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Simple Summary: Oral cancer is a devastating disease for humans. Tumor-associated macrophages 

(TAMs) are notorious tumor promoters. The major TAMs populations in most solid tumors are can-

cer-promoting M2 TAMs, which play a vital role in mediating the immunosuppressive tumor mi-

croenvironment, promoting tumor blood vessel formation and leading to tumor metastasis through 

the production of tumor-promoting inflammatory factors or chemokines. CCL13 is a crucial pro-

tumor chemokine from M2 TAMs. G3BP1 has been reported to trigger tumor metastasis via medi-

ating the cellular stress responses. Hitherto, it is unclear that how M2 TAMs released the CCL13 to 

promote OSCC metastasis. In the current study, we identified that G3BP1 can facilitate adaptive 

reactions of macrophages in response to adverse conditions in the tumor microenvironment, and 

these effects of G3BP1 simultaneously stimulated the expression of CCL13 from M2 TAMs, conse-

quently improving oral cancer metastasis. 

Abstract: M2 tumor-associated macrophages (TAMs) have been a well-established promoter of 

oral squamous cell carcinoma (OSCC) progression. However, the mechanisms of M2 TAMs pro-

moting OSCC metastasis have not been elucidated clearly. This study illustrated the regulatory 

mechanisms in which M2 TAMs enhance OSCC malignancy in a novel point of view. In this study, 

mass spectrometry was utilized to analyze the proteins expression profile of M2 type monocyte-

derived macrophages (MDMs-M2), whose results revealed the high expression of G3BP1 in M2 

macrophages. RNA sequencing analyzed the genome-wide changes upon G3BP1 knockdown in 

MDMs-M2 and identified that CCL13 was the most significantly downregulated inflammatory cy-

tokines in MDMs-M2. Co-immunoprecipitation and qualitative mass spectrometry were used to 

identify the proteins that directly interacted with endogenous G3BP1 in MDMs-M2. Elevated stress 

granule (SG) formation in stressed M2 TAMs enhanced the expression of CCL13, which promoted 

OSCC metastasis both in vitro and in vivo. For mechanisms, we demonstrated SG formation im-

proved DDX3Y/hnRNPF-mediated CCL13 mRNA stability, thus enhancing CCL13 expression and 

promoting OSCC metastasis. Collectively, our findings demonstrated for the first time the roles of 

CCL13 in improving OSCC metastasis and illustrated the molecular mechanisms of CCL13 expres-

sion regulated by SG, indicating that the SG-CCL13 axis can be the potential targets for TAM-navi-

gated tumor therapy. 
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1. Introduction 

Oral cancer is one of the most lethal tumors worldwide [1]. OSCC is the primary 

histopathological type of oral cancer, and thousands of OSCC patients die from regional 

or distant metastasis of oral cancer annually [2,3]. We previously reported that the cyto-

kine TNF-α from the tumor microenvironment (TME) promoted tongue squamous cell 

carcinoma (TSCC) metastasis by activating cancer-associated fibroblasts (CAFs) and en-

hancing their release of SDF-1 [4]. Macrophages were the primary cell populations secret-

ing TNF-α [5], and macrophage-mediated inflammatory responses have been demon-

strated to facilitate cancer metastasis [6]. 

TAMs populations had also been famous for their diversity in phenotypes and func-

tions [7]. Macrophages cultured with lipopolysaccharide (LPS) and IFN-γ or with IL-4 and 

IL-13 will polarize to M1 or M2 macrophages, respectively [8]. Recently, the advances in 

single-cell sequencing technique have enhanced our recognition of TAMs subtypes [9]. 

