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Simple Summary: Technological advancements and emerging high throughput molecular data have
transformed biology into a more quantitative and multidisciplinary discipline. This has accelerated
the translation of laboratory based findings into applied and clinically relevant applications and
therapeutics. A shared practice for quantifying and statistical rank-ordering the effects of such
translational applications and for understanding their underlying mode-of-action is now critical. In
this manuscript, we discuss some of the major types of quantitative translational research and the
best practices. We propose that adherence to these guidelines will improve assay design and reduce
missteps in translational biomarker and therapeutics clinical application and adoption.

Abstract: Bioscience is an interdisciplinary venture. Driven by a quantum shift in the volume of
high throughput data and in ready availability of data-intensive technologies, mathematical and
quantitative approaches have become increasingly common in bioscience. For instance, a recent
shift towards a quantitative description of cells and phenotypes, which is supplanting conventional
qualitative descriptions, has generated immense promise and opportunities in the field of bench-to-
bedside cancer OMICS, chemical biology and pharmacology. Nevertheless, like any burgeoning field,
there remains a lack of shared and standardized framework for quantitative cancer research. Here, in
the context of cancer, we present a basic framework and guidelines for bench-to-bedside quantitative
research and therapy. We outline some of the basic concepts and their parallel use cases for chemical–
protein interactions. Along with several recommendations for assay setup and conditions, we also
catalog applications of these quantitative techniques in some of the most widespread discovery
pipeline and analytical methods in the field. We believe adherence to these guidelines will improve
experimental design, reduce variabilities and standardize quantitative datasets.

Keywords: quantitative biology; chemical biology; bench-to-bedside; OMICS; IC50; high throughput
screen (HTS)

1. Introduction

“What is life?”, once asked quantum physicist and Nobel laureate Erwin Schrödinger,
when he prophesized that behind the mystical nature of life there must remain a quantifiable
mathematical elegance [1]. Not long after, James Watson and Francis Crick presented the
first mathematical model for the ‘molecule of life’-DNA [2]. Ever since then, from a
systems biology point of view, the quest to generate mathematical models to quantify
biological processes as reactions, to quantify stimuli and response as input and output
has emerged. Over the years, due to a remarkable expansion in high throughput data
acquisition and in our ability to analyze, biological research has become vastly more
quantitative. In vitro research coupled with powerful statistical analysis have successfully
recapitulated patient and in vivo biology indicating the power of quantitative biology in
the field of biochemistry, molecular and cellular biology and cancer research and treatment.
This has also caused a paradigm shift towards massively automated and computation-
heavy annotation and analysis in many disease contexts such as cancer biology [3]. For
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example, quantitative chemical biology research has transformed our understanding of
tumor genomics, prediction of novel candidate therapies against cancer and improved
personalized targeted therapy for cancer patients. In last decade alone, worldwide chemical
biology efforts have resulted in an avalanche of clinical trials and FDA-approved therapies
against many different types of tumors, subsequently increasing patient longevity and
decreasing therapy toxicity [4].

The broader goal of quantitative chemical biology research is to model the pharma-
cokinetics and pharmacodynamics of chemicals in diseased patients, but in a much more
conducive and tractable in vitro system initially. Modern chemical biology research takes
advantage of our ability to screen unbiasedly through a wide array of compounds in sys-
tems such as in patient-derived cell lines, patient derived xenografts (PDXs) or purified
protein-ligand binding assays [5]. Furthermore, modeling drug response by high through-
put screening (HTS) is followed by identifying candidate biomarkers, signaling pathways
and molecular targets. Chemical biology research also focuses on improving the response
of the drugs through modifications of chemical structure followed by quantitative structure
activity relationship (QSAR) studies or through drug synergy assays. Quantitative chemical
biology is making a reality what once was science fiction [6]. Yet, there are gaps that must
be addressed to better translate quantitative cancer research into clinical implementation.
Here, in this review, we outline individual aspects of chemical biology research and their
quantitative frameworks. We also summarize progress in this area of cancer research,
highlight key gaps, and propose concrete steps forward.

2. Modeling Drug Dose Response

The goal of quantitative biology is to quantify biological processes and chemical
biology to discern the effect of chemicals on biological systems. Proteins are the functional
molecules of life, important for carrying out most biological reactions and in return for
steering biological processes. Hence, a major focus of chemical systems biology is to model
the response of different doses and kinetics of chemical perturbagens on enzymes.

For example, enzyme inhibitors are often pharmacological agents that competitively
and reversibly inhibits substrate binding and enzyme activity [7]. The kinetic behavior for
many enzymes can be explained with a Michaelis-Menten (MM) model for enzyme-ligand
or enzyme-substrate binding and catalysis:

E + S
k1



k−1

ES
k2→ E + P

where E stands for enzyme, S stands for substrate and P stands for product. ES is an
enzyme-substrate complex that is formed prior to the catalysis. Formation of ES requires
only binding and hence is reversible, indicated by equivalent rate constant k1 and k−1 for
forward and reverse rate for the event. On the other hand, the overall rate-limiting and
irreversible step in the reaction is the breakdown of the ES complex to yield product, which
can proceed with rate constant k2.

