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Simple Summary: With the continuous progress of diagnosis and treatment technology, the early di-
agnosis rate and survival rate of lung cancer have improved, but the incidence rate and mortality rate
of lung cancer are still very high. Therefore, it has become an urgent problem to analyze the molecular
mechanism of lung cancer and to determine the markers related to early diagnosis. SLC3A2 protein
is a cell-surface marker that plays an important role in tumorigenesis and development, and it is
expected to become a new target for the treatment of tumors. The in-depth study of SLC3A2 can
provide a new molecular target for the early diagnosis, treatment, and prognosis of lung cancer.

Abstract: SLC3A2, the heavy chain of the CD98 protein, is highly expressed in many cancers,
including lung cancer. It can regulate the proliferation and the metastasis of cancer cells via the
integrin signaling pathway. Liquid biopsy is a novel method for tumor diagnosis. The diagnostic
or prognostic roles of serum SLC3A2 in lung cancer are still not clear. In this study, we analyzed
SLC3A2 mRNA levels in human lung squamous cell carcinoma (LUSC) and lung adenocarcinoma
(LUAD) using the TCGA database and serum SLC3A2 protein levels using ELISA. We confirmed
high SLC3A2 levels in both the serum and tissue of LUAD and LUSC patients. Both serum and tissue
SLC3A2 could be used as prognostic markers for overall LUAD and subgroups of LUSC patients.
SLC3A2 induced tumorigenesis via the MEK/ERK signaling pathway in LUAD and LUSC cells.

Keywords: SLC3A2; lung squamous cell carcinoma; lung adenocarcinoma; prognosis; MEK/ERK
pathway

1. Introduction

Primary bronchogenic carcinoma is a malignant tumor that originates from the trachea,
bronchus, and lung [1–3]. Lung cancer is a bronchogenic cancer, examples of which
include lung squamous cell carcinoma (LUSC), lung adenocarcinoma (LUAD), small-cell
carcinoma, and large-cell carcinoma [4–6]. Lung cancer has a high incidence and mortality
worldwide [7]. The pathogenesis of lung cancer has not been fully understood, but there is
evidence that the occurrence of lung cancer is related to smoking, air pollution, occupational
carcinogens, diet, genetics, and other factors [8–10]. Most patients with lung cancer are in
an advanced stage when they go to hospital [11]. Early detection, diagnosis, and treatment
of lung cancer are very important for improving the survival of patients [12].

CD98 is a heterodimer transmembrane glycoprotein that contains a glycosylated heavy
chain (CD98hc, SLC3A2, 4F2, 4F2hc) and a nonglycosylated light chain (LATl, LAT2, XCT,
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etc.) [13]. It has two main functions: transporting amino acids and regulating the integrin
signaling pathway [14]. The SLC3A2 transmembrane domain and intracellular structure
interact with the integrin β1 and β3 subunits and participate in cell proliferation, migration,
invasion, and adhesion regulated by the integrin signaling pathway [15]. SLC3A2 is
highly expressed in LUSC [16] and LUAD [17]. SLC3A2 silencing in cancer cells reverts
tumorigenesis, migration, and proliferation [18,19]. Serum proteins have been used as
diagnostic and prognostic markers for cancers for more than thirty years [20]. As an
auxiliary means, serum protein improves the accuracy of diagnosis, such as CEA for
colorectal cancer [21]. However, to our knowledge, no previous studies have shown the
diagnostic or prognostic roles of serum SLC3A2 in lung cancer.

In this study, we used the TCGA database to analyze the prognostic roles of SLC3A2 in
LUAD and LUSC patients. We collected blood samples from LUAD and LUSC patients
and checked the serum SLC3A2 protein levels of these patients. Finally, we validated the
roles and mechanisms of SLC3A2 in LUAD and LUSC cells.

2. Materials and Methods
2.1. Bioinformatics Analysis

UALCAN (http://ualcan.path.uab.edu, accessed on 5 November 2020) is a platform
for the in silico analysis of cancer transcriptome data from The Cancer Genome Atlas
(TCGA) database [10]. The Cancer Genome Atlas (TCGA), a project jointly launched by
the National Cancer Institute (NCI, National Cancer Institute of the United States) and the
National Human Genome Research Institute (NHGRI, National Human Genome Research
Institute of the United States) in 2006, contains clinical data, genomic variation, mRNA
expression, miRNA expression, methylation, and other data of various tumor molecular
subtypes, such as individual age, gender, or tumor stage [10]. We explored the relative
expression of SLC3A2 in primary LUAD and LUSC tissues via UALCAN based on various
tumor molecular subtypes and the clinicopathological features of the patients. Differences
in transcriptional expression were compared using Students’ t test, and p < 0.01 was
considered statistically significant.

