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Simple Summary: Our study identified the differential expression and potential effects of microRNAs
in retinoblastoma vs. pediatric retina and advanced vs. non-advanced tumors. We provide evidence
of the epithelial–mesenchymal transition (EMT) and chemoresistance programs in advanced tumors,
which were potentially attributed to miR-181a-5p. We analyzed the differential expression of relevant
EMT- and chemoresistance-related proteins in advanced vs. non-advanced tumors and chemotherapy-
adapted Y79 cells to assess whether EMT and chemoresistance mechanisms were linked. We further
examined the possible role of TGFβ as a potential regulator of such differences and highlighted the
role of miR-181a-5p in EMT- and chemoresistance-related gene expression and drug sensitivity.

Abstract: Advanced retinoblastoma (Rb) tumors display high metastatic spread to distant tissues,
causing a potent threat to vision and life. Through transcriptomic profiling, we discovered key
upregulated genes that belonged to the epithelial–mesenchymal transition (EMT) and chemotherapy
resistance pathways in advanced Rb tumors. Through in vitro models, we further showed that Rb
null tumor cells under prolonged chemo drug exposure, acquires a metastasis-like phenotype through
the EMT program mediated by ZEB1 and SNAI2 and these cells further acquires chemotherapeutic
resistance through cathepsin-L- and MDR1-mediated drug efflux mechanisms. Using a miRNA
microarray, we identified miR-181a-5p as being significantly reduced in advanced Rb tumors, which
was associated with an altered EMT and drug-resistance genes. We showed that enhancing miR-
181a-5p levels in Rb null chemo-resistant sublines reduced the ZEB1 and SNAI2 levels and halted the
mesenchymal transition switch, further reducing the drug resistance. We thus identified miR-181a-5p
as a therapeutically exploitable target for EMT-triggered drug-resistant cancers that halted their
invasion and migration and sensitized them to low-dose chemotherapy drugs.

Keywords: EMT; miRNA; retinoblastoma; chemo-resistant

1. Introduction

Retinoblastoma (Rb) is the most common intraocular malignant tumor in children.
Managing intraocular Rb tumors via efficient diagnoses, genetic screening, and clinical
procedures [1,2] help to achieve excellent survival rates worldwide. However, metastatic
retinoblastoma is still a major concern in many countries [3–5]. Rb tumors that grow rapidly
have sufficient feeder arteries and drainage veins and are characterized by the presence
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of a multifocal yellowish-white tumor mass with floating subretinal or vitreous cancer
seeds [6]. If neglected or untreated, advanced Rb tumors demonstrate massive choroidal
invasion [7] and metastatic spread, primarily through the optic nerve [8] and sclera [9], to
regional lymph nodes, the central nervous system (CNS), and bone marrow [10], causing
a potent threat not only to vision but to the life of the child. To manage metastatic Rb
tumors clinically, an intensive multimodal approach that incorporates high-dose systemic,
intra-arterial, and peri-orbital chemotherapy regimens involving carboplatin, etoposide,
and cyclophosphamide followed by radiation is currently used [11]. However, advanced
tumors often evolve during successive chemotherapy cycles and develop resistance to anti-
cancer therapeutics, diminishing the efforts of the clinical management procedures [12,13].
Upon prolonged chemo-drug exposure, advanced Rb tumors increase the expression of
ATP binding cassette (ABC) transporter pathway genes, such as MDR1 and MRP1, to
confer resistance via a chemo-drug efflux mechanism [14]. Metastatic tumors acquire
chemotherapy resistance through trans-differentiation that is initiated by the epithelial-to-
mesenchymal transition (EMT) program in different cancers [15,16]. The EMT program
begins with the loss of epithelial phenotypes via the downregulation of E-cadherin and
tight junction adhesion molecules. The differentiated cancer cells change to the mesenchy-
mal phenotype with an invasive dedifferentiated characteristic, which can coincide with
acquiring chemo-drug-resistance properties.

MicroRNAs (miRNA) are small non-coding single-strand RNAs that emerged as an
important modifier of a plethora of biological pathways, including for cancers [17]. They
modify gene expression by using the RNA-induced silencing complex (RISC) that binds
to the 3′ untranslated region (UTR) or, less frequently, the 5′ UTR region of the mRNA
and cause translational repression. Emerging evidence points out the role of miRNAs
in controlling EMT transcription factors and signaling pathways to regulate metastatic
dissemination in different cancers [18]. In Rb tumors, the increased expression of the
miR17-92 cluster [19], miR-25-3p [20], and miR200c [21] were found to regulate high EMT-
mediated invasion and migration of Rb cells in vitro, thus supporting the role of EMT in Rb
metastasis. However, the mechanistic links between miRNAs, the EMT, and drug resistance
in Rb tumors remain obscure.

In the present study, we profiled miRNA and mRNA signatures simultaneously in the
same set of advanced and non-advanced Rb tumors and compared the results with those of
age-matched healthy pediatric retinae. Such a coordinated analysis of expression networks
in the same set of tissues and controls enabled the discovery of co-regulated miRNA and
mRNA targets relevant to the Rb stage. Among the many dysregulated genes and miRNAs,
we chose to validate and investigate the functional role of miR-181a-5p on the enhanced
EMT and drug resistance pathways in advanced Rb subjects.

2. Materials and Methods
2.1. Clinical Samples

This study complied with the Declaration of Helsinki and was performed according to
a protocol approved by the institutional ethics committee of Narayana Nethralaya (EC ref
no: C/2013/03/02). Written informed consent was received from all parents of the subjects
before inclusion in the study. After histopathological examination, Rb tumors (n = 9) were
divided into group E and group D of the age range 0.2–4 years, and pediatric controls (n = 2)
of the age range (0.2–0.3 years) were used for the miRNA and mRNA microarray study.
The details of clinical samples, including age, gender, laterality, tumor viability, clinical,
and histopathology details are mentioned in Table 1. For the RT-PCR validations, we used
additional Rb subjects comprising group E (n = 4), group D (n = 4), and pediatric retina
(n = 4) of the age range 0.2–4 years. The clinical and histopathology details of additional
Rb subjects are mentioned in Table S1. For the immunohistochemistry validations, we used
additional Rb subjects comprising group E (n = 12), group D (n = 12), and pediatric retina
(n = 4). The clinical and histopathology details of the additional Rb subjects are mentioned
in Table S2.
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Table 1. Clinical and histopathological details of the samples.