Reaction velocity from this reaction can be described as a function of substrate concen-
tration using the following formula, which is typically referred to as the Michaelis-Menten
(MM) equation:

v = ([S]Vmax)/([S] + Km)

where, v = rate of reaction during initial velocity condition; Vmax = maximal reaction
rate; S = substrate concentration; Km = Michaelis-Menten constant. Interestingly, since
the value of Km at 0.5 Vmax condition equals to [S], Km is often termed as the substrate
concentration at half maximal velocity (Figure 1a).

A MM equation is different from an enzyme substrate reaction progress curve that
often describes a kinetic equilibrium. It is important to note that the MM model plot
in Figure 1a does not describe activity of the enzyme under a continuous time variable;
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instead, velocity, v is calculated separately for corresponding individual substrate values
(Figure 1b) [8]. Hence, many different measurements of v are calculated each under
initial velocity conditions with varying substrate concentrations at or below the Km value
(Figure 1a). Measurement at the initial velocity conditions ensures that the equation is
insensitive to the effect of velocity variation during reaction progression. However, the
equation predicts saturation of reaction rate at Vmax and an initial logarithmic increase in
velocity as a function of substrate concentration (Figure 1a) [7].
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Figure 1. Reaction kinetics and velocity plots. (a) Michaelis-Menten reaction rate is plotted as a
function of substrate concentration. Reaction rate is saturated at Vmax. (b) Reaction progress curve
for initial velocity measurement under a varying concentration of substrates and enzyme as indicated.

Formation of product, post-enzyme-substrate mixture is the quantitative estimate of
reaction rate and when tracked and plotted over a period indicates the reaction progress
rate (Figure 1b). However, initial velocity of the enzymatic reaction is separate from the
velocity of reaction during reaction progression. Initial velocity represents the reaction rate
when less than 10% of the substrate has been depleted or less than 10% of the product has
formed. Under these conditions, it can be safely assumed that the substrate concentration
does not significantly change and does not reach saturation limit for enzymatic activity.
Furthermore, it can also be assumed that, in such conditions, the contribution of reverse
reaction is minimal [8].

The MM equation is a first order reaction which results in a linear increase in v until
the reaction saturates due to maximal occupancy of enzyme with substrate. This is a classic
example of 1:1 substrate enzyme interaction consistent with the ‘lock and key’ model.
However, for enzymes with multiple substrates, cooperativity amongst the substrates for
enzyme binding and requirement of maximal enzyme site occupancy for enzyme activity
results in an initial lag time for reaction initial velocity followed by an exponential increase
in enzyme activity and subsequent saturation. In this case, the reaction follows a multi-
order non-linear and sigmoidal reaction kinetics, often consistent with a so-called ‘induced
fit’ model, determined by what is called a hill coefficient. The higher the hill coefficient the
sharper the inflexion of the hill curve (Figure 2) [9].
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3. Determination of IC50 for Inhibitors

The measurement of enzyme activity in the linear initial velocity condition is often
time not possible due to multiple reasons, lack of a measurable assay read out being
one of them. In these cases, the enzyme or a linked biomarker response is measured at
a fixed time point as a function of varying substrate concentration. This concentration-
response plot is similar to the Michaelis-Menten plot except that response is not calculated
at initial velocity condition (Figure 3a). Furthermore, for enzyme inhibitors the curve simply
follows an upside-down version of the concentration response plot for an enzyme substrate
(Figure 3b) [10]. Effects of an inhibitor on enzymatic reaction can often be determined
by plotting a dose/concentration response plot where x-axis represents varying doses of
the inhibitor and y-axis represents corresponding reaction rate estimates. Notably, in this
setting, the enzyme and substrate concentration are kept constant. The dose response plots
are widely applied in pharmacology and chemical biology. For example, it is often the first
assay to be performed to identify a candidate list of active/lead compounds by screening
a library of known or unknown ones. It is also applied for determination of ideal dose
range and therapeutic window as well as for structure activity relationship (SAR) assay
for chemical/functional group variation of a desired compound’s backbone for activity
enhancements. C The 4-parameter logistic nonlinear regression model (4PL) for data fitting,
that describes the sigmoid-shaped response pattern, is an example of this type of model
(Figure 3a,b) [10]. For example, in Figure 3a light blue curve represents a concentration
response plot for an enzyme inhibitor.
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response curves. The theoretical (solid black line) activity represented as plate control and maximum
activity tested (broken black line) can also be different.

Analogous to MM constant (Km), substrate concentration required to result in 50%
activity is called EC50 (effective concentration to reach 50% activity). On the contrary, the
concentration of compound that results in 50% inhibition of maximal activity is termed the
IC50 (inhibitor concentration yielding 50% inhibition) [11]. In this review, we discuss the
IC50 calculation often deployed in cancer biology, where instead of inhibitor binding to
the target of interest (target-based), biologists measure the inhibitor response on cellular
viability (phenotype/cell based).

