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Simple Summary: Upregulation of transforming growth factor-beta (TGF-β) signaling in melanoma
contributes to the formation of immune-suppressive tumoral environments and is associated with
poor response to immunotherapeutics, including anti-programmed death-1 (PD-1) therapy. Our study
aimed to investigate the immunotherapeutic potential of a novel next-generation TGF-β2 antisense
oligonucleotide (ngTASO) in combination with anti-PD-1 therapy using a melanoma-bearing human
immune system mouse model. Our findings confirm that blockade of TGF-β signaling by ngTASO
improves the T cell-mediated antitumor potential of anti-PD-1 therapy via facilitating intratumoral
infiltration of CD8+ cytotoxic lymphocytes and their activation. These results suggest that ngTASO is a
promising combination strategy with anti-PD-1 therapy for the treatment of immune-excluded melanoma.

Abstract: Anti-programmed death-1 (PD-1) immunotherapy is one of the most promising therapeutic
interventions for treating various tumors, including lung cancer, bladder cancer, and melanoma. How-
ever, only a subset of patients responds to anti-PD-1 therapy due to complicated immune regulation
in tumors and the evolution of resistance. In the current study, we investigate the potential of a novel
transforming growth factor-beta2 (TGF-β2) antisense oligonucleotide (ngTASO), as a combination
therapy with an anti-PD-1 antibody in melanoma. This study was conducted in a melanoma-bearing
human immune system mouse model that recapitulates immune-excluded phenotypes. We observed
that the TGF-β2 blockade by ngTASO in combination with PD-1 inhibition downregulated the tumor
intrinsic β-catenin, facilitated the infiltration of CD8+ cytotoxic lymphocytes (CTLs) in the tumor,
and finally, enhanced the antitumor immune potentials and tumor growth delays. Blockade of
TGF-β2 combined with PD-1 inhibition also resulted in downregulating the ratio of regulatory T
cells to CTLs in the peripheral blood and tumor, resulting in increased granzyme B expression. In
addition, co-treatment of ngTASO and anti-PD-1 augmented the PD-L1 expression in tumors, which
is associated with an improved response to anti-PD-1 immunotherapy. These results indicate that
the combination of ngTASO and anti-PD-1 exerts an enhanced T cell-mediated antitumor immune
potential. Hence, co-inhibition of TGF-β2 and PD-1 is a potentially promising immunotherapeutic
strategy for immune-excluded melanoma.

Keywords: melanoma; TGF-β2; anti-PD-1; antitumor immunity; humanized mouse

1. Introduction

Programmed death-1 (PD-1, also known as CD279) is an immune checkpoint protein
expressed on the surface of T cells and is responsible for the suppression of the antitumor
immune response by binding to the programmed death ligand-1 (PD-L1, also known
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as CD274 or B7 homolog 1) on tumor cells [1]. PD-1/PD-L1 signaling promotes tumor-
induced immunosuppression through impeding T cell receptor-mediated production of
interleukin (IL)-2 and proliferation of T cells [2,3]. Clinically, most advanced cancers,
including melanoma, non-small cell lung cancer, and gastric cancer, utilize PD-1/PD-L1
signaling to achieve tumor escape from immune surveillance [4–6]. Therefore, targeting the
PD-1/PD-L1 axis is currently one of the most promising strategies with clinical significance
in the immune-oncology field. The major anticancer drugs approved by the Food and Drug
Administration or in clinical trials for immune checkpoint inhibition are associated with
PD-1/PD-L1. Among these PD-1/PD-L1 blockers, pembrolizumab (an anti-PD-1 antibody)
is known to be one of the most potent immune checkpoint inhibitors (ICIs) and is approved
for the treatment of metastatic melanoma in certain situations [7]. However, the therapeutic
benefits of a PD-1/PD-L1 blockade by pembrolizumab in melanoma are only achieved in a
specific subset of patients [8]. These varying outcomes may result from the complexity of
the tumor microenvironments (TME), including T cell depletion, T cell dysfunction, and
altered PD-L1 expression in tumors [9]. Based on the mechanisms involved in resistance to
anti-PD-1 monotherapy, studies on various targets for improving the immunotherapeutic
potential of PD-1 inhibition are in progress.