ID Sex Laterality Age at
Presentation Clinical Risk IIRC

Group
AJCC

Staging

P1 M Bilateral 15 months Advanced Group E cT3b
P2 F Unilateral 20 months Advanced Group E cT3b
P3 M Unilateral 24 months Advanced Group E cT3a
P4 F Bilateral 4 months Advanced Group E cT3b
P5 M Bilateral 30 months Advanced Group E cT3b
P6 F Bilateral 21 months Non-advanced Group D cT2b
P7 F Unilateral 28 months Non-advanced Group D cT2b
P8 M Unilateral 20 months Non-advanced Group D cT2b
P9 M Unilateral 21 months Non-advanced Group D cT2a

Control 1 F NA 3 months Cardiac arrest (no ocular complications)

Control 2 F NA 2 months Multiple organ dysfunction
(no ocular complications)

2.2. Tumor miRNA and mRNA Profiling

Total RNA was isolated from 9 Rb tumors and 2 control pediatric retina samples using
an Agilent Absolutely RNA miRNA kit (cat# 400814, Agilent Technologies, Santa Clara, CA,
USA) according to the manufacturer’s instructions. The quality of the isolated RNA was
determined on an Agilent 2200 TapeStation system (cat#G2964AA, Agilent Technologies,
Santa Clara, CA, USA) using an Agilent RNA ScreenTape assay (cat#5067-5576, Agilent
Technologies, Santa Clara, CA, USA). mRNA labeling and microarray processing was per-
formed as detailed below in the “One-Color Microarray-Based Gene Expression Analysis”
(cat# G4140-90040, Agilent Technologies, Santa Clara, CA, USA). miRNA labeling was
done using an Agilent miRNA Complete Labeling and Hybridization Kit (Cat# 5190-0456,
Agilent Technologies, Santa Clara, CA, USA). The gene expression and miRNA data were
extracted using Agilent Feature Extraction Software (11.5.1.1) and analyzed using Agilent
GeneSpring GX 13.1. The analysis was carried out using a t-test unpaired statistical method
with the Benjamini–Hochberg FDR method. In both the mRNA and miRNA analyses, tran-
scripts exhibiting p ≤ 0.05 and fold changes greater than or equal to two were considered
differentially expressed entities. Both the mRNA (GSE208143) and miRNA (GSE208677)
microarray data were submitted to the NCBI GEO database.

2.3. Cell Lines

Y79 and WERI-Rb1 cells were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). The Y79 and WERI-Rb1 cells were cultured in RPMI 1640
medium (Cat #11875093, Gibco, Grand Island, NY, USA) supplemented with 10% FBS
(cat#A4766801, Gibco, Grand Island, NY, USA) and 1% Pen Strep (Penicillin–Streptomycin)
(cat#15070063, Gibco, Grand Island, NY, USA) and maintained at 37 ◦C in a humidified
atmosphere of 5% CO2 with intermittent shaking in an upright T25 flask. To generate
chemotherapy-resistant lines, Y79 and WERI-Rb1 cells were exposed to media containing a
low dose (1/100th of the IC50) of topotecan (cat#1672257, Sigma Aldrich, St. Louis, MO,
USA) or carboplatin (cat#216100-M, Sigma Aldrich, St. Louis, MO, USA) for 48 h and
replenished with fresh media without drugs for the next 48 h and vice versa. At the end of
each week, we increased the dose of topotecan and carboplatin by 10-fold for 3–4 weeks
till the cells displayed tight large clusters and no sensitivity to chemo-drugs. The cells
were further analyzed for their MDR1 surface expression and IC50 shift to confirm the
resistant phenotype.

2.4. Gene Expression Analysis

Total RNA extracted from the second cohort of clinical subjects was used for the RT
PCR validation for the mRNA and miRNA microarray. RT-PCR was performed with Agilent
Brilliant III Ultra-Fast RT-PCR reagent (cat# 600884, Agilent Technologies, Santa Clara, CA,
USA) using Agilent AriaMX real-time PCR instruments. Relative mRNA expression was
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quantified using the ∆∆C(t) method. For in vitro assays, total RNA was isolated from cells
using the Trizol reagent (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s
protocol. Then, 1 µg of RNA was reverse-transcribed using a Bio-Rad iScript cDNA
synthesis kit (cat# 1708890, Bio-Rad, Hercules, CA, USA) and quantitative real-time PCR
was performed using a Kappa Sybr Fast qPCR kit (cat# KK4601, Kapa Biosystems Pty
Ltd., Wilmington, MA, USA) using a Bio-rad CFX96 system. Relative mRNA expression
levels were quantified using the ∆∆C(t) method. Results were normalized to housekeeping
human β-actin. Details of the primers used are described in Table 2 below.

Table 2. Details of the qPCR primers used in the study.

Gene Forward Primer Reverse Primer Tm (F/R)

ZEB1 GCCTCCTATAGCTCACACATAAG TGCTGGAAGAGACGGTGAA 56.67/56.8

SNAI2 GTGATTATTTCCCCGTATCTCTAT TCAATGGCATGGGGTCTGA 55.6/60.2

CDH1 (E-cadherin) GAAGGTGACAGAGCCTCTGGAT GATCGGTTACCGTGATCAA 57.2/58.4

CDH2 (N-cadherin) CGAGCCGCCTGCGCTGCCAC CGCTGCTCTCCGCTCCCCGC 56.5/57.3

ACVRC1 AGGAGTTTCGACCCCAGTAA GTAGCACTTACCGTAGCACC 57.9/58.2

CTSL AGGCCTGGACTCTGAGGAAT AGCCGGTGTCATTAGCAACA 57.8/57

SMAD2 CCGCCAGTTGTGAAGAGACT CTGCCCATTCTGCTCTCCTC 59.9/60.1

ABCB1 GAGCAGTCATCTGTGGTCTT CCCCTTCAAGATCCATTCCG 57.2/58.0

β-Actin TCCCTGGAGAAGAGCTACGA AGGAAGGAAGGCTGGAAGAG 56.9/55.2

For the qPCR of the miRNAs, miRNA was converted to cDNA using the miRCURY
LNA Universal RT microRNA PCR reverse transcription kit (cat#339306, Qiagen, Hilden,
Germany). Briefly, RNA was polyadenylated with ATP using poly(A) polymerase at 37 ◦C
for 1 h and reverse-transcribed using 0.5 µg of poly(T) adapter primer. Each miRNA was
detected by the mature DNA sequence as the forward primer and a 3′ universal reverse
primer provided in the QuantiMir RT kit (cat#RA420A-hU6, System Biosciences, Palo
Alto, CA, USA). Human small nuclear U6 RNA was amplified as an internal control. The
qPCR was performed using Power SYBR Green PCR Master Mix (cat# 4367659, Applied
Biosystems, Waltham, MA, USA). All qPCRs were performed using SYBR Green and were
conducted at 50 ◦C for 2 min, 95 ◦C for 10 min, and then 45 cycles of 95 ◦C for 10 s and
60 ◦C for 1 min. The specificity of the reaction was verified via a melt curve analysis. The
details of the miRNA primers used are mentioned in Table 3.