2.2. Blood Samples

Blood samples were obtained from 66 LUAD and 52 LUSC patients who had received
no chemotherapy or radiotherapy prior to resection at the Department of Thoracic Surgery,
the First Hospital of China Medical University, between July 2013 and July 2015. All the
patients signed informed consent. Control blood samples were obtained from 38 healthy
individuals who were of similar age and who had similar daily lifestyles as the patients.
This study was conducted according to the Helsinki Declaration of 1975 and was approved
by the Ethics Committee of Liaoning Medical University (LMU20150012).

2.3. ELISA

Blood samples were collected in EDTA vacutainers and then centrifuged at 1500× g
for 10 min. Serum SLC3A2 levels were measured using an enzyme-linked immunosorbent
assay (ELISA) according to the manufacturer’s instructions (USCN Business Co., Ltd.,
Wuhan, China). Briefly, blood samples were added into 96-well plates. The plates were
sealed with a cover and were incubated at 37 ◦C for 90 min. Then, the content of the plates
was discarded, and the plates were washed two times. Next, 100 µL Biotin-labeled antibody
working solution was added to each well, and the plates were incubated at 37 ◦C for 60 min.
HRP-Streptavidin Conjugate (SABC) (100 µL) was added into each well, and the wells
were then covered with a plate and incubated at 37 ◦C. After 30 min, 90 µL TMB Substrate
was added into each well, and plates were incubated at 37 ◦C in the dark for 10–20 min.
O.D. absorbances were read at 450 nm in a microplate reader (Thermo Fisher Scientific,
Shanghai, China) immediately after adding the stop solution.

http://ualcan.path.uab.edu


Cancers 2022, 14, 5191 3 of 14

2.4. Cell Culture and SLC3A2 Silencing

The human lung adenocarcinoma cell line H1975 and human lung squamous cell
carcinoma cell line H226 were purchased from the Shanghai Institute of Cell Biology, Chi-
nese Academy of Sciences (Shanghai, China). Cells were maintained in a humidified cell
incubator with 5% CO2 at 37 ◦C in DMEM supplemented with 10% FBS (KeyGEN, Nanjing,
China). Cells were plated onto 6-well plates at a density of 3 × 105 cells per well. Cells at
60–70% confluency were transfected with SLC3A2 siRNA1, sense: GGACCUCACUCC-
CAACUAUTT, antisense: AUAGUUGGGGAGUGAGGUCCTT; SLC3A2 siRNA2, sense:
CAGATCCTGAGCCTACTCGAA, antisense: TCCGTGTCATTCTGGACCTTA; and scram-
bled siRNA: AATTCTCCGAACGTGTCACGT (Qiagen, Shanghai, China).

2.5. Apoptosis Assay

Cells were collected and washed with PBS and then resuspended in AnnexinV-FITC
and PI (0.5 µg/mL) (Apoptosis Detection Kit, KeyGEN) in the dark for 30 min. Then, the
cells were immediately analyzed on a FACSCalibur flow cytometer (Becton Dickinson
Medical Devices, Shanghai, China).

2.6. 5-Aza-2′-Deoxcytidine (5-AzaC) Treatment

Cells were seeded at a density of 1 × 105 cells per well in six-well culture plates and
treated with 5-aza-2′-deoxycytidine (Sigma-Aldrich, Saint Louis, MO, USA) at concentra-
tions of 2.5 and 5 µM daily for 5 days.