The blockade of the transforming growth factor-beta (TGF-β) pathway may be one of
the most attractive strategies in malignant melanoma, providing a prospect of combina-
tion therapy with PD-1 inhibition through enhancing T cell activation and infiltration in
tumors [10,11]. TGF-β plays a crucial role in the pathogenesis of melanoma. It is produced
from components of the TME, including tumor cells, stroma cells, and immune cells [12,13].
Although TGF-β has a tumor suppressive effect in the premalignant state of cancer, an
increase in TGF-β with tumor progression is commonly associated with poor prognosis
in melanoma [13,14]. The possible mechanisms of TGF-β-mediated tumor progression
are numerous and may involve the following: (1) promotion of neo-angiogenesis [15],
(2) increased invasion and motility through upregulation of epithelial—mesenchymal tran-
sition signaling [16,17], (3) inflammation in some tumors [18], and (4) escape from the
immune surveillance [19,20]. In particular, TGF-β suppresses the antitumor immunity
through induction of suppressive immune cells such as regulatory T cells (Tregs) and
myeloid-derived suppressor cells, as well as suppression of immune cells such as cytotoxic
T lymphocytes (CTLs) and natural killer (NK) cells [12,20,21]. Recently, we confirmed the
antitumor immune potential of TGF-β2 inhibition by an antisense oligonucleotide (ASO)
and suggested the possibility of using it in combination with an immunostimulator (IL-2)
in the breast cancer and melanoma models [22,23]. However, the effects of the TGF-β
signaling blockade by ASO therapy in combination with PD-1 inhibition on antitumor
immunity against melanoma have not been investigated yet.

In the current study, we investigate the enhanced tumor growth inhibition and related
antitumor immune mechanisms of anti-PD-1 antibody in combination with a novel next-
generation ASO of TGF-β2 (ngTASO) for the treatment of melanoma. In the melanoma-
bearing human immune system (HIS) mouse model, we observed that a combination of
ngTASO and anti-PD-1 antibody additionally delay the tumor growth, which is mediated
by the potentiation of T cell-mediated antitumor immunity such as activation and increased
infiltration of CTLs. These results indicate that blocking TGF-β2 by ngTASO in combination
with PD-1 inhibition is considerably implicated in enhancing antitumor immunity, and
provide a scientific rationale for its development as a promising anticancer strategy for
melanoma.

2. Materials and Methods
2.1. Oligonucleotide

ngTASO was developed by Autotelic Bio, Inc. (Seongnam, Korea). ngTASO was de-
signed to be human TGF-β2-specific, and the sequences of ngTASO are
5′-GGCGGCATGTCTATTTTGTA-3′ modified with 2′-methoxyethyl as indicated by under-
lined letters, and full phosphorothioate (PS) backbone modification.
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2.2. Cell Cultures

The A2058 cell line (human melanoma) was purchased from the American Type Cul-
ture Collection and cultured in a humidified chamber with 5% CO2 at 37 ◦C in DMEM sup-
plemented with 10% FBS, 100 IU/mL penicillin, and 100 µg/mL streptomycin. For qRT-PCR
and Western blot, A2058 cells were seeded at an approximate density of 2.4 × 105 cells/well
in a six-well plate using the complete medium. After 24 h of incubation, cells were treated
with ngTASO without the transfection reagent for 24 h (for qRT-PCR) or 48 h (for Western blot).

2.3. qRT-PCR and Western Blot

For qRT-PCR analysis, total RNA from the cell culture was extracted using the Qiagen
Rneasy kit (Qiagen, Venlo, The Netherlands) following the manufacturer’s instructions.
qRT-PCR was achieved using the QuantStudio 3 Real-time PCR device (Applied Biosystems,
Waltham, MA, USA). The primer sequences of target genes used in the current study are
presented in Table 1. The expression level of the TGFB2 gene was normalized to serine and
arginine rich splicing factor 9 (SRSF9) by the ∆∆ cycle threshold (∆∆ Ct) method as described
previously [24]. Quantification of target gene expression was measured by the formula:

∆Ct = Ct (TGFB2 gene) − Ct (SRSF9 gene)

Table 1. Primer sequences of target genes used for qRT-PCR.

Target Species Forward/Reverse Sequence (5′-3′) Tm (◦C)

TGFB2 Human
F CAGCACACTCGATATGGACCA 57
R CCTCGGGCTCAGGATAGTCT 61

SRSF9 Human
F TGTGCAGAAGGATGGAGT 55
R CTGGTGCTTCTCTCAGGATA 54

The relative expression level (∆∆Ct) was obtained by comparing ∆Ct treated sample
to the ∆Ct control. Relative fold change to the control group was calculated by the formula
(2−∆∆Ct).

