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Supplementary Tables

Table S1. Antibodies used for Western Blot and immunofluorescence analyses.

Antigen Host Manufacturer | Dilution (x-fold)

and Article

Number
Western Blot Analysis
Actin rabbit Sigma Aldrich, A2066 5000
E-Cadherin mouse BD Bioscience, 610182 5000
VDR mouse Santa Cruz; sc-13133 1000
GAPDH mouse Santa Cruz, sc-47724 3000
VDR rabbit Abcam, ab3508 5000
BIM rabbit Sigma, B7929 1000
0009 rabbit Bethyl Laboratories, A300-081A 1000
Rabbit goat Cell Signaling; 7074 5000
(HRP coupled)
Mouse mouse Cell Signaling; 7076 5000
(HRP coupled)
Immunofluorescence
VDR rabbit Abcam ab3508 200
Rabbit goat Dianova; 111-165-003 300
(FITC coupled)

Table S2. Primer Sequences

Name Sequence (5’ = 3)

VDR_fw TACCGAGCTCGGATCCCCTGGGCTCCACTTACCTG

VDR _rev CCTCGCCCTTGCTAGCGGAGATCTCATTGCCAAAC
AC

ColPCR_pC3_fw CCCACTGCTTACTGGCTTAT

ColPCR_pC3_rev AGCAGTACGATCTGGTCCT
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Figure S1. VDR mRNA expression in different tumor types according to the PANCAN data set obtained

from The Cancer Genome Atlas (TCGA). VDR is highly expressed not only in colon adenocarcinomas, but

also in HNSCC, supporting a pathobiological relevance of VDR for this tumor entity.
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Figure S2. Overexpression of VDR increases cisplatin resistance of FaDu cells. (a) Immunoblot analysis

demonstrated successful expression of VDR-GFP in FaDu cells. Furthermore, VDR expression is increased in
response to VitD and combination treatment. GAPDH served as the loading control. (b) Fluorescence
microscopy to visualize the influence of Vitamin D on VDR receptor expression and translocation in FaDu VDR
cells. Nuclei were stained with Hoechst (blue). Scale bar, 5 pm.
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Figure S3. Overexpression of VDR increases cisplatin resistance of HNSCCUM-02T cells. Fluorescence
microscopy to visualize the influence of Vitamin D on VDR receptor expression in HNSCCUM-02T- VDR cells.
Nuclei were stained with Hoechst (blue). Scale bar, 5 um.
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Figure S4. VDR is upregulated in cisplatin-resistant HNSCC cell models. Overexpression of VDR in resistant FaDu

cs versus sensitive (FaDu wr) cells was demonstrated by Immunoblot analysis GAPDH served as the loading control.
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Figure S5. Dose-response curves and ICso values for HNSCCUM-02T (a-c), FaDu (d-f), SCC-4 (g-i), and

Pica cells (j-h).
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Figure S6. VitD treatment increases cisplatin sensitivity of different HNSCC cell lines. Combinational
treatment of VitD/cisplatin synergistically triggered cell death of wild-type (a) FaDu (b) SCC-4 and (c)
HNSCCUM-02T cells. Cells were seeded in the presence or absence of 100 nM VitD, after 24h the cells were
treated with 7.5, 10, and 15 uM cisplatin with and without VitD. The viability of the cells was measured and

normalized to untreated controls.

a

Vitamin D 100 nM
Maxacalcitol 100 nM

Cisplatin 10pM
kDa

48

42 ] m— — — — —

HNSCCUM-02T

Cc
1.5
EE;‘ ns
a2 1.0 = -
3
> ; ek
o -
2 o
T 0.5+ M
)
24
0.0 T T T T
0 5 10 20
Cis uM

b Maxacalcitol 10 nM -

Maxacalcitol 100 nM = - +
Cisplatin 10pM - + + +
kDa
23 L =l
B S .
VDR :-& — - o —
Actin a2 - Actin
FaDu
1.59 = - Maxacalcitol
Hm + Maxacalcitol
E, ns
E | p—|
S 1.0+
3] .
> r—
o
= =
E 0.5 Kk
)
o =
0.0 T T T |-_
0 5 10 20
Cis uM

Figure S7. The VitD analog Maxacalcitol executes similar function on HNSCC cells in overcoming cisplatin
resistance (a) Immunoblot analyses reveal significant increase of VDR in VitD and Maxacalcitol as well as in
Cisplatin Combination co-treated HNSCCUM-02T cells. Actin served as the loading control. (a) Immunoblot
analyses reveal significant increase of BIM in Maxacalcitol and Maxacalcitol/Cisplatin co-treated HNSCCUM-
02T cells. Actin served as the loading control. (c&d) HNSCCUM-02T and FaDu cells were treated for 72 h (5, 10,
and 20uM cisplatin in presence and absence of 100 nM Maxacalcitol). Cell viability was normalized to untreated

controls.
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Figure S8. VitD reduces the migration ability of HNSCC cells. (a&c) Wound healing assays were performed to
evaluate the migration of Pica Wt, and cisplatin-resistant cells. Cells were treated with VitD (100 nM), or
cisplatin (10 pM) alone, and with the combination. Scale bar, 100 uM. (b/d) Relative would size was measured
every 24 hrs.
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Figure S9. Immunoblot analysis of Pica cells shows upregulation of VDR (a), BIM (b), and E-cadherin (c) in
response to VitD/cisplatin. Actin and GAPDH served as the loading control. Proteins were detected by
specific Ab.
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Figure S10. The VitD-BIM axis aids in overcoming cisplatin resistance in Fadu cells. (a) Fluorescence
microscopy to visualize cytoplasmic BIM-GFP expression in Fadu cells. Cells were analyzed 16 h post-
transfection. Scale bar, 10 um. (b) Ectopic BIM-GFP expression triggers apoptosis of FaDu cells. GFP was used as
control. Cells were treated for 72 h (100 pM VitD; 20uM cisplatin, and combination). Cell viability was
normalized to untreated controls. (c)&(d) Immunoblot analysis of FaDu cells shows upregulation of E-Cadherin,
and BIM (c), and VDR (d) in response to VitD/cisplatin. Actin and GAPDH served as the loading control.
Proteins were detected by specific Ab.
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Figure S11. High BIM expression significantly correlates with improved therapy success shown by
primary therapy outcomes. P-values and sample size (n) are indicated.
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