However, only spatial analysis supported by multiplexed immunohistochemistry (mIHC) 

techniques can exactly show the TAMs spatial distributions in situ without impairing their 

actual distributions in tumor tissues [10]. TAMs were responsible for many malignant be-

haviors of cancer. On the one hand, as one of immunosuppressive myeloid cells, TAMs 

could promote tumor immune escape through inducing an immunosuppressive tumor 

microenvironment [11,12]. They not only inhibited the adaptive antitumour immune re-

sponses, but also blocked the innate immune system activities to facilitate tumor immune 

escape. PD-L1 in tumor cells or TAMs is an important mechanism for tumor immune es-

cape via suppressing the activation of cytotoxic T lymphocytes [13–15]. TAMs have also 

been blamed for tumor escape from the phagocytosis, as well as the detection and clear-

ance of malignant cells mediated by macrophages via the innate immune checkpoints ex-

pressing in TAMs (PD-1, SIRPα, Siglec-10, etc.) [16–18]. On the other hand, M2 TAMs were 

also well-established promoters of tumor progression [6,19,20]. The triple molecular chap-

erones of CDC37/HSP90α/β from oral cancer-derived extracellular vesicles (EVs) were 

found to facilitate tumor progression via inducing epithelial-mesenchymal transition 

(EMT) and M2 TAMs polarization [21]. TAMs mediated cancer cell stemness of head and 

neck squamous cell carcinoma (HNSCC) by increasing availability of hyaluronic acid 

(HA) and influencing PI3K-4EBP1-SOX2 pathway [22]. M2 TAMs have been identified to 

be precursors of OSCC progression and both CD163+ TAMs and CD206+ TAMs were cor-

related with clinical poor prognosis of OSCC [23–25]. However, the mechanisms in which 

M2 TAMs improved OSCC metastasis have not been thoroughly illustrated. 

TME was an adverse environment for cells survival as result of its environmental 

stressors, such as oxidative stress, hypoxia, or nutrient deprivation [26]. The global trans-

lation level in cells under stresses was limited to preserve energy for cells survival [27]. 

One of well-established stress-induced responses was stress granule (SG) formation 

which consists of ribonucleoprotein complex via sequestrating translationally stalled 

mRNA, stress-associated RNA-binding proteins and eukaryotic translation initiation fac-

tors [28,29]. SG was a form of membraneless organelles in the cytoplasm [30], and it was 

also a vital structure for mRNA storage and stability, as well as reprogramed mRNA 

translation during cell stress periods. SG can improve the stability of transcripts stored in 

ribonucleoprotein complex and allow rapid restoration of protein synthesis after the ter-

mination of cell stress responses [31]. However, some mRNAs encoding chaperones or 

repair enzymes were usually excluded from SG for their continual translation to sustain 

crucial bioprocesses in response to cell stress [27,32]. In many studies on the relationship 

between SG and diseases, SG was associated with tumor initiation and progression 

[33,34]. 
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In the current study, we identified the infiltration of CD206+TAMs were correlated 

with tumor metastasis and poor prognosis of OSCC patients. SG formation regulated the 

expression of CCL13 in M2 TAMs through enhancing DDX3Y/hnRNPF-mediated CCL13 

mRNA stability to promote OSCC metastasis. These findings may provide a novel under-

standing of the mechanisms by which M2 TAMs released protumor chemokines to facili-

tate OSCC metastasis. 

2. Materials and Methods 

Additional information was provided in the Supplementary Materials and Methods. 

2.1. Cell Culture 

The culture methods of human OSCC cell lines (CAL27 and SAS cells) and macro-

phages were described in the Supplementary Materials and Methods. 

2.2. Patients and Specimens 

A total of 48 patients diagnosed as OSCC with or without lymph node metastasis in 

our center between 2016 and 2021 were recruited for our research. All tissue specimens 

and adjacent noncancerous specimens were obtained via tumor resection surgery. This 

study has been approved by the research ethics committee of Sun Yat-sen Memorial hos-

pital, Sun Yat-sen University (Approval numbers: SYSKY-2022-322-01). All patients who 

provided specimens gave informed consent. Clinical data were obtained by chart review 

and confirmed by experienced surgeons. The mean follow-up time of all patients were 

27.1 months. 

2.3. Multiplex Immunohistochemistry (mIHC) 

We performed mIHC of human OSCC tissues using an Opal 7-color manual IHC kit 

(NEL801001KT, PerkinElmer, MA, USA) according to the manufacturer’s guides and the 

methods from another study [12]. Data were analyzed via the software Vetra Polaris 

(PerkinElmer). 