2.4. Experimental Animals

Female NOD/scid/IL-2Rγ−/−/B2m−/− (NOD.Cg-B2mtm1Unc Prkdcscid Il2rgtm1Wjl/SzJ,
NSG-B2m) mice were purchased from The Jackson Laboratory (Bar Harbor, ME, USA).
Animal studies were performed using 7-week-old mice at the Laboratory Animal Research
Center of Chungbuk National University under specific pathogen-free conditions. All the
procedures of animal experiments were approved by the Institutional Animal Care and
Use Committee (IACUC) of the Chungbuk National University (CBNUA-1350-20-01).

2.5. Generation of a Melanoma-Bearing Human Immune System Mouse Model

The human melanoma-bearing humanized mice were generated by transplanting
human PBMCs (hu-PBL NSG-B2m model) followed by subcutaneous inoculation of A2058
cells, applying a previously described protocol with slight modifications [23]. Briefly, after
stabilization of human PBMCs obtained from Zen-Bio (Zen-Bio, INC., Research Triangle,
NC, USA), 1 × 107 cells of human PBMCs were quickly injected into a lateral vein of the
mouse tail. The human PBMCs used in this study were obtained from a single healthy
donor, and characteristics such as population distribution, human leukocyte antigen type,
and viability were verified. Five days post-transplantation of human PBMCs, A2058 tumor
cells in PBS (2 × 106 cells/100 µL/mouse) were subcutaneously xenografted in the right
flanks of NSG-B2m mice (this is day 0 of the experiment).

2.6. ngTASO and Anti-PD-1 Antibody Treatment

ngTASO was provided by Autotelic Bio. Inc., and the anti-PD-1 antibody (Pem-
brolizumab) was purchased from Merck Sharp & Dohme Corp. (Kenilworth, NJ, USA).
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From day 5 of the experiment, ngTASO (30 mg/kg) and anti-PD-1 antibody (100 µg/mouse)
were intraperitoneally administered twice a week and thrice a week, respectively. Tu-
mor volumes were measured using an electronic caliper and estimated by the formula:
(distance × width2)/2. Relative tumor growth was calculated using the formula: (tumor
volume on the day of measurement)/(tumor volume on the day of first administration).
Mice were sacrificed on day 23, and xenografted tumors were harvested, weighed, and
processed for analysis.

2.7. Fluorescence-Activated Cell Sorting (FACS) Analysis

For FACS analysis of human T cell subsets in the blood and xenografted tumor of
HIS mice, PerCP/Cyaninne5.5-labeled anti-human CD45 antibody (clone 2D1), Brilliant
Violet (BV) 421-labeled anti-mouse CD45 antibody (clone 30-F11), PE/Cyanine7-labeled
anti-human CD3 antibody (clone HIT8a), PE-labeled anti-human CD4 antibody (clone SK3),
APC/Cyanine7-labeled anti-human CD8a (clone 2D1), BV 650-labeled anti-human CD279
antibody, APC-labeled anti-human CD25 antibody (clone BC 96), and FITC-labeled anti-
human Foxp3 antibody (clone 206D) were all procured from BioLegend (BioLegend, San
Diego, CA, USA). To analyze the human CTLs and Tregs subsets in the blood of HIS mice,
approximately 100 µL of mouse blood was collected by retro-orbital bleeding on day 21.
For evaluation of tumor-infiltrating lymphocytes (TILs) in xenografted tumors of HIS mice,
1–2 mm3 of tumors harvested on day 23 were minced and incubated at 37 ◦C for 1 h with
a digestion cocktail containing 1 mg/mL collagenase type IV, 0.5 U/mL hyaluronidase
type V, and 1 U/mL DNAse I. Digested tumors were passed through a 70 µm cell strainer,
and the filtrate was used as a sample of TILs. Red blood cells (RBCs) in the blood and
tumor samples were removed by incubation with RBC lysis buffer (BioLegend), followed by
incubation with anti-CD16/32 for 10 min. The cells obtained were stained with antibodies
labeled with the appropriate fluorochromes for human T cell subsets present in the blood
and xenografted tumors of HIS mice. The intracellular staining for Foxp3 was performed
using the True-NuclearTM Transcription factor buffer set (BioLegend). All flow cytometry
data were acquired on FACS Symphony A3 (BD Bioscience, San Diego, CA, USA), and data
were analyzed using the FlowJo software (Tree Star, San Carlos, CA, USA).