Some criteria for successful concentration-response curves are listed in the discus-
sion below.

1. Well defined top and bottom plateau values need to be established. To do so, it is
important to use sufficient range of inhibitor concentrations. These parameters are
critical for the mathematical models used to fit the data

2. A minimum of 8–10 inhibitor concentration data points for an accurate IC50 determi-
nation should be used
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3. Concentration ranges for the inhibitors should be spaced equally
4. The concentration data point counts and the range should be chosen so that half the

data points on the IC50 curve are above the IC50 value and half are below the IC50
value. This is difficult for IC50 measurements for compounds for which there exist
no prior knowledge. In this case, the inhibitors should be tested for response using
a broader range of doses followed by final IC50 estimation using narrower range
of doses

5. Enzyme concentration should always be kept constant and the lower limit for deter-
mining an IC50 is half of the enzyme concentration

6. Well readable and quantifiable screening strategies for measuring the response should
be employed. The quantification should be benchmarked under different experimental
conditions. For example, cellular viability can be measured by viable cell adenosine
triphosphate (ATP) level using the reagent cell titer glo (CTG)

7. At least three replicates for each data point should be collected. For cellular viabilities
these replicates need to be biological replicates

8. Criteria for reporting IC50′s are the maximum % inhibition should be greater than
50%; top and bottom values should be within 15% of theory; the 95% confidence limits
for the IC50 should be within a 2–5-fold range. Relative and absolute IC50 and EC50
is described in Figure 3b.

Depending on necessity, a wide array of reagents can be used as a replacement
of CTG for cell viability measurements. For example, dye coating and dye exclusion -
based experimental setup requires use of crystal violet, trypan blue, eosin, congo red and
erythrosine B staining. For non-ATP and nicotinamide adenine dinucleotide phosphate
(NADPH) -based colorimetric assay MTT, MTS, XTT, WST staining reagents are used
(PMID: 9869118, 28470513) [12,13]. For cellular protein and enzyme level as a proxy for
viability LDH and SRB assays are widely accepted. On the other hand, alamar blue and
CFDA-AM are two commonly used fluorometric cell viability assay (PMID: 28470513) [13].
Additionally, immunofluorescence and flow cytometry-based assays (e.g., Brdu, annexin 5)
are also commonly used for the purpose of determining viable cells (PMID: 28573164) [14].

The concentration-response curve response does not plateau at the baseline (e.g., 0%)
or does not saturate at the highest point (e.g., 100%). This may happen due to inter sample
heterogeneity (e.g., bimodal response samples) or due to technical issues. In this case,
the theoretical IC50 values is different from the test IC50 values calculated, giving rise to
inaccurate IC50 estimates. In those cases, area under curve (AUC) calculation can offer a
more accurate estimate of the response [15].

4. HTS Using Pharmaco-Chemical Library

A holy grail in oncology is so-called ‘magic bullet’ therapies that perturb only diseased
cells/proteins but leave normal healthy cells/proteins untouched. Over the course of
time, our understanding of proteins, as the functional molecules of cells, has immensely
improved and has resulted in interest to target them in pathophysiological conditions [16].
For example, we have undertaken technologically sophisticated high throughput screening
for pharmacological compounds that perturb or ameliorate the activity of a protein molecule
and thereby correct a disease phenotype.

In such a drug screening experiment, the efficacy of several pharmacological agents
are evaluated either against a disease phenotype or against an enzyme activity. The former
is called a phenotypic screen whereas the latter is known as the target-based screen. The
goal of these screening approaches is to identify, from a wide an array of initial compound
list, a smaller and tractable number of candidate compounds (often called ‘leads’) [17].

To find novel therapeutics against a disease, phenotypic screening, where a myriad
compounds are tested for reduction of a disease phenotype, is most commonly employed.
Phenotypic screening is unbiased and agnostic about the mechanism of action (MOA)
or the molecular target for the tested agents. Therefore, subsequent analysis for target
deconvolution is required for comprehensive understanding of the effect of the compound.
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In this regard, a more focused version of screening called target-based screening can be
applied. wherein this case, pharmacological agents are tested against a single or handful
of molecular targets; targets that have already been identified as a causal mechanism of
disease pathology. Target-based screenings are usually less time consuming, but difficult
to design. Moreover, target-based screening approaches are a non-starter for diseases for
which a knowledge deficiency exist (Table 1) [18]. Both approaches have their pros and
cons. Below is a comparison of phenotypic screenings and target-based screening (Table 1):

Table 1. Comparison between phenotypic and target-based screening.