2.7. Immunoblotting

Cells were lysed in RIPA Lysis Buffer (Beyotime Biotechnology, Shanghai, China) con-
taining a protease inhibitor cocktail (Sigma-Aldrich). Proteins (40 µg per lane) were separated
by 10% SDS-polyacrylamide gel electrophoresis and transferred to a nitrocellulose (NC) filter
membrane (Beyotime Biotechnology). Primary antibodies were SLC3A2 (sc-59145, Santa Cruz
Biotechnology; Santa Cruz, CA, USA), P-ERK (sc-7383; Santa Cruz), ERK (sc-271270; Santa
Cruz), P-MEK (sc-271914; Santa Cruz), MEK (sc-6250; Santa Cruz), and GAPDH (sc-47724;
Santa Cruz). The secondary antibody was alkaline phosphatase-conjugated mouse IgG (Key-
GEN). Detection of the immune complexes was performed with the ECL Western blotting
detection system (Amersham Biosciences, Piscataway, NJ, USA).

2.8. Statistical Analysis

GraphPad Prism 5 software (GraphPad Software Inc., San Diego, CA, USA) was
used to analyze all experimental data and clinical data. One-way ANOVA was used for
intergroup comparison, and Dunnett’s T3 test was used for intragroup comparison. The
area under the ROC curve, sensitivity, and specificity were used to predict the diagnostic
value of serum SLC3A2 for both LUAD and LUSC. Log-rank statistical analysis was used
to compare the differences between Kaplan–Meier survival curves. p < 0.05 was statistically
significant.

3. Results
3.1. SLC3A2 mRNA Levels and Roles in LUAD and LUSC Tissues

We compared the mRNA levels of SLC3A2 in LUAD and LUSC tissues by analyzing
the TCGA database. The mRNA level of SLC3A2 was higher in both LUAD and LUSC
tissues than in matched normal tissues (p < 0.05, Figures 1A and 2A). SLC3A2 mRNA was
highly expressed both in Stage 1–4 LUAD and LUSC tissues compared to in matched normal
tissues (p < 0.05, Figures 1B and 2B). There was no difference in the SLC3A2 mRNA level in
LUAD and LUSC patients of different races and ages, except LUSC African American patients
(Figures 1C,E and 2C,E). No difference of SLC3A2 was found in male and famale LUAD
patients (Figure 1D). But male LUSC patients expressed higher SLC3A2 than female patients
(p < 0.05, Figure 2D). SLC3A2 mRNA also was highly expressed in both N 0–4 LUAD and LUSC
tissues compared to in matched normal tissues (p < 0.05, Figures 1F and 2F). SLC3A2 expression
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in LUAD and LUSC is based on histology subtypes (Figures 1G and 2G). Smoking habits did
not influence SLC3A2 expression in patients (Figures 1H and 2H).
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3.2. Methylation Status of SLC3A2 in LUAD and LUSC Tissues

Interestingly, we found that the SLC3A2 mRNA levels in lung cancer were associated
with methylation. No significant differences were observed for SLC3A2 methylation in
LUAD tissues and matched normal tissues (Figure 3A,B,F). However, hypermethylation
was observed in normal tissues compared to in LUSC tissues (Figure 4A,B,F). Methylation
status of SLC3A2 showed no big difference in race, gender, age and smocking habits of
both LUAD and LUSC patients (Figure 3C,D,E,G and Figure 4C,D,E,G).
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3.3. Tissue SLC3A2 Was a Prognostic Marker for Overall LUAD and Subgroups of LUSC Patients

High SLC3A2 expression was associated with a poor prognosis in LUAD patients
(p = 0.044) (Figure 5A). The influence of SLC3A2 on the prognosis of LUAD patients was
not related to race (p = 0.11) (Figure 5B), sex (p = 0.15) (Figure 5C), or smoking habits
(p = 0.11) (Figure 5D). There was no significant difference in survival between the LUSC
patients with high and low SLC3A2 expression (p = 0.56) (Figure 6A). However, female
patients (p = 0.0033) (Figure 6B), African American patients (p = 0.0033) (Figure 6C), and
nonsmoker patients (p = 0.0031) (Figure 6D) with high SCL3A2 expression had a lower
survival probability than the patients with low expression.
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3.4. Serum SLC3A2 Protein Levels and Roles in LUAD and LUSC Patients