2.8. Immunohistochemistry (IHC)

Harvested xenografted tumors were fixed in 10% neutral buffered formalin and em-
bedded in paraffin. The tissue blocks were then cut into 4 µm slices, collected on slides,
and subsequently deparaffinized. After rehydration, antigen retrieval was performed by
incubating the slides with 10 mM sodium citrate buffer (pH 6.0) at 100 ◦C for 10 min. Non-
specific responses were reduced by incubation with 3% hydrogen peroxide and 5% BSA.
Tissue sections were subsequently incubated overnight with primary antibodies against
active β-catenin (clone D12A1; Cell Signaling Technology, Inc., Danvers, MA, USA; 1:200),
human PD-L1 (clone E1L3N; Cell Signaling Technology, Inc.; 1:100), human CD8 (clone
D8A8Y; Cell Signaling Technology, Inc.; 1:100), human Foxp3 (clone D2W8E; Cell Signaling
Technology, Inc.; 1:200), and granzyme B (clone D6E9W; Cell Signaling Technology, Inc.;
1:200). The probed slides were reacted with a biotinylated secondary antibody for 1 h and
avidin-biotin peroxidase complexes (ABC Elite kit; Vector Labs, Burlingame, CA, USA) for
30 min. The peroxidase activity was visualized using a DAB kit (Vector Labs), followed by a
counter stain with hematoxylin. Images were acquired in at least four fields per slide by the
OlyVIA 3.2 software (Olympus, Tokyo, Japan), followed by slide scanning by SLIDEVIEW
VS200 digital scanner device (Olympus). The DAB intensity was quantified using the
ImageJ Fiji software, as described previously [25], and the number of DAB-positive cells
were counted by two experienced researchers in a blind manner.

2.9. Statistical Analysis

Statistical significances of the data were analyzed by Student’s t-test or one-way
analysis of variance (ANOVA) followed by a post hoc Dunnett’s multiple comparison test
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using the GraphPad Prism 5.01 software (GraphPad Software Inc., San Diego, CA, USA).
The results are presented as means ± standard errors of the mean (S.E.M.) or standard
deviation (S.D.). The p-values < 0.05 are considered statistically significant.

3. Results
3.1. ngTASO Downregulates TGF-β2 and Its Downstream Signaling

ngTASO is complementary to specific 20-nucleotide sequences of the human TGF-β2
mRNA and is involved in inhibiting TGF-β2 production. In this study, we observed that
ngTASO reduces the TGF-β2 mRNA level at 130.6 nM of half-maximal inhibitory concen-
tration (IC50) in A2058 cells (Figure 1A). Western blot was performed to investigate the
mechanism of ngTASO on alteration of TGF-β-associated signaling, including expressions
of TGF-β ligands (TGF-β1 and TGF-β2), the canonical pathway (p-SMAD2/3/SMAD2/3),
and non-canonical pathway (PI3K/Akt signaling). As shown in Figure 1B,C, the TGF-
β-associated proteins tend to decrease after exposure to ngTASO. Notably, the levels of
TGF-β2 and p-GSK-3β/GSK-3β were significantly decreased by ngTASO treatment. Eval-
uating the amounts of TGF-β2 in the A2058 cell supernatant using the enzyme-linked
immunosorbent assay revealed very low levels, below the detection limit. Furthermore,
the serum levels of TGF-β1 and TGF-β2 were significantly decreased in the ngTASO-treated
group compared to the vehicle-treated group in melanoma-bearing HIS mice (Figure S1A,B).
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Figure 1. Effects of ngTASO on TGF-β2 production and its associated downstream signaling
in A2058 cells. Alteration of TGF-β-associated downstream signaling was measured. (A) TGF-
β2 mRNA expression levels were measured by qRT-PCR and normalized to SRSF9 expression.
(B) Representative Western blot band images and (C) relative intensity ratios of each protein expres-
sion in A2058 were presented. Data are expressed as means ± S.D. from triplicate wells. * p < 0.05 vs.
control group (Student t-test).