Phenotypic Screening Target Based Screening

Molecular targets Not known Known

MOA Not known, but can be targeted
based on signaling pathways Known

Assay type Cell viability (e.g., luminescence
read out live cells)

Direct binding assays (e.g.,
fluorescence read out in FRET)

Assay scale Relatively difficult to scale up Easily scalable into
high throughput

Biological relevance Highly relevant to biology May not be relevant to
functional biology

Quantification methods Not available Structure activity
relationship (SAR)

Novel target scope High Low

For HTS, the concept of combinatorial chemistry was developed in the mid 1980′s, with
Geysen’s multi-in technology where hundreds of thousands of peptides were synthesized
on solid support in parallel [19,20]. Subsequently, one-bead one- compound (OBOC)
combinatorial peptide libraries and solution-phase mixtures of combinatorial peptide
libraries and phage display libraries were introduced. However, it was not until mid-90 s,
when the first example of a small-molecule combinatorial library was reported [21].

Combinatorial chemistry has been used for both drug lead discovery and optimization.
The highly focused parallel synthesis of small-molecule libraries (hundreds to thousands
of compounds), when developed in conjunction with computational chemistry, are particu-
larly useful for optimization of drug leads [10].

Recommendations and challenges for IC50 calculations in HTS:
Doubling time: IC50 is best calculated in an isogenic setting, where response of the

cells to a particular perturbation is best compared with that of a response without the
perturbation. However, in absence of an isogenic system, classifying IC50 spectrum of
many different cell lines into high and low, leads to a possibility that the difference in IC50
is due to doubling time differences (Figure 3a). For example, cells with higher metabolic
activity and doubling time, are prone to up taking the compound faster and hence will be
killed faster, resulting in an IC50 smaller than cells that grow slower. Hence, regression
analysis of IC50 and doubling time is required to rule out this phenomenon where, ideally,
no significant correlation between the doubling time and IC50 is preferred.

Number of cells or seeding confluency: To balance for the doubling time often cells
are seeded in a manner so that by the time they are ready for measuring the effect of the
drug they are of around 90% confluency. Quite intuitively, it has been observed that, higher
confluency of seeding requires a higher dose of compound to kill 100% of the cells. The
effect is often described as a drug sync/sponge effect. Hence, the initial seeding densities
of the cells required, needs to be accurately estimated by empirical trials [10].

Edge effect: Screening platforms often use small multi-well formats (e.g., 384 and
96-wells). It has been reported that the wells in the plate that are situated at the edge of the
plates are exposed to external stimulus such as temperature un-uniformly than that of the
wells in the middle. Hence, edge wells are usually exempted from using during the IC50
calculation in these plates.
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Vehicle effect: Each perturbation must be compared with a vehicle treatment cohort.
Often the Vehicle treatments can result in some response alone (Figure 3b). At long as the
response is below 10%, the response is considered acceptable. The vehicle can also result in
some confounding cellular effect above a certain dose; hence it is very important to keep
the vehicle dose within the limits of acceptable range. The lead compounds being tested
should have the same amount of vehicle in volume for comparative analysis. If compounds
involved in a screening assay were dissolved in various vehicles, the screen must consist of
many different ‘vehicles alone’ controls for comparative analysis as well.

5. Biomarker Prediction

One of the major limitations of phenotypic screens is the lack of understanding of any
molecular targets for the drug itself. Hence, target discovery from phenotypic screen has
been a major challenge in the field of chemical biology. Since the advent of high throughput
genomics technologies, many computational approaches have been undertaken to correlate
drug phenotype response to cellular genomic, epigenetic, transcriptomic, proteomic and
metabolic features [22–24].

National Cancer Institute (NCI) initiated a Drug sensitivity Dialogue for Reverse Engi-
neering Assessment and Methods (DREAM7; Available online: http://dreamchallenges.
org/ (accessed on 12 August 2022) project to gather momentum and bolster enthusiasm
for this very important challenge of predicting biomarkers from drug sensitivity and vice
versa. The Challenges is one of the first of kind- a community-based collaborative com-
petition oriented towards crowdsourcing solution and open-data sharing [22,23]. The
DREAM7 Challenge also benchmarks many drug sensitivity prediction methods. For ex-
ample, kernel-based prediction methods, which depend on machine learning algorithm for
pattern matching (e.g., support vector machine or SVM), differ from feature-based methods,
which depends on a feature map generated by training dataset, in terms of utilization of
the user-defined feature map [22,23,25,26].

In NCI-DREAM7 Challenge, for training datasets a multi-OMICS (e.g., copy number
variation, DNA methylation, point mutations, transcriptional and protein level estimates)
approach was pursued. Interestingly, the predictive models that used multi-omics profiles
outperformed a single-OMICS prediction model, which suggests genomic, epigenomic, and
proteomic profiles provide complementary signal for drug response prediction [24,27,28].
Importantly, prediction algorithms validated previous biological knowledge for breast
cancer and provided insight into non-linear feature relationships during modeling [22,23].

One useful approach is a regularized regression model known as elastic net [29].
One of the major problems of these biological datasets is the asymmetry of the matrices.
The columns of the matrices containing various treatments (<200) were much too small
in number than the rows of the matrices that contain genomic features (>5000), which
poses a computational challenge for regression model often known as ‘p >> n ratio prob-
lem’ [24,25,30]. Ordinary regression models due to this asymmetric in matrices generates
overfitting solutions resulting in false positive/type1 errors. To solve this, the elastic net
generates sparser biomarkers based on a regularized regression model where the equation
balances between lasso and ridge regressions. Furthermore, the resulting solutions can be
represented as a heatmap (Figure 4a) [15,30–32].