Table 3. Details of miRNA primers used in the study.

S. No. Systematic Name Regulation Mirbase Accession No Active Sequence

1 hsa-miR-331-3p Down MIMAT0000760 TTCTAGGATAGGCCCAGGG

2 hsa-miR-181a-5p Down MIMAT0000256 ACTCACCGACAGCGT

3 hsa-miR-574-5p Up MIMAT0004795 ACACACTCACACACACAC

4 hsa-miR-1290 Up MIMAT0005880 TCCCTGATCCAAAAATCC

2.5. Histopathology and Light Microscopy

Paraffin-embedded specimens of the Rb tumors (n = 9) and control retinas (n = 2)
were used. Four-micrometer paraffin sections were dewaxed at 60 ◦C and rehydrated
in decreasing concentration of ethanol. Slides were stained with hematoxylin and eosin
according to standard procedures. Brightfield images were captured using an Olympus
CKX53 microscope.
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2.6. Immunofluorescence

For the IF analysis, 4 µm sections of Rb tumors (n = 25) and pediatric retinas (n = 2)
were deparaffinized, rehydrated, and subjected to heat-induced epitope retrieval using a
citrate buffer for 20 min at 100 ◦C. After a 2% BSA block, tissues were incubated overnight
at 4 ◦C with antibodies for ZEB1 (1:1000; cat#70512, Cell Signaling Technology, Danvers,
MA, USA), Cathepsin L (1:500; cat#ab6314, Abcam, Cambridge, UK), E-cadherin (1:500;
cat#3195, Cell Signaling Technology, Danvers, MA, USA), N-cadherin (1:1000; cat#13116,
Cell Signaling Technology, Danvers, MA, USA), and MDR1 (1:1000, cat#13342, Cell Sig-
naling Technology, Danvers, MA, USA). For the in vitro experiments, 2 × 103 parental
and topotecan-resistant Y79 cells were seeded on 8-chamber glass slides that were pre-
coated with 0.01% poly-L-lysine (cat#P4707, Sigma Aldrich, St. Louis, MO, USA). The cells
were stained with phospho-λ-H2A.x (ser139) (1:500; cat#9718, Cell Signaling Technology,
Danvers, MA, USA), ZEB1 (1:500; cat#70512, Cell Signaling Technology, Danvers, MA,
USA), Cathepsin L (1:500; cat#ab6314, Abcam, Cambridge, UK), MDR1 (1:500, cat#13342,
Cell Signaling Technology, Danvers, MA, USA), phospho-SMAD2 (1:1000, cat#ab53100,
Abcam, Cambridge, UK), and TGFBR2 (1:1000, cat#ab78419, Abcam, Cambridge, UK). Sec-
ondary antibodies used included goat anti-mouse Alexa Fluor 488 (1:5000, cat# ab150113,
Abcam, Cambridge, UK) and donkey anti-rabbit Cy3 (1:5000, cat# 711-1650152, Jackson
ImmunoResearch Laboratories, West Grove, PA, USA). Hoechst 33342 (1:5000, cat#H1399,
Invitrogen, Waltham, MA, USA) was used for nuclear staining. Images were analyzed
and captured using EVOS M7000 imaging systems (ThermoFisher Scientific, Waltham,
MA, USA). The fluorescent intensity was measured using ImageJ software (NIH Image,
Bethesda, MD, USA).

2.7. Western Blotting

For the Western blot analysis, cells were lysed in a RIPA buffer (recipe: 20 mM Tris
pH 8.0, 0.1% SDS, 150 mM NaCl, 0.08% sodium deoxycholate, 1% NP40 supplemented
with 1 tablet of protease inhibitor (Complete ultra mini-tablet, Roche)), and 1 tablet of
phosphatase inhibitor (PhosphoStop tablet, Roche, Basel, Switzerland) for 30 min on ice.
Total protein (20 µg) was loaded per lane and was separated using SDS-PAGE. The sep-
arated proteins on the gel were transferred onto a PVDF membrane and were probed
for specific antibodies against Rb (cat# 9309; Cell Signaling Technology, Danvers, MA,
USA) phospho-Rb (cat# 8516 Cell Signaling Technology, Danvers, MA, USA), E2F1 (1:500,
cat#sc193, SantaCruz Biotechnology, Dallas, TX, USA), ZEB1 (1:1000; cat#3396, Cell Signal-
ing Technology, Danvers, MA, USA), Cathepsin L (1:1000; cat#ab6314, Abcam, Cambridge,
UK), Slug (1:1000; cat#9585, Cell Signaling Technology, Danvers, MA, USA), E-cadherin
(1:1000; cat#3195, Cell Signaling Technology, Danvers, MA, USA), N-cadherin (1:1000;
cat#13116, Cell Signaling Technology, Danvers, MA, USA), MDR1 (1:1000, cat#13342, Cell
Signaling Technology, Danvers, MA, USA), Total smad2/3 (1:1000, cat#ab207447, Abcam,
Cambridge, UK), phospho-SMAD2 (1:1000, cat#ab53100, Abcam, Cambridge, UK), TGFBR1
(1:1000, cat#PA1731, BosterBio Pleasanton, CA, USA), TGFBR2 (1:1000, cat#ab78419, Ab-
cam, Cambridge, UK), α-Tubulin (1:1000, cat# 3873; Cell Signaling Technology, Danvers,
MA, USA), and GAPDH (1:1000, cat#5174; Cell Signaling Technology, Danvers, MA, USA)
in 5% BSA in 1X TBST overnight at 4 ◦C. For the nuclear-cytoplasmic fractionation, the
cytoplasmic fraction was extracted using a hypotonic buffer for 30 min on ice and the
nuclear fraction was extracted using a lysis buffer solution containing 10 mM Tris at pH 8,
170 mM NaCl, and 0.5% NP40 with protease inhibitors. The respective cellular fractions
were incubated with respective primary antibodies for immunoprecipitations. Lamin A/C
(1:1000, sc-6215, Santa Cruz Biotechnology, Dallas, TX, USA) was used as a nuclear-fraction-
loading control and α-Tubulin was used as a cytoplasmic-fraction-loading control (1:1000,
cat# 3873; Cell Signaling Technology, Danvers, MA, USA). After 4 washes with 1X TBST for
10 min, membranes were incubated with HRP-conjugated anti-mouse (cat#7076, Cell Sig-
naling Technology, Danvers, MA, USA) or anti-rabbit antibodies (cat#7074, Cell Signaling
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Technology, Danvers, MA, USA) at 1:2000 dilution for 2 h. Images were visualized using
the Image Quant LAS 500 system (GE Healthcare Life Sciences, Piscataway, NJ, USA).