3.2. TGF-β2 Blockade by ngTASO in Combination with PD-1 Inhibition Delays Tumor Growth

To investigate the antitumor immune interaction between human melanoma and
human T cells, we generated melanoma-bearing humanized mice by transplanting human
PBMCs followed by inoculation of A2058 cells, into NSG-B2m mice (Figure 2A). Tumor
volume was checked thrice a week after the administration of ngTASO and/or anti-PD-1
antibody. We observed that compared to the PBMC+vehicle group, co-treatment with
ngTASO and anti-PD-1 antibody significantly delayed the tumor growth from day 6 post-
administration (Figure 2B). Tumor weights were measured after the sacrifice of the animals
(day 23). Similar to the tumor volume results, administration of ngTASO in combination
with anti-PD-1 showed significantly decreased tumor weights compared to the vehicle-
treated group (Figure 2C). These results imply that ngTASO combined with anti-PD-1
exerts an additional effect on growth inhibition of xenografted A2058 tumors.
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Figure 2. Effects of ngTASO and anti-PD-1 co-treatment on tumor growth. Melanoma-bearing human
immune system mouse model was generated by transplanting human PBMC followed by inoculation
of A2058 cells into NSG-B2m mice. (A) Experimental scheme for the establishment of melanoma-
bearing hu-PBL NSG-B2m mice and treatment of ngTASO and/or anti-PD-1 antibody. (B) Relative
tumor growth was calculated using the formula ((tumor volume on the day of measurement)/(tumor
volume on the day of first administration)). (C) Tumor weights were measured at study termination
(23 days after tumor inoculation). The results are expressed as mean ± S.E.M. obtained from six mice
per group. * p < 0.05 and ** p < 0.01 vs. PBMC+Vehicle group (Dunnet’s test).

3.3. ngTASO and Anti-PD-1 Administration Modifies the Subpopulation of Human CD8+ T Cells
and Tregs in Peripheral Blood

Since the anticancer immune activity in the body is systemically affected by the differ-
ence in the composition of T cell subsets, we determined the proportion of CTLs and Tregs
in peripheral blood by FACS analysis. Treatment of ngTASO and/or anti-PD-1 presented
no significant alteration in human CD8+ cells among the human CD3+ cells in peripheral
blood (Figure 3A,C). However, the percentage of human PD-1+ cells in the human CD8+
cell population in the peripheral blood was significantly reduced after administering the
anti-PD-1 antibody (Figure 3A,D). As described in a previous study [26], decreased detec-
tion of PD-1+ cells by flow cytometry might result from a competitive binding to its target
between anti-PD-1 therapy and subsequent anti-PD-1 staining for FACS. The proportion of
human CD25+Foxp3+ cells among human CD4+ cells was significantly decreased in the
ngTASO treated groups as compared to the PBMC+vehicle group (Figure 3B,E). These re-
sults indicate that the inhibition of TGF-β2 by ngTASO in combination with PD-1 mediates
the downregulation of inhibitory T cell subsets in peripheral blood.
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Figure 3. Effects of ngTASO and anti-PD-1 co-treatment on reconstitution of T cell subsets in
peripheral blood. Subpopulations of human T cells in peripheral blood of hu-PBL NSG-B2m mice
were measured by FACS analysis on day 21. (A) The representative flow cytometry plots of human
CTLs (hCD8+PD-1+ cells) in the hCD3+-gated population and (B) human Tregs (hCD25+hFoxp3+
cells) in the hCD4+-gated population in peripheral blood of hu-PBL NSG-B2m mice. Data showing
the percentage of (C) hCD8+ cells among hCD3+ cells, (D) hPD1+ cells among hCD8+ cells, and
(E) hCD25+hFoxp3+ cells among hCD4+ cells. The results are expressed as mean ± S.E.M. obtained
from five to six mice per group. * p < 0.05 and ** p < 0.01 vs. PBMC+Vehicle group; @@ p < 0.01 vs.
PBMC+ngTASO group (Dunnet’s test). h, human.

3.4. TGF-β2 Blockade by ngTASO Combined with PD-1 Inhibition Downregulates the β-Catenin
Activation and Facilitates Human CD8+ T Cell Infiltration in Tumors