The best-performing algorithm was based on the Bayesian efficient multiple kernel
learning (BEMKL) model. BKMEL uses a kernelized regression model that makes use of
both multi-task and multi-view learning algorithms [23,26]. In Multiple kernel learning
(MKL) algorithm, pairwise similarities of cell line OMICS profile constitute an initial
kernel and are subsequently combined into a compound kernel. In multi-task learning
(MTL), on the other hand, the model is trained simultaneously for all the drugs and thus
differ from the stepwise kernel generation strategy employed in MKL. BKMEL introduces
hyper-parameters and an error term/bias to account for poor intersection of multi-OMICS
datasets [22,23].

http://dreamchallenges.org/
http://dreamchallenges.org/
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Figure 4. From heatmap to actionable OMICS feature selection. (a) Heatmap representation of a
typical regularized regression (elastic net) driven dose response versus biomarker plot. IC50 of many
different drugs in a panel of cell lines is plotted on the first row and the other row 2 represents
anti-correlative biomarkers and row 3 represents correlative biomarkers. Biomarker solutions are
rank ordered based on their score. (b) Heatmap representation of chemigenomic interaction in an
isogenic setting. Many genetic alterations in ‘Cell line X’ is presented on rows whereas columns
represent viability of the genetically modified cells under different compounds (columns).

6. IC50 Measurements in Isogenic Settings

Biomarker prediction depend on a correlation between features and drug response.
However, these methods do not essentially establish causality. To address this, incorpo-
rating tumor associated alterations in an isogenic system is increasingly being pursued
for comprehensive chemogenomic analysis [33]. In this setting, a patient derived cell line
or organoid of interest is genetically subjected to very specific genetic modifications and
subsequently drug responses are measured across the board to determine the effect of the
genetic alterations. The resulting viabilities can be represented as a heatmap (Figure 4b).
On many occasions, these have contributed crucial understanding of oncogenic addiction,
specificity of crosstalk between pathways and genetic interactions in cancer. Recently,
the ease of activating or perturbing genetic alterations using CRISPR based technologies
have paved the way for new opportunities for high throughput chemogenomic interaction
analyses [34–40].

7. Signaling Pathway Analysis and Target Discovery

In biological response versus feature correlation analyses, instead of enrichment of
a single biomarkers, enrichment of a list of functionally related group of genes is more
informative. As a result, increasingly the classical gene-based approaches that ignore
the modular nature of most human traits is being replaced with a more functionally
holistic pathway enrichment approach. In this regard, statistically computing overlapping
between experimental OMICS datasets (such as exome, methylome, RNAseq, quantitative
proteomic, metabolomic, etc.) and curated pathway databases (e.g., GO, ENCODE, KEGG,
REACTOME, etc.) have become routine [41–45]. The computational analyses depend on
either hypergeometric tests (ENRICHR) or a signal to noise based (S2N) analysis (BROAD
institute GSEA) [45–47].

In pathway analysis, a set of candidate/query genes are compared against a library of
curated ‘gene sets’ each of which includes genes that are bundled due to their participation
in a signaling pathway or biological function). The candidate/query gene sets are usually
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composed of genes that are differentially upregulated or downregulated in an OMICS
dataset such as gene expression, proteomics, etc. (Figure 5). The prototypical enrichment
or overrepresentation (ORA) analysis is usually performed via comparing the test gene
set with that of the curated gene set using hypergeometric test, where null hypothesis
represents a baseline or random-chance representation probability [48–51]. Overlapping is
considered significant if the hypergeometric test produces a significant p value (Figure 5).
Hypergeometric test can be done in presence or absence of weighted or ranked gene sets
as well. However, this method does not consider the topology of a signaling network. In
biological pathways, genes/proteins tend to perform in a network where each gene/protein
can be thought to be as a ‘node’ (drawn as circles) and their regulation between one another
is signified by ‘edges’ (drawn as lines) (Figure 5). From this network point of view, minor
variation in gene/protein neighborhood and directionality of reaction contributes to a
vastly different biological function. Hence, while considering overrepresentation, curated
databases that incorporate directionality and neighborhood information (such as Reactome,
KEGG, WikiPathways, etc.) produces better signaling pathway analysis (Figure 5) [42,43,52].
More recently, even more granular context specific sub-circuitry and subnetwork based
over representation analysis have become increasingly useful and is called mechanistic
pathway activity (MPA) based pathway analysis. For this analysis, the curated database
not only has the topology information it also has positivity and negativity information for
the nodes in play (Figure 5) [53–56].
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8. Form Pathway to Target Discovery

Pathway analysis, based on correlation, generates a single or a few candidates signal-
ing pathways as target of the drug. However, it neither establish causality nor pinpoint
a single gene/protein as a target. Hence, for target discovery the goal is to home in on
a single protein–protein interaction (PPI) from protein interaction signaling networks; a
single enzyme target for cascade of enzymatic reaction; a single gene target for a gene
regulatory network [34,57,58]. Causal relationships of a perturbagen often needs to be
established by genetic manipulation of the candidate genes/proteins one at a time [59].
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Recent technological advances, including genomics, proteomics, small interfering RNA
CRISPR, and mouse knockout models have allowed us to measure the effect of shortlisted
candidate pathway regulators on the cellular phenotype, which allows us to identify a
targetable protein [18,59].