2.8. FACS Analysis of MDR1 Surface Staining

The cell surface expression of MDR1 in parental and resistant Y79 and WERI-Rb1 cells
was detected using an anti-MDR1 antibody (1:500, cat#13342, Cell Signaling Technology,
Danvers, MA, USA). Parental and resistant Y79 and WERI-Rb1 cells after the drug exposure
were incubated in 200 µL of PBS containing 1% FBS and 2 µg of MDR1 antibody at 4 ◦C for
1 h in an intermittent shaker. After three washes with ice-cold PBS, the cells were further
incubated in goat anti-rabbit Alexa Fluor 488 secondary antibody for 30 min at RT. The cells
were then washed in ice-cold PBS and analyzed with a FACS apparatus equipped with
FACSDiva software. The fluorescent intensity of the FL1 channel was plotted to compare
the cell surface expression of MDR1 in parental and resistant lines.

2.9. Cell Proliferation Assay

Parental Y79 and WERI-Rb1, topotecan-resistant Y79 and WERI-Rb1, carboplatin-
resistant Y79, and WERI-Rb1 cells were used for the proliferation assay. A total of
10,000 cells were seeded in 24-well plates for the proliferation assay. Cell viability was
determined once every 24 h for 4 consecutive days using trypan blue cell staining and
cell counting using a hemocytometer. In the miRNA-transfected models, 10,000 cells were
seeded onto 24-well plates after 48 h of transfection, and proliferation was assessed from
24 h to 96 h. The cell viability was determined using a trypan blue assay. The experiments
were performed in three experimental repeats in triplicates for different experimental
conditions. Data were expressed as the mean ± SD of triplicate experiments.

2.10. Cell Migration and Invasion Assays

Cell migration and invasion assays were performed in 24-well transwell plates with
cell culture inserts (BD Falcon). A total of 15,000 parental and resistant Y79 or WERI-Rb1
cells in 150 µL 0% RPMI media were seeded in a transwell insert coated with 1% matrigel
and incubated for 48 h. The bottom chamber was filled with 600 µL of 10% RPMI media.
After 48 h of incubation, cells on the insert were removed using a cotton swab. Migrated
cells on the lower surface of the insert membrane were fixed with 4% PFA and stained
with 0.1% crystal violet. Images were captured in a bright field using an Olympus CKX53
microscope. Cells were further lysed using 10% SDS and the absorbance of crystal violet
was measured at 595 nm using a microplate reader. For the migration assay, the cells that
migrated to the bottom chamber at 48 h were counted using trypan blue cell staining and
cell counting using a hemocytometer.

For the miRNA transfection experiments, 15,000 topotecan-resistant Y79 and WERI-
Rb1 cells were seeded in 0% RPMI media in the transwell insert coated with 1% matrigel
for 48 h. Invasive and migrated cells were quantified using a 0.1% crystal violet staining
protocol. Data were expressed as replicate data points ± SD of triplicate experiments.

2.11. Colony Formation/Tumor Spheroid Assay

The spheroid formation assays were carried out on a low-attachment U-bottom 96-well
plate (BRAND® 96-well microplate, Sigma Aldrich, St. Louis, MO, USA). A single-cell
suspension of 500 parental and topotecan-resistant Y79 cells in 10% RPMI medium was
loaded in each well of a 96-well plate followed by centrifugation at 1000 rpm for 1 min to
facilitate cell aggregation. The cells were cultured at 37 ◦C in a 90% humidified incubator
with 5% CO2 for 7 days for the generation of tight and regular tumor spheroids. Spheroids
were imaged using the EVOS FL imaging system (ThermoFisher Scientific, Waltham, MA,
USA). ImageJ 2.1 software was used for spheroid area measurements. Data were expressed
as replicate data points± SD of triplicate experiments.
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2.12. Chemosensitivity Assay

The cell viability of topotecan-resistant Y79 and WERI-Rb1 cells after the miRNA
transfections and exposure to topotecan IC50 (10 nm) treatment for 48 h was determined
using the Presto Blue cell viability reagent (Invitrogen) as per the manufacturer’s protocol.
In brief, topotecan-resistant Y79 or WERI-Rb1 (5 × 103) were plated into 96-well plates
(Eppendorf, Sigma Aldrich, St. Louis, MO, USA) and incubated overnight. The cells were
treated with topotecan IC50 for 48 h. Untreated Y79 or WERI-Rb1 resistant cells were
considered as the control. Four hours before the end of the treatment, presto-blue reagent
(Invitrogen) was added and incubated for 2 h followed by measurement of fluorescence
(540 nm excitation/590 nm emissions). The chemosensitivity of all treated cells was de-
termined across conditions and compared against control mock-treated cells (which were
considered 100% viable). Data were expressed as the mean ± SD of triplicate experiments.

2.13. miRNA–mRNA Target Prediction and Network Analysis

The miRNA–mRNA target prediction was performed using the databases miWalk 2.0,
miRbase 21.0, and TargetScan 8.0. The interaction network map was constructed using
miRNet 2.0 by integrating microarray data with microRNA databases.

2.14. Statistical Analysis

Statistical analysis was performed using GraphPad Prism 8. Data are presented as
the mean ± s.d unless indicated otherwise, and p < 0.05 was considered statistically
significant. For all representative images, results were reproduced at least three times in
independent experiments. For all the quantitative data, the statistical test used is indicated
in the legends. A statistical ‘decision tree’ is provided in Figure S6. Heatmaps of the
Z-transformed gene expression level of mRNA microarray were created using Python
3.7 Seaborne 0.9.0 (Micheal Waskom, NY, USA). Bubble-weighted plots with calculated
q-values were created using the Python 3.6.2 circlize library.

3. Results
3.1. Transcriptomic Profiling Identified Differentially Regulated miRNAs, EMT, and
Drug-Resistant Genes in the Rb Tumor Subtype