Due to its significance in T-cell exclusion and resistance to anti-PD-1 antibody therapy,
we evaluated the degree of tumor-intrinsic active β-catenin expression [27,28]. As presented
in Figure 4A,C, we observed significantly decreased expression in active β-catenin in the
anti-PD-1 alone-treated group or ngTASO and anti-PD-1 co-treated group compared to the
vehicle-treated group. As altered systemic and local microenvironments, such as immune
composition and biomarkers, affect the TIL levels [29], we next examined the number of
infiltrated human CD45+ cells and the ratio of human CD8+ T cells to human CD4+ T cells
in the xenografted tumor. Compared to the vehicle-treated group, co-treatment with the
ngTASO and anti-PD-1 antibody showed a significant infiltration of human CD45+ cells
into the xenografted A2058 tumor (Figure 4D). Moreover, the ratio of human CD8+ T cells
to human CD4+ T cells was significantly increased in the ngTASO and anti-PD-1 co-treated
groups compared to the vehicle-treated group (Figure 4B,E).
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Figure 4. Effects of TGF-β2 blockades combined with PD-1 inhibition on activation of β-catenin
and infiltration of CD8+ cytotoxic T lymphocytes (CTLs). Active β-catenin expression level in the
xenografted tumor was measured by IHC, and the subpopulation of tumor infiltrated human T
cells was assessed by FACS analysis. (A) Representative IHC images against active β-catenin, and
(B) representative flow cytometry plot of hCD4+ and hCD8+ cells in an hCD3+-gated population.
(C) The relative DAB intensity ratio of active β-catenin was evaluated in at least four fields per
specimen and five to six specimens per group. The relative ratio of (D) tumor-infiltrating hCD45+
cells and (E) the ratio of hCD8+ cells to hCD4+ cells among tumor infiltrated hCD3+ cells were
presented. FACS data were obtained from five to six mice per group. The results are expressed as mean
± S.E.M. * p < 0.05 and ** p < 0.01 vs. PBMC+Vehicle group (Dunnet’s test). Bar = 20 µm. h, human.

3.5. TGF-β2 Blockade by ngTASO Combined with PD-1 Inhibition Upregulates PD-L1 Expression
in Tumors

Since the exhaustion of TILs is largely mediated by the PD-L1/PD-1 axis [30], we
evaluated the PD-L1 expression of xenografted tumors and the PD-1 expression in tumor
infiltrated CTLs. As shown in Figure 5A,C, PD-L1 expression in the tumor was notably
upregulated by the TGF-β2 blockade in combination with PD-1 inhibition. In addition, the
percentage of human PD-1+ cells among the human CD8+ cells in xenografted tumors was
significantly diminished in the anti-PD-1 treated groups (Figure 5B,D).
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Figure 5. Effects of TGF-β2 blockades combined with PD-1 inhibition on PD-L1 expression and
subpopulation of PD-1+CD8+ cells in the tumor. The expression level of human PD-L1 in xenografted
tumors was evaluated by IHC and the subpopulation of hPD-1+ cells in tumor infiltrated hCD8+
cells was assessed by FACS analysis. (A) Representative IHC images for hPD-L1 in tumors, and
(B) representative histogram of FACS analysis. (C) The relative intensity ratio of hPD-L1 was assessed
in at least four fields per specimen and five to six specimens per group. (D) The percentage of hPD-1+
cells among hCD8+ cells in xenografted tumors was presented. FACS data were obtained from six
mice per group. The results are expressed as mean±S.E.M. ** p < 0.01 vs. PBMC+Vehicle group;
@ p < 0.05 and @@ p < 0.01 vs. PBMC+ngTASO group (Dunnet’s test). Bar = 100 µm. h, human.

3.6. TGF-β2 Blockade by ngTASO Combined with PD-1 Inhibition Regulates Infiltration of the T
Cell Subpopulation and Their Activation in Tumors

Since alterations in the immune cell composition and distribution in tumor sites are
closely related to activation of CTLs [31], we evaluated the population and distribution
of human CD8+ cells and human Foxp3+ cells in xenografted tumors by performing IHC
analysis. As presented in Figure 6A,B, xenografted A2058 tumors in hu-PBL NSG-B2m
mice were the immune-excluded type with relatively low levels of human CD8+ cells
in the tumor margin. However, exposure to the ngTASO or anti-PD-1 antibody slightly
mediated the infiltration of human CD8+ cells into the center of the tumor. In particular, co-
treatment of ngTASO and anti-PD-1 significantly increased the human CD8+ cell infiltration
throughout entire tumors. Moreover, although only small numbers of human Foxp3+ cells
were detected in the tumor, ngTASO combined with anti-PD-1 antibody significantly
reduced the number of intra-tumoral Foxp3+ cells (Figure 6A,C). Since activated CTLs
secrete granzyme B to induce a cytotoxic effect on tumor cells [32], we also examined
the expression levels of granzyme B in the xenografted tumor by IHC. Correlating with
the results of the human CD8+ cell and human Foxp3+ cell expression, the granzyme
expression was significantly increased after co-treatment with ngTASO and anti-PD-1, as
compared with vehicle treatment (Figure 6A,D).
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Figure 6. Effects of TGF-β2 blockades combined with PD-1 inhibition on the distribution of tumor
infiltrated T cells and their activation. Infiltration and distribution, and activation of human T cells in
the tumor were measured by IHC staining against hCD8, hFoxp3, and granzyme B. (A) Representative
IHC images of hCD8, hFoxp3, and granzyme B expression. The number of (B) hCD8+ cells and
(C) hFoxp3+ cells per ×4 field, and (D) the relative DAB intensity ratio of granzyme B were assessed
in at least four fields per specimen and five to six specimens per group. The results are expressed as
mean ± S.E.M. * p < 0.05 and ** p < 0.01 vs. PBMC+Vehicle group; @ p < 0.05 vs. PBMC+ngTASO
group (Dunnet’s test). Bar = 100 µm. h, human.