Computational biology and structural biology have been instrumental in deciphering
drug-protein and protein–protein interactions in absence and presence of the perturbagens.
If a single protein is thought as a hub, then the protein that interacts with it and forms a
PPI network constitute the interactome for the protein of interest [60,61].

Structural biology is crucial for PPI research. X-ray crystallography, protein-based
nuclear magnetic resonance (NMR) spectroscopy has made it possible to generate and study
3D structure and active site pockets of protein molecules. Computer simulated docking of
perturbagens, often known as in silico docking, often faithfully recapitulates the biological
ligand/inhibitor binding pocket on the protein [58,61]. However, 3D structures generated
through these methods often are static and fails to recapitulate the dynamic nature of the
protein-ligand interaction. Furthermore, crystallization of the protein itself requires many
modifications of the protein molecule such as truncation and/or mutations [58]. Although
far from perfect, in the last few years, significant improvement in dynamic structural
simulations such as monte carlo simulations have raised remarkable promise for in silico
simulations for protein-ligand/inhibitor interaction [62].

9. Quantitative Structure Activity Relationship (QSAR) and Physicochemical
Properties of Drugs

Quantitative Structure-Activity Relationship modeling is one of the major computa-
tional tools employed in medicinal chemistry [63,64]. In QSAR analysis a structural element
(called a molecular descriptor) of the lead chemical compound is modified and the response
in activity is measured [65]. The goal, this way, is to generate an array of activity response
and curate and finetune the best response. Modification of molecular descriptor of the
compound can be based on its chemical 2D structure as well as 3D topography [63,66].

One of the major challenges with QSAR equations is that of faithfully predicting the
effect of multiple modifications at once. For example, two colinear molecular descriptors
independently may result in improvement in QSAR response; however, when introduced
together may result in antagonistic response. This indicates the importance of experimental
validation of QSAR response to avoid such confounder effect.

Moreover, applications of the concept of drug-likeness, which compares physical
properties of candidate pharmacological chemicals (such as lipophilicity) with that of other
validated compounds and approved drugs to predict pharmacodynamics and pharma-
cokinetics of the candidate drug [66]. These in silico predictions help both the final in vivo
preclinical and clinical validation experiments, by helping decide the range of doses and
time-period to be tested.

10. Drug Synergy

For any complex disorders, rational design of multi-targeted drug combinations is a
promising strategy not only to improve individual drug potency and efficacy, but also to
tackle resistance to individual drugs. A drug combination is usually classified as synergistic
or antagonistic, depending on the deviation of the observed combination response from
the expected effect calculated based on a reference model of non-interaction [67]. There are
many metrics for drug combination measurements. Combination effect measurements can
vary due to the experimental design. For example, before the advent of high throughput
platforms single dose combination therapy was widespread [15,40,68]. However, the field
has moved towards a much more sophisticated and comprehensive methods of combining
the doses of the drugs (Figure 6) [68–71].
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Figure 6. Drug synergy measurement methods. (a) Synergy measured by visualizing left-shifting
of dose response curve of Drug 1 in presence of the Drug 2. (b) Cartoon illustrating comprehensive
checkerboard- style experimental setup where combinatorial doses are marked as purple and only
Drug 1 as red and only Drug 2 as blue. (c) Isobologram analysis indicates multiple possible outcomes
for drug interaction analysis- for additivity diagonal, independence rectangular, for synergy concave
and for antagonistic convex isobolograms.

Often, synergy is calculated by generating comprehensive dose response under a
varying level of Drug 1 and Drug 2 (Figure 6a) [72]. These generate a symmetric matrix and
often called checkerboard dose combinations (Figure 6b). However, due to effort intensive
nature of this setup, synergy is often calculated by measuring dose response curve of cells
under Drug 2, in the presence of a few doses of a test compound, Drug 1 [68,72,73]. The
graph looks like few dose–response curves in the same plot and they superimpose in top
of each other in absence of synergy or antagonism and shift left or right in presence of
synergy and antagonism, respectively, (often called a multiple-ray plot). Synergy can also
be measured using just a single dose of Drug 1 and Drug 2. However, quantification of
synergy under those condition is difficult [72,73]. For any two compounds Drug 1 and
Drug 2, following is a summary of ways for quantifying the synergy.

