many
training data [90]. Furthermore, a DL model was designed to detect liver tumors using an
enhanced DL method called U-Net. This model combines DL algorithms and CT images
resulting in a new algorithm known as Grey Wolf-Class Topper Optimization GW-CTO
with a learning ability of 85% and an accuracy exceeding 90% [91]. Designing a multi-
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tasking AI algorithm that functions on multiple tumors is challenging. Therefore, to obtain
satisfactory results, pathologists have to use a variety of AI-based algorithms for the entire
pathological study, in which the neoplasm should be diagnosed, classified, and staged by
various models of the algorithm, and a separate algorithm should evaluate the characteristic
high-risk tumors. A DL-based model was designed by Couture et al. [92] to conduct several
studies on images of breast cancer tissues stained with H&E. The performed tasks include
identifying the histological subtype (lobular or ductal) with a precision of 94%, grading
based on histological characters (low-, moderate-, and high-grade), which obtained an
82% precision, and evaluating the receptor’s condition of estrogen hormone (negative or
positive) with an accuracy of 77%, in addition to classifying the relapse risk (low, moderate,
and high risk) with an accuracy of 76%.

3. Expectations and Challenges

As shown in the previous findings, DL- and AI-based models promise to improve
the quality of pathological diagnosis and the accuracy of prognosis. Nevertheless, some
problems and hurdles remain in applying AI- and DL-based algorithms in tumor pathology.

3.1. Model Validation

Most recent AI-based models are based on small-scale datasets and images from
a single center. Scientists continue to evolve methods to improve the dataset, such as
spontaneous flipping and shifting, wobbling of color, and Gaussian blur [48,50,62]; however,
the outcomes from single-center images are still counted as deviations. Slide preparation,
scanner models, and digitalization vary from one center to another. When a CNN-based
model for the detection of pneumonia was trained using data provided by one institution
and then tested separately using data from another two institutions, Zech et al. [93] found
a significant difference in the performance (p < 0.001). Therefore, the validation and testing
of AI-based models must be conducted with different directions of many institutions before
being used in medical practice to train the model properly with various datasets. As a
result of sharing WSI reference datasets, we still can find some clear and aligned data
around cancer types with labeled cancerous areas that help uniform the AI-based models’
assessment. Furthermore, specific digital slides with large-scale databases, such as TCGA,
may be used as testing or validation datasets.

The generalization and reliability of AI-based models can be improved by developing
systematic quality management and calibration tools, data sharing, and validation with
data from different institutes. Besides that, AI-based models must be reviewed and refined
regularly by specialists in pathology.

3.2. Algorithm Elucidation

There is always a debate about DL models and their algorithms elucidation, which
is considered a barrier to the medical acceptance of AI methods [94,95]. Since DL-based
models made their projection, numerous post hoc trial approaches or guided ML algorithms
have to demonstrate the efficacy of results [26,27]. Nevertheless, post hoc studies of
DL approaches have been questioned since they should not be needed to clarify how
a DL-based algorithm operates [96]. Lately, several studies have combined DL-based
algorithms with hand-crafted ML-based models to improve the biological model’s level of
understanding and elucidation. DL-based models have been employed by Wang et al. [97]
to classify the digital images of nuclei stained with H&E in the early stage of NSCLC before
introducing a hand-crafted tool, including the inspection of nuclear structure and form to
anticipate the relapse of tumor. Many techniques are required to elucidate AI models and
algorithms and obtain users’ trust, especially clinicians.

3.3. Histopathology and Computing Model

The file size of histopathology slides and images are approximately 100 and 1000 times
higher than that of CT images and X-rays, respectively. Consequently, high-end computer



Cancers 2022, 14, 5264 14 of 19

hardware with developed processors and large storage capacity is needed. A powerful AI-
based model must be designed to analyze the images as an effective and robust computing
and storage infrastructure. The vast bandwidth required to exchange gigapixel WSIs
between servers or upload them to a cloud database and handle persistent contact networks
among end-users and the cloud platforms is a challenge facing users when using cloud
services. These issues will be resolved shortly due to the development of information
technology infrastructure, namely the global widespread of the 5G network.

3.4. Pathologists’ Responsibility

Aside from the weakness of interpretation in AI, many pathologists are worried about
the switch in their used procedures. Implementation of AI will force pathologists to rely
on accelerated parallel processing (APP) instead of using the microscope to examine the
morphology of histopathological slides. In the documentation of the diagnosis report,
how will pathologists explain the AI-based diagnosis proof? When pathologists use AI
to submit diagnostic information, how much burden do they bear? These problems must
be addressed and solved until the collaboration between machines and humans may be
applied in medical practice. Another critical problem facing pathologists is determining
which algorithm or model is capable of adapting and how to standardize the performance
and results from these various algorithms and models.

3.5. Clinicians’ Responsibility

The patients’ medical diagnosis reports helped the clinicians develop appropriate
therapeutic plans. Therefore, the trust of clinicians in using AI models should be increased,
accompanied by a better understanding of how this software works. The clinicians must
determine the minimum required diagnostic and prognostic assays, considering the expense
of the patient’s treatment. Having highly accurate results for the clinicians’ daily use is
crucial. They must regularly coordinate with the AI models’ developers to address any
defects or issues raised during their work.

3.6. Regulations

In many countries, it is required to have the patient’s consent, the physician’s accredi-
tation, and a clarification of how the AI model works to obtain governmental approval to
use the designed software in digital pathology. [98,99]. The inability to interpret AI-based
methods limits their acceptance [96]. In the United States, the Food and Drug Admin-
istration (FDA) has recently begun to approve DL-based methods for therapeutic use.
In 2017 [100], the Philips IntelliSite Pathology Solution obtained FDA approval, and in
2019 [101], the FDA awarded the Revolutionary Device name to the digital pathology
solution PAIGE.AI [102]. The FDA has established three classes to obtain medical device
certification. Class I poses the lowest risk, while the devices of Class III are the highest
risk (AI-based systems have been classified as Class II or III). Although there is not yet
an AI-based resolution with prediction purpose that has obtained the conformity of the
European Union, Philips, Sectra, and OptraSCAN’s digital pathology solutions have earned
clearance to bear such a design. Whereas the FDA seems to want to control CLIA-based
processes more strictly, following the paradigm developed by CLIA-based genetic studies
as a safer way for AI-based diagnostic assays to gain clinical approval.

4. Conclusions

Pathologists need to consider many other measurements for future diagnosis, includ-
ing genomics, proteomics, and measures from multiplexed marker-staining platforms
to have a detailed and clear patient profile for precise tumor therapy. Regardless of the
hurdles and challenges listed above, the applications of DL-based AI for automated pathol-
ogy have a promising future. The potential features of ML and DL models in digital
pathology encourage clinicians to consider AI applications in medical diagnosis, as AI
represents the learning capabilities enhanced by the development of algorithms and the
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extensive collected data. Since AI models and algorithms have been tested using many
reference data and the interpretation has improved, users will have more trust in the AI.
Cooperation between AI-based algorithms and pathologists will lead to precise tumor
therapeutic guidance.
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