2.4. Immunohistochemistry (IHC) and Immunofluorescence Staining (IF) of Tumor Tissues 

The human or mouse primary tumor specimens were used for immunohistochemis-

try and immunofluorescence analysis. The analysis of immunohistochemical results with 

Image J included two steps. On the one hand, the IHC Profiler plugin was used to auto-

matically score the staining of the samples. IHC Profiler, which simultaneously took the 

average gray value (staining intensity) and the percentage of positive area (staining area) 

of positive cells as IHC measurement indicators, finally gave us four scores: High positive 

(3+), Positive (2+), Low Positive (1+) and Negative (0). On the other hand, using the Train-

able Weka Segmentation plugin, the positive and negative cells were counted separately 

based on machine learning algorithms. Other experimental details can be seen as de-

scribed in the Supplementary Materials and Methods. 

2.5. Cell Immunofluorescence (IF) 

The cell IF staining of macrophages were performed as shown in the Supplementary 

Materials and Methods. 

2.6. Flow Cytometry 

The monocyte-derived macrophages were detected via flow cytometry as shown in 

the Supplementary Materials and Methods. 

2.7. siRNA Transfection for Macrophages 

The specific siRNAs were transfected into macrophages as revealed in the Supple-

mentary Materials and Methods. 
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2.8. Plasmid Construct 

The methods to generate G3BP1-knockdown plasmid constructs have been described 

in the Supplementary Materials and Methods. 

2.9. Transwell Migration Assay and Wound Healing Assay 

The co-culture model between M2 macrophages and CAL27/SAS cells using 

transwell devices were consisted of 0.8μm-chambers (upper chambers) and the 24-well 

cell culture plates (lower chambers). The M2 macrophages were inoculated and cultured 

in lower chambers 24 h before the co-culture experiment. On the onset of formal experi-

ment, the CAL27/SAS cells were inoculated in the upper chambers. Then, the upper cham-

bers covered with CAL27/SAS cells would be placed into the lower chambers with mac-

rophages (avoiding the formation of air bubble at the interface between upper and lower 

chambers) and continued to culture 24 h. Further details of the experiment can be seen in 

the Supplementary Materials and Methods. 

2.10. ELISA 

These experiment details can be seen in the Supplementary Materials and Methods. 

2.11. Real-Time Quantitative PCR (RT-qPCR) and Western Blot 

Total RNA, cDNA synthesis and qPCR were performed as previously described [35]. 

The primers sequences were shown as Supplementary Table S2. Western blot analysis of 

cells can be seen in the previous study [35]. All the whole western blot figures can be 

found in the supplementary materials. 

2.12. RNA Sequencing 

Details about RNA sequencing have been listed in the Supplementary Materials and 

Methods. 

2.13. Coimmunoprecipitation and Mass Spectrometry 

The methods to perform coimmunoprecipitation and mass spectrometry have been 

shown in the Supplementary Materials and Methods. 

2.14. Fluorescence In Situ Hybridization (FISH) 

FISH were performed in macrophages followed by immunostaining of SG nucleating 

protein. Methods concerned can be seen in the Supplementary Materials and Methods. 

2.15. RNA Immunoprecipitation (RIP) 

RIP experiments were performed using the Magna RIP RNA-Binding Protein Im-

munoprecipitation Kit (Millipore, Billerica, MA, USA) according to the manufacturer’s 

instructions. Antibody against hnRNPF, as well as normal Rabbit IgG (3900S, as isotype 

control) were used for IP. The coprecipitated RNAs were detected by RT-qPCR. The total 

RNAs were used as the input controls. 