4. Discussion

TGF-β is commonly known as an immunosuppressive cytokine and plays a primary
role in the immunological regulation of the microenvironment in various cancers, including
breast cancer, melanoma, and pancreatic cancer [33,34]. The therapeutic approaches to
target TGF-β signaling for cancer include the monoclonal antibody against TGF-β ligand,
receptor kinase inhibitors, vaccines, and ASO. However, TGF-β inhibitors have not been
approved due to their limited clinical efficacy [35]. ASO technology is one of the most
promising nucleic acid-based therapeutic approaches, imparting low toxicity due to its
design that targets the gene sequence alone. To date, TGF-β2 ASO (also known as Trabed-
ersen) has been clinically developed, but its therapeutic efficacy has not been remarkable
(NCT00761280 and NCT00844064). ngTASO, a novel next-generation ASO of TGF-β2 inhibi-
tion, was designed to improve the mRNA binding affinity via an optimized ASO sequence
screening method and enhance plasma stability via modification of the molecular structure
of sugar. In this study, TGF-β2 production in A2058 cells was significantly downregulated
after exposure to ngTASO, and the blockade of TGF-β signaling by ngTASO combined with
PD-1 inhibition showed additional tumor growth inhibition in a melanoma-bearing HIS
mouse model.

Downregulation of TGF-β signaling has been demonstrated to switch the tumor
phenotype from immune-excluded to immune-inflamed [36]. In the immune-excluded
melanoma-bearing HIS mouse model, we determined that the infiltration of CTLs into the
tumor site is augmented by the blockade of TGF-β2 combined with PD-1 inhibition. The
TGF-β signaling pathway is closely related to the Wingless-related integrin site (Wnt)/β-
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catenin signaling pathway in melanoma, and TGF-β-mediated stromal fibrosis is closely
associated with the activation of tumor-intrinsic β-catenin [37,38]. The Wnt/β-catenin
signaling pathway is one of the primary regulators of T cell exclusion from the TME in
many cancers, including hepatocellular carcinoma and melanoma [27,28,39]. In the current
study, we confirmed that the expression of intrinsic active β-catenin is correlated with the
expression of TGF-β2 levels in A2058 cells, and the infiltration of CTLs into melanoma
might be partly hampered by the tumor intrinsic active β-catenin. Since ngTASO exclusively
acts on the human TGF-β2 mRNA sequence, it is considered that downregulation of the
tumor-derived TGF-β2 by ngTASO might primarily contribute to the reduction of intrinsic
active β-catenin in xenografted A2058 tumors. As antitumor effects of CTLs by ICIs are
mainly mediated by a contact-dependent mechanism [6], the immunotherapeutic efficacy
of anti-PD-1 monotherapy is poor in immune-excluded A2058 tumors. However, the effects
of anti-PD-1 are enhanced by co-treatment with ngTASO by facilitating the infiltration of
CTLs throughout the entire tumor, partly mediated by downregulation of the intrinsic
active β-catenin and improving the T cell-mediated antitumor immunity, resulting in the
enhanced delay of tumor growth.