To obtain a broad view of miRNA regulation in Rb tumors, we first investigated the
miRNA profile using a microarray. We performed a miRNA expression microarray in a
primary Rb cohort (Table 1) comprising enucleated tumor tissues of five advanced (defined
by AJCC staging- cT3 [22], IIRC- group E [23] and four non-advanced (defined by AJCC
staging- cT2, IIRC- group D) subjects. Two age-matched pediatric retinas (age range from
2–3 months) with no ocular complications were used as controls. We identified sixteen
distinct differentially regulated miRNAs that were unique to Rb tumors (p < 0.05, FC > 2)
compared with the pediatric retina (Figure 1A). Notably, miR-181a-5p and miR-3653 were
significantly downregulated in advanced Rb compared with non-advanced Rb tumors
(Figure 1B). We applied KEGG pathway enrichment analysis to the miRNAs data obtained
using the microarray and identified miRNA-regulating genes belonging to the cell cycle
pathway, the EMT program, drug resistance, and pathways in cancer (Figure 1C). We
performed RT-PCR validation experiments in a secondary cohort (Table S1) comprising
eight Rb tumor tissues (four advanced, four non-advanced) and four pediatric retina
controls; this confirmed the downregulation of miR-181a-5p in Rb tumors, with significant
downregulation in advanced subjects (p < 0.001) (Figure 1D). RT-PCR quantification of miR-
331-3p, miR-574-5p, and miR-1290 in advanced and non-advanced Rb tumors corroborated
with the expression profiles identified in the miRNA microarray (Figure S1A–C). The
findings prompted us to elucidate the EMT and drug resistance signatures in advanced and
non-advanced Rb tumors. We performed total mRNA profiling using a gene expression
microarray in the primary Rb cohort. We identified differentially regulated EMT and
drug resistance genes in advanced (Figure 1E) and non-advanced Rb tumors (Figure 1F)
compared with pediatric controls (p < 0.05, FC > 2). Notably, EMT transcription factors,
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such as ZEB1 (FC = 92, p < 0.05) and SNAI2 (FC = 5.57, p < 0.05), and drug resistance
genes, such as ABCB1 (MDR1) (FC = 5.84, p < 0.05) and CTSL (cathepsin L) (FC = 20.03,
p < 0.05), were significantly upregulated in advanced tumors (Figure 1G). However, ZEB1
(FC = 77.2, p < 0.05), SNAI2 (FC = 3.32, p < 0.05), ABCB1 (FC = 4.4, p < 0.05), and CTSL
(FC = −3.8, p < 0.05) expressions were significantly downregulated in non-advanced Rb
tumors. RT-PCR validations of these genes in a secondary cohort confirmed the findings of
the microarray (Figure 1H–K).

Figure 1. Transcriptomic profiling identified differentially regulated miRNAs, EMTs, and drug
resistance genes in Rb tumor subtypes. (A) Volcano plot showing differentially regulated miRNAs in
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Rb subjects (n = 9) compared with the pediatric retinas (n = 2) identified using a microarray.
(B) Heatmap showing differential expression of miRNAs in 9 Rb subjects and 2 pediatric controls
identified using a microarray. (C) Bubble scatter plot showing the top enriched KEGG pathways
regulated by miRNAs in Rb tumors. (D) RT-PCR results showing the normalized expression of
miR-181a-5p in the control retinas (n = 4), advanced Rb (n = 4), and non-advanced Rb (n = 4). Volcano
plot showing the differentially regulated EMT and chemotherapy resistance genes identified using
a microarray in (E) advanced Rb tumors and (F) non-advanced Rb tumors. (G) Heatmap showing
the expression of EMT and chemotherapy resistance genes in 9 Rb subjects and 2 pediatric controls.
RT-PCR showing the normalized expression of (H) ZEB1, (I) SNAI2, (J) ABCB1, and (K) CTSL in
control pediatric retinas (n = 4), advanced Rb tumors (n = 4), and non-advanced Rb tumors (n = 4).
Values represent the mean ± s.d. Two-tailed Mann–Whitney was used for the statistical analysis.
* p < 0.05, ** p < 0.01, *** p < 0.001. ’ns’ represents no statistically significant difference between the
means of two variables.

3.2. Validation of the Epithelial-to-Mesenchymal Transition (EMT) and Chemo-Drug Resistance
Proteins in Rb Tumors and Their Interaction with miR-181a-5p

Immunofluorescence analysis of FFPE specimens of Rb tumors detected strong ZEB1
and cathepsin L positivity in advanced Rb tumor tissues compared with non-advanced Rb
(Figure 2A–C). However, we observed cathepsin L positivity in the photoreceptor layers
of control tissues, indicating its lysosomal functions in the retina tissues [24], unlike its
metastatic potential in cancers [25]. Notably, the advanced Rb tumors demonstrated a
cadherin-switching phenotype with high expression of N-cadherin and low expression of E-
cadherin in the tumor tissues (Figure 2D–F), which is suggestive of EMT dissemination [26].
RT-PCR validations displayed significant downregulation of EMT adhesion genes CDH1
(E-cadherin) in advanced and non-advanced tumors (p < 0.001) (Figure S1D), while CDH2
(N-cadherin) maintained an elevated expression profile in advanced tumors (p < 0.001)
(Figure S1E), corroborating with the protein signals detected in advanced tumors. We also
detected MDR1 positivity in advanced tumors indicating therapeutic resistance, while
MDR1 expressions were vague in non-advanced tumors and undetected in pediatric retina
tissues (Figure S1F). For comprehensive functional analysis of miRNAs, we developed a
miRNA–target interaction network map using miRNet 2.0 by integrating microarray data
with the microRNA databases miRwalk, miRbase, and TargetScan. Out of the sixteen miR-
NAs identified in the Rb tumor microarray, nine miRNAs were associated with regulating
cancer-specific pathways, while five miRNAs strictly regulated EMT pathway genes in the
interaction map. We identified miR-181a-5p as a regulator of EMT transcription factors,
such as ZEB1 and SNAI2, while miR-124-3p was identified as a regulator for EMT facilita-
tors, such as CDH1 (E-cadherin) and CHD2 (N-cadherin) (Figure 2G). However, miR-3653
did not display any interaction with KEGG-identified enriched pathways (Figure 2G). We
speculated that advanced tumors maintain a high expression of EMT and drug resistance
genes due to the low expression of miR-181a-5p, thus promoting invasion and metastasis
(Figure 2H,I).
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Figure 2. Validation of epithelial-to-mesenchymal transition (EMT) and chemo-drug resistance genes
in Rb tumors and their correlation with miR-181a-5p. Immunofluorescence results showing the
expression of (A) ZEB1 and CTSL. The IF mean intensity of (B) ZEB1 and (C) cathepsin L staining
in advanced tumors (n = 12), non-advanced tumors (n = 12), and control pediatric retinas (n = 4).
Immunofluorescence results showing the expression of (D) N-cadherin and E-cadherin, IF mean
intensity of (E) N-cadherin and (F) E-cadherin in advanced tumors (n = 12), non-advanced tumors
(n = 12), and control pediatric retina tissues (n = 4). Scale bar: 50 µm. (G) Network map showing
the predicted interaction of miRNA–mRNA targets using miRNet. Correlation plot showing the
(H) negative correlation of EMT genes (ZEB1, SNAI2, and TWIST) with miR-181a-5p in Rb tumors
and (I) negative correlation of drug resistance genes (MDR1, MRP1, and CTSL) with miR-181a-5p
in Rb tumors. Values represent the mean ± s.d. Two-tailed Mann–Whitney was used for statistical
analysis. ** p < 0.01, *** p < 0.001. ’ns’ represents no statistically significant difference between the
means of two variables.
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3.3. Chemotherapy-Resistant Rb Cells Conferred a High EMT Program and Metastasis