Statistical independence/Bliss: This quantification is applicable for synergy calculation
even using a single dose. However, Synergy calculation using a few doses, or a single dose
is also possible. This can be calculated by calculating the probability/percentage of killing
under each individual drug treatment-

Pa+b = 1 − (Pa × Pb)

where Pa = probability of killing cells by drug 1; Pb = probability of killing cells by drug 1
and Pa+b = probability of killing cells together.

The other quantification methods for synergy are quantified by measuring and adding
maximum response by each drug alone and then measuring the effect of the combined
dose. If combined effect of maximum dose is more than that of the additive effect, the
interaction is called synergistic.

Gaddum pharmacological interaction: In presence of the Drug B; the dose response
curve of Drug 1 shifts on the left and the new IC50 value is α, lower than that of the IC50 in
absence of Drug 2. Gaddum pharmacological interaction measures difference in this IC50
as a measure of synergy (Figure 6a) [74].

Isobologram analysis: In checkerboard comprehensive synergy analysis, a response-
surface plot generated as such allows generation of isobologram graphs (such as contour
plots in geography) by connecting identical level of toxicities in the different drug com-
binations [75,76]. For example, if Drug 1 alone causes 20% toxicity and Drug 2 causes
20%; Drug 1 and 2 together causes 40% toxicity then the isobologram would go through a
rectangle line as all the 20% toxicity values would fall in that isobologram line. However,
this visualization does not aptly explain the additive effect of two drugs (Figure 6b,c).
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Lowe additive model analysis: In comprehensive analysis, Drug 1 will interact with
Drug 1 as in an additive manner [77,78]. From this expectation, If Drug 1 and Drug 2
behaves as though their effect is additive the isobologram would go through a diagonal
line. Similarly, if the combination results in better response than each compound alone then
the isobologram would go through a concave line and similarly for antagonistic interaction,
a convex line.

The Chou Talay combination index from this can be calculated using the formula for
this is (Figure 6c):

Combination index (CI) =
a

IC50_A
+

b
IC50_B

CI > 1 means antagonism; CI < 1 means synergistic interaction and CI = 0 means
additive interaction (Figure 6c) [79]

11. Case Study

In this section, we now describe an experimental example that illustrates the concepts
discussed above. In this example, an investigator found a cellular receptor tyrosine kinase
called Fibroblast Growth Factor Receptor 1 (FGFR1) and its downstream pathway to
be upregulated in a subset of non-small cell lung cancer (NSCLC) samples (Figure 5).
Additionally, the investigator found that genetic suppression of FGFR1 reduces the viability
of NSCLC cells by performing crystal violet and cell titer glo (CTG)-based viability assays
(described in Section 3). Hence, the investigator concluded that this particular subset of
NSCLCs required FGFR1 for cell proliferation.

Establishment of this causal relationship between the FGFR1 pathway and cell viability
motivated the investigator to next test existing chemical perturbagens of the FGFR1 path-
way, such as Infigratinib, using the CTG assay (Figure 3). Unfortunately, the investigator
found that although the effect is specific, the response to the FGFR inhibitor has a narrow
therapeutic window indicated by some toxicity even in normal cells and also requires a
high dose for therapeutic effects. Hence, the investigator decided that one next step would
be to design an improved inhibitor for this pathway of interest.

The next goal was to test a library of chemical compounds which contain both struc-
turally diverse as well as structurally similar compounds with slight functional group
variation compared to Infigratinib. The library was tested in a panel of ~100 NSCLC
patient-derived cell lines with 3 replicates for each data point and 12 doses of 3 times serial
dilution from the highest dose. The highest dose used for any compound is empirically
determined (e.g., 33 µM for Infigratinib). The compound response patterns were also
clustered in an unbiased manner. In an ideal case, this cluster should reflect biologically
relevant information. For example, small molecules with shared MOA should cluster
together. As expected, AZD4547, another FGFR inhibitor was in the same functional clade
as Infigratinib. A candidate list of 10 compounds was rank ordered from this experiment
and further validated in vitro. These 10 compounds include candidate leads from both the
same (such as other FGFR inhibitors) and different functional clades (such as AKT inhibitor
MK-2206) as Infigratinib.

Leads that parsed into a different functional clade (and hence employ different MOAs),
and yet worked potently against FGFR1 upregulated NSCLC provided novel insights. For
example, these small molecules might exhibit on-target blockade of the FGFR pathway
up or downstream of the FGFR receptor tyrosine kinase (e.g., AKT inhibitor MK-2206).
Additionally, some small molecules could also function in a synthetic lethal-like manner,
where they exhibit potent responses against FGFR1 upregulated NSCLC by acting indirectly
against additional pathways required for NSCLC tumor survival in this molecular context
(e.g., PARP inhibitors).

Although the compound screen was informative in identifying novel leads, no single
agent perturbation was sufficiently potent to elicit a complete response (near 100% cell
death). Hence, the investigator next applied these 10 lead compounds in dual combi-
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nations (10 × 10 = 100 unique combinations) and then measured the viability response
again in a high throughput manner. The compound combination effect was then mathe-
matically classified as synergistic, antagonistic, or additive as explained above (Figure 6).
The investigator identified potent synergy between FGFR and Mitogen-activated protein
kinase (MAPK) pathway inhibitors (e.g., Trametinib). Combined application of these small
molecules exhibited a more complete effect against FGFR1 upregulated NSCLC cells.