We found that the serum SLC3A2 protein levels were higher in both LUAD and LUSC
patients compared to in healthy volunteers using ELISA (Figure 7A). The ROC curves of
SLC3A2 protein revealed strong discrimination between LUAD patients with an AUC of
0.936 (p < 0.0001, Figure 7B) and LUSC patients with an AUC of 0.923 (p < 0.0001, Figure 7C).
The mean value of serum SLC3A2 proteins was used as the standard to divide the patients
into high- and low-expression groups. Serum SLC3A2 protein was associated with tumor
differentiation, lymphatic invasion, and venous invasion in both LUAD and LUSC patients
(p < 0.05, Table 1). The associations of serum SLC3A2 protein with the clinicopathological
characteristics of the LUAD and LUSC patients are summarized in Table 1. Kaplan–Meier
analysis showed that the SLC3A2 protein level indicates poor prognosis of LUAD and
LUSC patients (p < 0.05, Figure 7D,E).
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Table 1. Relationships between serum SLC3A2 and the clinicopathological parameters of patients
with LUAD or LUSC.

Clinicopathological
Features

LUAD LUSC

n High Low χ2 p n High Low χ2 p

Sex 0.229 0.632 0.001 0.975
Male 31 15 16 25 14 11

Female 35 19 16 27 15 12
Age (years) 0.354 0.552 0.023 0.879

<60 23 13 10 22 12 10
≥60 43 21 22 30 17 13

Differentiation 3.957 0.047 4.348 0.037
Well or Moderate 23 8 15 19 7 12

Poor 43 26 17 33 22 11
Lymphatic invasion 16.00 0.00006 7.364 0.00665

- 25 5 20 23 8 15
+ 41 29 12 29 21 8
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Table 1. Cont.

Clinicopathological
Features

LUAD LUSC

n High Low χ2 p n High Low χ2 p

Venous invasion 14.68 0.00013 10.53 0.00118
- 22 4 18 19 5 14
+ 44 30 14 33 24 9

Tumor size 0.487 0.485 2.526 0.112
<3 cm 24 11 13 23 10 13
≥3 cm 42 23 19 29 19 10

pN category 0.364 0.947 0.317 0.956
pN0 11 5 6 11 6 5
pN1 14 8 6 13 8 5
pN2 20 10 10 18 10 8
pN3 21 11 10 10 5 5

Smoking status 0.121 0.727 0.001 0.974
smokers 22 12 10 27 15 12

nonsmokers 44 22 22 25 14 11

Abbreviations: χ2, Chi-square distribution.

3.5. Tumorigenesis Roles and Mechanisms of SLC3A2 in LUAD and LUSC Cells

After SLC3A2 knockdown, the apoptotic ratio of LUAD and LUSC cells was increased
using Annexin V-FITC/PI double staining (Figure 8A). P-ERK and P-MEK were down-
regulated in SLC3A2 knockdown cells (Figure 8B). No significant changes in ERK or
MEK were observed (Figure 8B). As mentioned above, bioinformatic analysis showed
that SLC3A2 methylation happened in LUSC cancer tissues but not in LUAD tissues. We
validated these results in LUAD and LUSC cells using 5-AzaC, a nucleoside-based DNA
methyltransferase inhibitor. Consistent with tissues, we confirmed that SLC3A2 was in-
creased slightly in both LUAD and LUSC cells after receiving 5-AzaC treatment (Figure 8C).
In addition, we showed the correlation genes of SLC3A2 in both LUAD and LUSC tis-
sues (Figure 9). These data can give us suggestions for studying the deep mechanisms
of SLC3A2.Cancers 2022, 14, x FOR PEER REVIEW 11 of 15 
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Figure 8. The roles and mechanisms of SLC3A2 in LUAD and LUSC cells. (A) The proportion of
apoptotic cells (early apoptosis) was determined by double staining with Annexin-V/FITC and PI.
(B) Western blot analysis of the ERK/MEK signaling pathway. GAPDH was used as an internal
loading control. (C) Methylation status of SLC3A2 in LUAD and LUSC cells was checked using
5-AzaC. Uncropped WB images are shown in Archive S1.
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4. Discussion

The upregulation of SLC3A2 was correlated with tumorigenesis, metastasis, and
metabolism [15]. SLC3A2 can also be used as a prognostic marker for human canc-
ers [22–25]. Positive SLC3A2 expression predicts poor prognosis and increased recur-
rence of NSCLC patients [17]. In this study, we used the TCGA database to provide an
overview of SLC3A2 expression in different subgroups of lung cancer patients. SLC3A2 was
expressed at similar levels in LUAD and LUSC tissues of different stages but at low lev-
els in matched normal tissues. These results mean SLC3A2 is a tumor initiation factor
rather than a tumor development factor. Consistent with previous studies, high levels of
SLC3A2 indicated a poor prognosis in LUAD and LUSC patients.