Initial regression of the Rb tumor is followed by an orbital relapse [27] or recurrence
of more aggressive chemo-resistant tumors composed of tumor cells with a much higher
tumor-initiating ability than the original tumor [28]. The EMT program through ZEB1 is
known to drive cellular mobility and tumor dissemination in other cancer systems [29];
however, their role in EMT-driven drug resistance in Rb tumors is unknown. To extend
our study of the consequences of RB1 downregulation in Rb tumors and its influence on
miRNA and EMT signatures, we overexpressed RB1 in Rb-null Y79 and WERI-Rb1 cells. In
real-time gene expression assays, we found miR-181a-5p to be significantly upregulated in
the presence of Rb compared with Rb-null cells (p = 0.002) (Figures 3A and S4A). Rb over-
expression decreased key EMT factors, such as ZEB1, Slug, N-cadherin, and drug-resistant
MDR1 proteins, in the immunoblot (Figure 3B). However, Rb overexpression increased
E-cadherin expression, indicating a halt in the mesenchymal transition (Figure 3B). These
findings strongly suggest EMT as a modulator of mesenchymal phenotype and drug resis-
tance to further promote invasion and migration (Figure 3C). To expose the mechanism,
we developed Y79 cells that were resistant to topotecan and carboplatin and WERI-Rb1
cells resistant to topotecan by exposing them to increasing concentrations of the drugs for
3 weeks (Figure 3C). After each week, the surviving cells that reached >60% confluency
were passaged in fresh media with an increased concentration of topotecan or carbo-
platin. The procedure was performed repeatedly until the cells display low sensitivity to
IC50 doses of topotecan or carboplatin (Figures 3D,E and S4B,C), reduced DNA damage
repair process defined by low λH2A.X foci count under an IC50 dose therapy for 48 h
(Figure S2A–C), a shift in IC50 values of topotecan and carboplatin (Figure S2D,E), and a
high surface expression of MDR1 proteins (Figures 3F–H, S2F–H and S4E–G), marking a
resistant phenotype. We developed tumor spheroids for parental and resistant Y79 cells,
and we observed high ZEB1 and cathepsin L expression in resistant spheroids using im-
munofluorescence. However, parental spheroids displayed strong ZEB1 expression and no
cathepsin L expression (Figure 3I). We further confirmed the findings using RT-PCR that
revealed a mesenchymal transition trend for resistant lines compared with parental lines
(Figures 3J–M, S2I and S4G–J). Likewise, using a transwell assay, we detected an increase
in invasion and migration properties of resistant Y79 and WERI-Rb1 cells under high-dose
topotecan (100 nM) therapy (Figures 3N–P and S4K–M). In line with the above results, in hu-
man Rb tumors, miR-181a-5p was significantly downregulated in EMT-high/drug-resistant
advanced tumors. All these data pointed to miR-181a-5p as a previously unrecognized
negative regulator of the EMT program and drug resistance mechanism that possibly
influences tumor metastasis (Figure S2J).
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Figure 3. Chemotherapy-resistant Rb cells conferred a high-EMT program and metastasis.
(A) RT-PCR showing normalized expression of miR-181a-5p in vector control (RB1-null) and RB1-
overexpressed Y79 retinoblastoma cells. (B) Immunoblot showing the expression of the EMT and
chemo-resistant markers in vector control (RB1 null) and RB1-overexpressed Y79 cells. (C) Schematic
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showing the EMT program and drug resistance induction in metastatic tumors. (D) Phase contrast
microscopy images showing the morphology of parental and resistant Y79 cells under increasing
doses of topotecan treatments from week 1 to week 3. Scale bar: 400 µm. (E) Trypan blue cell count of
parental, topotecan-resistant, and carboplatin-resistant Y79 cells for 24 h, 48 h, 72 h, and 96 h. MDR1
surface expression analysis in (F) parental and (G) topotecan-resistant Y79 cells by flow cytometry.
(H) Bar graph showing the percentage of cells positive for MDR1 surface expression in parental,
topotecan-resistant, and carboplatin-resistant Y79 cells. (I) Parental and resistant Y79 spheroids
showing the expression of ZEB1 and cathepsin L. Scale bar: 100 µm. RT-PCR showing expression of
(J) ZEB1, (K) cathepsin L, (L) E-cadherin, and (M) N-cadherin in parental, topotecan-resistant, and
carboplatin-resistant Y79 cells. (N) Transwell invasion and migration assay to assess the migratory
capacity of resistant cells compared to sensitive cells under a 10 nM topotecan treatment for 48 h.
(O) Crystal violet OD reading at 570 nm to assess invasiveness. (P) Trypan blue count to assess
migrated cells in the lower compartment of the transwell chamber. Two-tailed Student’s t-test (for
2 groups) and one-way ANOVA with Dunnett’s multiple comparisons tests (for >2 groups) were
used for the statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. ‘ns’ represents no statistically
significant difference between the means of two variables.