Tumors escape from the immune surveillance by upregulating the TGF-β signaling
derived from systemic immunosuppression as well as local immunoediting in TME [33,34].
It has been demonstrated that the tumor-derived TGF-β induced extrathymic conversion
of naïve CD4+ T cells induces Foxp3+ Tregs [21,40]. Consistent with previous studies
conducted in vitro or in syngeneic mouse models [4,21], we observed that the blockade
of TGF-β signaling by ngTASO diminishes the Tregs constitution in the peripheral blood
of hu-PBL NSG-B2m mice. Tregs downregulate the antitumor immunity by producing
anti-inflammatory cytokines, including IL-10, IL-35, and TGF-β, and suppressing effector
cells, such as CTLs and NK cells [41,42]. The current results show that the blockade of
TGF-β2 probably contributes to a systemic immunostimulatory state by downregulation
of Tregs. Previously, we showed that the blockade of TGF-β2 reduces the intratumoral
ratio of Tregs to CTLs in the immune-inflamed model [22]. However, in the current study,
there is no remarkable downregulation of Tregs by TGF-β2 inhibition alone due to the low
baseline frequency of Tregs in the immune-excluded tumors. However, TGF-β2 blockade
in combination with PD-1 inhibition significantly downregulated the ratio of Tregs to
CTLs, and CD4+ cells to CD8+ cells, at the tumor site. Intratumoral Tregs mediate a
tumor-promoting microenvironment, suppress the tumor-killing potential of CTLs, and
are associated with poor prognosis in many cancers [31,42,43]. Therefore, a downregulated
ratio of Tregs to CTLs at the tumor site could probably mediate increased granzyme B
secretion and consequently enhance the T cell-mediated tumor growth inhibition.

It has previously been demonstrated that the immunological state in the TME largely
determines the therapeutic benefit from ICIs [29,44]. Several studies revealed that patients
with pre-existing TILs present an enhanced response rate to ICIs, and increased infiltration
of CTLs in tumors is associated with a good prognosis [45,46]. Despite the growing success
of ICIs in the treatment of advanced melanoma, a subset of melanoma patients with low
immunogenicity in the tumor are resistant to ICIs [44,47]. Overcoming this limitation of anti-
PD-1 treatment of malignant melanomas is one of the main concerns in immuno-oncology.
To this effect, various therapeutic strategies to convert immunologic subtypes from a cold
tumor (immune-desert or immune-excluded) to a hot tumor (immune-inflamed) are being
researched. The blockade of TGF-β signaling facilitates the infiltration of CTLs in the tumor,
but the persistent suppression of TGF-β signaling mediates PD-L1 expression in the tumor
via increased secretion of IFN-γ and TNF-α from TILs [48,49]. In the current study, we
observed upregulated expression of human PD-L1 in tumors by TGF-β2 blockade combined
with PD-1 inhibition, which is associated with increased TILs. Although PD-L1 expression
in tumors facilitates immune escapes, tumors with PD-L1 negative expression present a
worse response to PD-1/PD-L1 blockade therapies [49,50]. Concomitant inhibition of TGF-
β receptor I and PD-1 synergistically represses tumor promotion in a genetically engineered
mouse model of pancreatic ductal adenocarcinoma, and clinical studies using a combination
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of TGF-β blockers and PD-1/PD-L1 inhibitors are currently underway [35,48]. Results from
the current study indicate that TGF-β2 inhibition by ngTASO might improve the response
to anti-PD-1 immunotherapy by upregulating PD-L1 expression with increased TILs in
immune-excluded melanoma. As anti-PD-1 immunotherapy mediates antitumor immunity
via antigen-specific T cell responses, a combination of anti-PD-1 with TGF-β2 inhibition,
which might mediate antigen non-specific T cell responses as well as antigen-specific T cell
responses, may have additional advantages in the development of immunotherapy.

5. Conclusions

In conclusion, we determined that TGF-β2 inhibition by ngTASO enhances the T
cell-mediated antitumor immunity of anti-PD-1 therapy by facilitating the intratumoral
infiltration of CTLs, is partly associated with the downregulation of intrinsic β-catenin
crosstalk, and consequently delays tumor growth in a melanoma-bearing HIS mouse model.
In addition, TGF-β2 blockade in combination with PD-1 inhibition might contribute to the
formation of an immunostimulatory status in systemic and TME by mediating suppression
of Tregs and counteracting compensatory increases in the PD-L1 expression in tumors.
These results indicate that the combination of ngTASO and anti-PD-1 has an enhanced
potential in T cell-mediated antitumor immunity. This combination therapy is, therefore, a
potentially promising strategy for immune-excluded melanoma.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14215220/s1, Figure S1: Effects of ngTASO on changes in
serum TGF-βs levels.
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