2.16. RNA Stability Assay 

RNA stability assays were performed as previously described [36]. Cells were incu-

bated with 5 μg/mL actinomycin D (Sigma Aldrich, A1410, Shanghai, China) over the in-

dicated time courses prior to RNA extraction and RT-qPCR analysis. 
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2.17. H&E Staining 

H&E staining was performed using Hematoxylin-Eosin staining Kit (Meilunbio, 

MB9898) according to manufacturer’s instruction. The area of the xenograft lesions in mice 

tongue was calculated using image J software. The workflow for area measurement of 

metastatic tumors in mice neck requires two steps: 1. Select the region of interest (ROI) 

and perform image segmentation; 2. Measure the area of positive staining parts. Use tools 

such as rectangle, circle or other ways to select the parts of images wanted by us, and then 

Measure their areas according to the tips of software. A formula was used to compare the 

percent of xenografts area to the area of whole tongue tissues in different group: (areas of 

xenografts/areas of tongue) × 100%. 

2.18. Orthotopic Metastasis Model in the Mouse Tongue 

The BALB/c nude mice were used to build up orthotopic xenografts model in tongue 

according to the previous study [20]. These methods have been described in the Supple-

mentary Materials and Methods. 

2.19. Statistical Analysis 

All statistical analyses were conducted using SPSS 26.0 software (SPSS Inc., Chicago, 

IL, USA). Major experimental graphs were produced with GraphPad Prism 8.0. One-way 

ANOVA was used to compare G3BP1, CCL13 and CD206 expression in OSCC specimens. 

The Kruskal–Wallis test and χ2 test were used to examine the relationships between clini-

copathological characteristics and CCL13 protein expression. Survival curves were plot-

ted using the Kaplan–Meier method and compared with the log-rank test. The one-way 

or two-way ANOVAs were used to compare the results from RT-qPCR, transwell migra-

tion assays, wound healing assays, the tumor xenograft models and other experiments 

between the different groups. Unless otherwise noted, quantitative data are expressed as 

the mean and standard error of the mean (S.E.M.) values. It was considered statistically 

significant when the p < 0.05 (*, p < 0.05; **, p < 0.01 and ***, p < 0.001) compared with the 

control. 

3. Results 

3.1. M2 TAMs Correlated with Metastasis and Poor Prognosis of OSCC Patients 

CD206, a well-established TAM marker, was used to define M2 TAMs in this study. 

Immunohistochemical data showed that the expression of CD206 in metastatic OSCC tis-

sues were significantly higher than those in OSCC tissues without lymph node metastasis 

(Figure 1A,B). Subsequently, we investigated the impacts of the M2 TAMs on OSCC cells 

in vitro. The monocyte-derived macrophages (MDMs) were induced using the CD14-pos-

itive monocytes from human peripheral blood. We validated the M2 type MDMs (MDMs-

M2) by detecting relevant M2 TAMs markers (Figure S1). A co-culture model was estab-

lished to investigate the reciprocal interaction between macrophages and OSCC cells. 

CAL27 and SAS cells co-culturing with MDMs-M2 exhibited greater mobility compared 

with the control group (Figure 1C,D). The Kaplan–Meier analysis revealed high expres-

sion of CD206 in OSCC tissues was correlated with lower overall survival rate of OSCC 

patients (Figure 1E). It demonstrated the roles of CD206 in the prognosis of OSCC patients. 

According to these data, we concluded that M2 TAMs could promote OSCC metastasis 

and were correlated with poor prognosis of OSCC patients. 
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Figure 1. M2 TAMs enhanced OSCC metastasis and were correlated with poor prognosis of OSCC 

patients. (A) Representative images of CD206 staining in non-metastasis, metastasis, and paired 

para-tumor tissues from same patients. The positive staining has been highlighted by black arrows. 

E: Epithelium um, T: Tumor nest. Scale bar: 50 um. (B) Statistical results of CD206 positive expres-

sion in 26 OSCC specimens with neck lymph node metastasis and 22 without metastasis. (C,D) 

Transwell migration assays of CAL27 and SAS cells co-culturing with indicated macrophages were 

performed and statistical results were shown by the bar graph. Scale bar: 50 um. (E) Survival curves 

of 48 OSCC patients with low or high CD206 expression. The p value was determined by log-rank 

test. All experiments were performed in triple times, and the data were presented as the means ± 

SD. (*, p < 0.01 and **, p < 0.01). 