3.4. Resistant Cells Elicited a Transition through ZEB1 and Resistance through Cathepsin L

To identify the critical downstream signaling pathways that regulate EMT and chemo-
resistance, we focused on the TGFβ pathway, which was the most overrepresented among
the advanced Rb tumors in the microarray analysis (Figure S3A). To substantiate this find-
ing, using a Western blot, we found an increased expression of phospho-SMAD2 in resistant
Y79 compared with parental (Figure 4A). The resistant cells showed more pronounced
expression of EMT markers, such as ZEB1, Slug, and N-cadherin, and drug-resistant mark-
ers, such as MDR1 and cathepsin L (Figure 4A), mimicking an advanced tumor signaling
circuit. In agreement with a previous report stating that retinoblastoma cells lack functional
TGFβ receptors I and II [30] (Figures 4B and S3B), we identified that ACVRC1 receptors,
which is a member of the TGFβ family, could accelerate SMAD2 activations in advanced
retinoblastoma [31] (Figure S3C). In real-time gene expression assays, we confirmed our
findings in resistant cells that showed an increase in the expression of ACVRC1 transcript,
pointing out the role of TGFβ signaling in advanced tumors (Figures 4C and S5A). To
see whether TGFβ modulation affected the resistance phenotype, we used TGFβ ligand
activation (10 ng) and TGFβ inhibitor (50 µM SB43152) for 48 h in parental and resistant
lines and assessed the changes in EMT and drug resistance markers. Using immunoflu-
orescence, we found enhanced levels of phospho-SMAD2 and cathepsin L levels upon
TGFβ activation in resistant cells (Figures 4D and S5B), while TFGβ-activated parental cells
showed a slight increase in phospho-SMAD2 and cathepsin L levels compared with the
controls. Likewise, TGFβ activation also increased the ZEB1 expression in resistant and
parental cells compared with the controls (Figure S3D). TGFβ inhibition in parental lines
shows a complete reduction in phospho-SMAD2, ZEB1, and cathepsin L proteins; however,
resistant cells upon TGFβ inhibition showed a partial reduction in cathepsin L and ZEB1
in the nucleus (Figures 4D and S3D). Consistently, we observed lower levels of ZEB1,
Slug, and cathepsin L proteins upon TGFβ/phospho-SMAD2 inhibition in resistant lines
using Western blotting (Figure 4E). In contrast to the resistant phenotype, TGFβ/SMAD2
inhibition drastically reduced ZEB1, Slug, and depleted cathepsin L proteins in parental
lines. TGFβ inhibition showed significant downregulation of SMAD2 (Figure S3E) and
ZEB1 genes in the resistant lines (Figures 4F and S5D), while TGFβ inhibition did not affect
SNAI2 and CTSL (cathepsin L) expressions in resistant cells (Figures 4G,H and S5E,F). Thus,
TGFβ transcriptionally regulated ZEB1 but not SNAI2 and CTSL in resistant lines. Using
promoter binding analysis, we found that the ZEB1 promoter had direct binding sites for
SMAD2 that were closer and within the transcription start site (TSS), which was suggestive
of strong transcriptional activation of ZEB1 (Figure S3F). However, SMAD2 binding sites
in the SNAI2 promoter were relatively far off from the TSS (Figure S3F), confirming its
poor sensitivity to TGFβ inhibitors. Notably, SNAI2 also had strong promoter binding sites
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in the CTSL promoter, and thus, it is possible that the transcriptional activation of CTSL
was mediated via SNAI2 and not SMAD2 or ZEB1 (Figure S3F). In support of our results,
we observed enhanced nuclear localization of cathepsin L in resistant lines indicating its
transcriptional activity independent of TGFβ/SMAD2 signals (Figure S3G). We speculated
that resistant cells have nuclear localization of CTSL due to the lack of steffin B (CSTB) [32],
as evidenced in an advanced tumor microarray (Figure 2A). This indicated that ZEB1
triggers EMT through TGFβ and the activated EMT program through SNAI2 regulates
CTSL-mediated chemoresistance in advanced Rb tumors (Figure 4I). Hence, identifying
a common regulator, such as miR-181a-5p, that governs the mechanisms of both the tran-
sition and resistance is both reasonable and promising for the effective management of
metastatic dissemination.

Figure 4. Resistant cells elicited a transition through ZEB1 and resistance through cathepsin L.
(A) Immunoblot showing the expression of EMT and drug resistance markers in parental, topotecan-
resistant, and carboplatin-resistant Y79 cells. Uncropped immunoblots are provided in Figure S8.
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(B) Immunofluorescence showing the expression of TGFβ R-II and phospho-SMAD2 in parental and
topotecan-resistant Y79 cells with and without TGFβ induction. Scale bar: 50 µm. (C) RT-PCR results
showing the expression of ACVRC1 in parental, topotecan-resistant, and carboplatin-resistant cells.
(D) Immunofluorescence showing the expression of phospho-SMAD2 and cathepsin L (CTSL) upon
TGFβ induction (10 ng for 48 h) and TGFβ inhibition (50 µM SB431542 for 48 h) in parental and
topotecan-resistant Y79 cells. Scale bar: 50 µm. (E) Immunoblot showing the differential regulation of
proteins belonging to the EMT and drug resistance pathway upon TGFβ induction and inhibition
for 48 h. Uncropped immunoblots are provided in Figure S9. RT-PCR results show the normalized
expression of (F) ZEB1, (G) SNAI2, and (H) CTSL (cathepsin L) upon TGFβ induction and inhibition
for 48 h. (I) Schematic showing the novel regulation of EMT and drug resistance mechanism in Rb
tumors. Two-tailed Student’s t-test (for 2 groups) and one-way ANOVA with Dunnett’s multiple
comparisons tests (for >2 groups) were used for the statistical analysis. *** p < 0.001, **** p < 0.0001.
‘ns’ represents no statistically significant difference between the means of two variables.

3.5. Resistance Depletion by miR-181a-5p Conferred Sensitivity to Chemotherapy

To understand how miR-181a-5p affected the EMT and chemoresistance mechanism
in resistant Y79 lines, using Western blotting, we focused particularly on the ZEB1, Slug,
and cathepsin L proteins. Using the bioinformatic tools miRwalk and Targetscan, we
also predicted the binding sites of miR-181a-5p in the ZEB1 and SNAI2 3′ UTR regions
(Figure S3H,I). In contrast to mimic control, the overexpression of miR-181a-5p drastically
reduced the ZEB1, Slug, and cathepsin L protein levels (Figure 5A). However, miR-181a-5p
inhibition showed an opposing result, mimicking an EMT with a highly drug-resistant
advanced tumor phenotype (Figure 5A). We accordingly observed changes in the MDR1 sur-
face expression in resistant cells overexpressed with miR-181a-5p (Figures 5B,C and S5F,G)
that were partly explainable by changes in the protein levels of Slug and cathepsin L
in the immunoblot. Notably, miR-181a-5p overexpression reduced the cell proliferation
(Figure 5D), invasion, and migration of resistant cells (Figures 4E–G and S5H–J). How-
ever, miR-181a-5p inhibition showed contrary results by increasing all cancer hallmarks
in the resistant lines (Figures 5D–G and S5H–J). These findings led us to hypothesize
that miR-181a-5p-overexpressed resistant lines might be particularly sensitive to low-dose
chemotherapy. To test this, we first compared the response of miR-181a-5p-modulated
resistant lines to the IC50 dose of topotecan (parental Y79 and WERI-Rb1 IC50 = 10 nM) for
96 h. Following topotecan treatment, the miR-181a-5p-overexpressed resistant lines did not
show any significant response at 24 h and 48 h (Figure 5H,I), while they showed increased
sensitivity and low survival to the topotecan IC50 by 72 h (Figures 5J and S5K) and 96 h
(Figure 5K), confirming the efficacy of miR-181a-5p. Together the results suggested that
the miR-181a-5p played a major role in the depletion of EMT and resistant phenotype that
further sensitized the cells to low-dose chemotherapy.
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Figure 5. Resistance depletion by miR-181a-5p conferred sensitivity to chemotherapy. (A) Im-
munoblot showing the expression of key EMT factors and drug resistance markers upon miR-181a-5p
overexpression and inhibition in topotecan-resistant Y79 cells. Uncropped immunoblots are provided
in Figure S7. (B) Immunofluorescence showing the MDR1 surface expression in topotecan-resistant
Y79 cells upon miR-181a-5p overexpression and inhibition. Scale bar: 50 µm. (C) Bar graphs showing
the MDR1 fluorescent intensity in topotecan-resistant Y79 cells upon miR-181a-5p overexpression
and inhibition. (D) Trypan blue cell count showing the proliferation of topotecan-resistant cells at
24 h, 48 h, 72 h, and 96 h upon miR-181a-5p overexpression and inhibition. (E) Transwell invasion
and migration assay to assess the invasive and migratory capacity of topotecan-resistant cells upon
miR-181a-5p overexpression and inhibition. (F) Crystal violet OD measurement at 570 nm to assess
the invasiveness of resistant Y79 cells. (G) Trypan blue cell count showing the migrated cells in
the lower compartment of the transwell chamber. Chemosensitivity of miR-181a-5p modulated
topotecan-resistant Y79 cells upon 10 nM topotecan treatment for (H) 24 h, (I) 48 h, (J) 72 h, and
(K) 96 h. The control represents untreated topotecan-resistant Y79 cells. Two-tailed Student’s t-test
(for 2< group) and one-way ANOVA with Dunnett’s multiple comparisons tests (for >2 groups) were
used for the statistical analysis. * p < 0.05, ** p < 0.01, *** p < 0.001. ‘ns’ represents no statistically
significant difference between the means of two variables.