Interestingly, this compound screen could also be carried out in an unbiased manner
in the absence of the pathway information mentioned above. Given the availability of
molecular feature dataset for each individual cell lines (such as genomic, transcriptomic,
proteomic and/or other), mathematical models can then be applied to uncover associations
between cell viability response and genomic feature variables (Figure 4). In this way, it is
also possible to identify therapeutic and MOA hypotheses in an unbiased manner even in
the absence of any candidate pathway a priori.

We use this example to demonstrate scenarios where these tools can be directly applied.
There are many possible combinations of ways these techniques can further be used in
the field.

12. Bench-to-Bedside Translation

Preclinical research, despite certain limitations, is a powerful approach to predict
in vivo clinical responses [5,80]. However, translating observations identified in preclincial
systems into actionable therapies in vivo involves a range of additional validations. For
example, pharmacogenomic analysis carried out in patient-derived cell lines are often
validated in patient derived xenografts (PDXs) and preclinical animal models (a process
often called ‘T1-T4 stage’ validations) [81,82]. Once a concordant observation is achieved in
many different such models, the therapy is advanced into clinical trials. However, despite
this hierarchy of validation process, clinical trials often show discouraging outcomes [83].
Hence, a goal of translational research is to sequentially narrow down as many candidate
therapies as possible. In this regard, as our ability to test thousands of compounds and
natural products in hundreds of cell lines and animal models has proven useful [15,84].

Preclinical research has also paved the way for predicting pharmacokinetics and
pharmacodynamics of drugs. For example, the effective dose of a drug required in the
patient can be measured accurately by comparing QSAR and IC50 properties of drugs with
other optimized drugs. Moreover, doses of a wide variety of drugs measured in isogenic
cell lines settings can successfully recapitulate the dose spectrum required in syngeneic
mouse models and even in human patients [15,71,85].

Although, the link between IC50 at the cellular level and in vivo at the plasma con-
centrations may sometimes be complicated, a general equation linking in vivo doses and
effective concentrations is:

(D/τ) = (CL/F) × Ctarget

where: D = Dose, τ = dosing interval, CL = body clearance of the drug, F = bioavailabilty
(fractions absorbed) of the drug by the selected route of administration and Ctarget = total
plasma concentration required for desired effect [86]. The Ctarget is usually greater than
IC50, since desired response often is more than just 50% of inhibition of the system.

Furthermore, precise in vitro genetic modification of patient derived T-cells has re-
sulted in breakthrough efficacy in the form of immunotherapy [87]. In this regard, the
efficacy of immunotherapeutic agents- ‘checkpoint inhibitors’, have also been widely facili-
tated by mechanistic insight gained by in vitro and preclinical research [88].

13. Challenges and Scopes

Quantitative chemical biology research is not without limitations. For example, HTS
performed in cell lines has not often faithfully recapitulated the complexity of the microen-
vironment, cell-tissue heterogeneity and host-microbiome interactions in mouse models
or human patients [89,90]. To address this, the field is increasingly experimenting with
3D and co-culture driven models [91,92]. As mentioned before, a caveat of biomarker and
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candidate target prediction approaches is that it often is correlative and lacks causality.
With the advent of artificial intelligence, the use of machine learning is proving useful to
predict causal biomarkers more accurately for therapy [23]. However, machine learning
is limited in its ability to nullify batch artifacts as well as to combine different OMICS
data—challenges to be addressed in the future.

For causality analysis, the recent advent in CRISPR technology has made it possible
to perform high throughput loss of function genetic screens and couple that information
with chemical perturbagen screens in order to improve target discovery [34,59]. Variations
of CRISPR technologies, such CRISPRa, has made it possible to conduct gain of function
screens in this context as well [37,38,59].

One of the major limitations of current cancer therapies is the emergence of resistance.
Accumulating evidence indicates not only mutation of the drug target but also the presence
of co-occurring mutations and heterogenous genetic and epigenetic background of tumors
as causative factors promoting drug resistance [93,94]. Acquisition and analysis of -OMICS
data serially to characterize tumor evolution during treatment has the potential to provide
target-driven therapeutic approaches. One goal would be to predict the trajectory of tumor
evolution during treatment based on preclinical and clinical data and deploy and adapt the
therapy regimen accordingly [83,95].

14. Conclusions

In this review, we have attempted to summarize recent developments in quantitative
chemical biology and outlined parameters for such quantitative assays. Successful imple-
mentation of cancer therapeutics requires a comprehensive understanding and analysis of
both -OMICS data and pharmacodynamic-pharmacokinetic responses [83]. We hope that
an improved quantitative understanding of chemical biology will transform aggressive
cancers into chronic or curable conditions through more accurate clinical use of current and
future systemic therapies.
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