The main finding of this study is the correlation of serum SLC3A2 with the prognosis
of LUAD and LUSC patients. To our knowledge, this is the first study that has shown
the expression levels and roles of serum SLC3A2 in lung cancer patients. The emergence
of noninvasive diagnostic technology, namely liquid biopsy, represents great progress in
tumor diagnosis and treatment [26]. Fluid biopsy technology mainly includes the detection
of free circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), exosomes, and
circulating proteins [27]. Compared to traditional tissue biopsy, fluid biopsy has the
unique advantages of real-time dynamic detection, overcoming tumor heterogeneity, and
providing comprehensive detection information [27]. In this study, we confirmed that serum
SLC3A2 is associated with tumor differentiation, lymphatic invasion, and venous invasion
in both LUAD and LUSC patients. Kaira et al. [16] found that high SLC3A2 expression in
lung cancer tissues is related to lymphatic invasion. In addition, serum SCL3A2 can be
used as prognostic marker for both LUAD and LUSC patients. These results indicate that
both serum SLC3A2 and tissues SLC3A2 are related to the clinical features of LUAD and
LUSC patients.

Finally, we validated the roles of SLC3A2 in LUAD and LUSC cells using small inter-
fering RNA technology. After SLC3A2 knockdown, the apoptotic ratio was upregulated,
and the MEK/ERK pathway was inhibited in both LUAD and LUSC cells. The MEK/ERK
signaling pathway is a mitogen-activated protein kinase (MAPK) pathway [28–30]. Activa-
tion of the MEK/ERK signaling pathway can cause a protein kinase cascade reaction and
transmit extracellular signals into cells [16]. The imbalance of the MEK/ERK signaling path-
way plays an important role in tumorigenesis and development [16]. In our study, P-MEK
and P-ERK were downregulated in both LUAD and LUSC cells after SLC3A2 knockdown;
however, total MEK and ERK did not change. Furthermore, we found SLC3A2 methylation
in LUSC cancer tissues using bioinformatic analysis, and this was validated in both LUSC
and LUAD cells. SLC3A2 was increased slightly in both LUAD and LUSC cells after 5-AzaC
treatment. This means that SLC3A2 methylation blocked its expression in normal lung
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tissues. It is a protective factor against LUAD and LUSC. Methylation is a reason that can
partly explain the SCL3A2 expression in lung cancer tissues and cells. The expression of
SLC3A2 is also regulated by other mechanisms, so the removal of promoter methylation
can only slightly increase its expression.

Neuregulin 1 (NRG1), which belongs to the epidermal growth factor family, is a sig-
nal protein that mediates cell–cell interactions [31]. SLC3A2 is a fusion partner gene of
NRG1 and forms a new fusion protein on the cell membrane [32]. The SLC3A2-NRG1 fusion
gene has been widely found in lung cancer cells [32]. At present, afatinib, a targeted drug
of NRG1, can effectively shrink tumors, prolonging the survival time of patients [33]. Zeno-
cutuzumab is effective in patients with SLC3A2-NRG1 fusion-positive NSCLC [34]. We can
also consider targeting drugs against SLC3A2 to interfere with the SLC3A2-NRG1 fusion
gene to treat tumors. For instance, Anticalin (P3D11) is a newly designed protein that
works against the extracellular domain of SLC3A2 [35].

5. Conclusions

In this study, we confirmed that both serum and tissue SLC3A2 could be used as
prognostic markers for overall LUAD and subgroups of LUSC patients. In addition,
SLC3A2 induced tumorigenesis via the MEK/ERK signaling pathway in lung cancer
cells. All this evidence indicates that SLC3A2 has important application value in the early
diagnosis, histological classification, clinical stage, prognosis, and efficacy monitoring of
lung cancer. SLC3A2A is also expected to become a new target for the targeted treatment
of lung cancer. In the future, we will design targeted small molecule drugs based on the
protein structure of SLC3A2, and study anticancer drug efficacy from basic research to
clinical application.
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