4. Discussion

The present study identified miR-181a-5p as a previously unrecognized regulator of
EMT transcription factors and chemotherapy resistance. While the study focused on intraoc-
ular advanced and non-advanced retinoblastoma tumors, our findings can be extended to
other cancer systems that have persistent EMT-associated chemotherapy resistance. We
found miR-181a-5p to be significantly downregulated in advanced Rb tumors (FC =−62.96,
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p < 0.05) and provided evidence that the mesenchymal transition and chemoresistance in
tumors are likely sensitive to chemotherapy when miR-181a-5p is complemented.

The tumor-promoting [33,34] and tumor-suppressing [35,36] roles were reported for
miR-181-5p. However, here we report the downregulation of miR-181a-5p in retinoblastoma
tumor tissues from patients when compared with healthy pediatric retinae. Discrepancies
in the role of miR-181-5p existed in our study due to the limited cohort sizes of Rb tumors
and the use of pediatric retinae as controls. The miRNA 181a-5p also plays a functional
role in the retina [37], hence the consistent low expression of miR-181a-5p expression in
advanced and non-advanced retinal tumors was predictable. Our work not only provides
evidence for the tumor suppressor function of miR-181a-5p but also highlights the need to
better dissect the dual role of miR-181a-5p in various cancers.

The control of EMT and chemotherapy resistance by miR-181a-5p evidenced here
could provide an explanation for the apparent complex roles of miR-181a-5p in advanced
tumors. Recent evidence indicates that EMT occurs through intermediate states rather
than being a binary process [38] and is partially reactivated in various cancers [39]. We
propose that dynamic fluctuations in miR-181a-5p levels in tumor and control tissues and
between different stages of Rb progression may contribute to the context-dependent EMT
plasticity from cancer initiation to metastasis. Differences in EMT and drug resistance
transcripts between control and tumor tissues and different stages of Rb further contribute
to this complexity, as miR-181a-5p controls the EMT in a tissue- and function-specific
manner. In this study, advanced Rb tumors showed increased expression of EMT signatures
(ZEB1, FC = 92, p < 0.05; SNAI2, FC = 5.57, p < 0.05), which was a consequence of miR-
181a-5p downregulation, as an EMT trigger. We proposed that the EMT genes, such as
ZEB1 and SNAI2, acquired transcript stability in advanced tumors, at least partly due to
reduced miR-181a-5p-based degradation [40]. Furthermore, we identified chemotherapy
resistance pathway genes, such as ABCB1 (MDR1) [41] and CTSL (cathepsin L) [42], as EMT
targets in Rb tumors. Likewise, the miR-181a-5p clusters located on chromosome 1 are
known to repress E2F transcription factors [43], G1/S cell cycle regulators [44], and proto-
oncogenes [45]. We found that miR-181a-5p negatively controls EMT and chemoresistance
through the regulation of SNAI2 and CTSL transcripts in vitro. Collectively, our work
reveals an emerging and intriguing feature of miR-181a-5p and its association with a
variety of distinct signaling pathways in Rb tumors.

We identified the balance between EMT-driven metastasis in Rb tumors to be in-
fluenced by secreted cytokine TGFβ in the tumor microenvironment, which is a known
promoter of EMT in Rb-depleted tumors [46]. Previous studies highlighted the lack of
canonical TGFβ receptors in Rb cells [30], and in agreement with recent reports [31], we
showed that TGFβ signals act through ACVRC1 receptors and activate SMAD2/3 effec-
tors in Rb. Mechanistically, we showed that the presence of the TGFβ ligand mediates a
mesenchymal shift in Rb cells and is associated with enhanced migration and invasion
capacity. Conversely, treatment with a TGFβ signaling inhibitor reduced ZEB1 and SNAI2
levels and prevented the acquisition of mesenchymal marker expression and morphological
features, thus linking mesenchymal differentiation in Rb with enhanced tumor cell invasion
through the TGFβ/ZEB1/SNAI2 axis. Interestingly, and in line with our observations of
the importance of miRNA, EMT, and chemoresistance, a recent report highlights that the
miR-200c-ZEB1 feedback loop is involved in the invasion, migration, and chemoresistance
in advanced glioblastoma tumors [47]. We found that TGFβ signals can drive an EMT
program in Rb-/- cells, while they do not necessarily lead to chemoresistance. We observed
that Rb cells acquire chemotherapy resistance through an enhanced EMT program that is
orchestrated by SNAI2 by regulating CTSL. This concept was further supported by our ob-
servations with the ectopic expression of miR-181a-5p, which represses SNAI2 at its 3′ UTR
region and targets the SNAI2-CTSL signaling cascade, inhibiting transition and resistance.

The tumor suppressor properties of miRNA in various cancers have prompted the de-
velopment of various potent inhibitors of pharmacological targeting in clinical settings [48],
but our study was limited to in vitro models and lacks investigations in animal models. On
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the other hand, our findings on miR-181a-5p raise hopes for therapeutic strategies for the
management of advanced Rb tumors.

5. Conclusions

We explored the possible role of EMT and drug resistance in advanced Rb tumors and
highlights the role of miR-181a-5p in EMT- and chemoresistance-related gene expression
and drug sensitivity in retinoblastoma. In conclusion, our data revealed a mechanistic link
between EMT and chemoresistance in Rb tumors, which was mediated by miR-181-5p.
Thus, we identified miR-181a-5p as a potential target to control the tumor EMT program
and development of chemoresistance, which is an encouraging prospect for cancer research
and therapy
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