3.2. Inhibition of SG Formation Attenuated the Protumor Effects of M2 TAMs 

Although the pro-tumor effects of M2 TAMs have been verified, the reasons why the 

M2 TAMs can be a promoter of OSCC metastasis should be further investigated. We per-

formed mass spectrometry with M2 TAMs and observed that a cluster of stress-associated 

proteins were upregulated in MDMs-M2. Many of the differentially expressed proteins 

(Figure 2A) were mainly involved in integrated stress response (ISR), especially SG as-

sembly [37,38]. SG formation was triggered by SG nucleator proteins, such as G3BP1. SG 

can be visualized by detecting G3BP1 [39,40]. We demonstrated the high expression of 

G3BP1 in MDMs-M2 (Figure 2B). SG assembly was also deemed as a result of inhibited 

translation initiation [41]. We used ribopuromycylation to quantify global translation 

level [42] and observed that global translations were limited in MDMs-M2 (Figure 2C). 

Additionally, we demonstrated increased SG formation in MDMs-M2 (Figure 2D). 
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Figure 2. Increased SG formation in M2 TAMs promoted OSCC metastasis. (A) The data from heat 

map showed upregulated G3BP1 expression in MDMs-M2 compared with MDMs-M0 via Mass 

Spectrometry. (B) Western blot analysis demonstrated the upregulated protein expression of G3BP1 

in MDMs-M2. (C) The indicated macrophages were incubated with puromycin (30 μg/mL) for 20 

min before lysis, and followed by analysis of Western blot with a puromycin-specific antibody to 

detect the global translation levels. (D) IF images revealed increased SG in MDMs-M2. Scale bar, 10 

μm. (E,F) Cell migration assays of CAL27 and SAS cells co-culturing with MDMs-M2 transfected 

with control or G3BP1 siRNA using Transwell inserts. Scale bar, 50 μm. (G,H) SAS cells stably ex-

pressing the luciferase and mixed with MDMs-M2 transfected with control or G3BP1 shRNA were 

injected into the tongue of BALB/c nude mice (n = 6). Bioluminescence signals of metastasis tumor 

(neck lymph node) were quantified on 18 days after tumor transplant with an in vivo imaging sys-

tem. (I) H&E staining of the neck lymph nodes from mice. Blue dotted lines: metastasis tumor le-

sions. Scale bars, 100 μm. The enlarged pictures are placed on the bottom. Scale bars, 30 μm. (J) The 

numbers of mice with and without neck lymph nodes metastasis. All experiments were performed 

in triplicate, and the data were presented as the means ± SD. (**, p < 0.01; and ***, p < 0.001). 

We wondered if SG formation played a pivotal role in sustaining the protumor phe-

notype of M2 TAMs. SG formation can be inhibited by depletion of G3BP1 (Figure S2A–

C). Inhibition of SG formation downregulated CD206 expression in MDMs-M2 (Figure 



Cancers 2022, 14, 5081 8 of 21 
 

 

S2D,E). Cycloheximide (CHX) was used as a positive control to block SG assembly. Sim-

ultaneously, the effects of SG on OSCC metastasis were also testified. Compared with the 

control group, G3BP1 knockdown inhibited their pro-tumor effects of MDMs-M2 in vitro 

and in vivo (Figure 2E–J). These results highlighted the roles of SG formation in enhancing 

the pro-metastatic efficacy of M2 TAMs. 

3.3. Disruption of SG Decreased the Production of CCL13 in M2 TAMs 

We have demonstrated that SG formation enhanced the pro-metastatic abilities of M2 

TAMs above. However, the mechanisms by which SG formation regulated these biologi-

cal processes remained unknown. Here, we used MDMs-M2 transfected with control and 

G3BP1 siRNAs to perform RNA sequencing. The Venn diagram revealed 901 differen-

tially expressed genes in two siRNA groups (Figure S3). Most of the differentially ex-

pressed genes participated in the biological processes “inflammatory response” and “cy-

tokine-cytokine receptor interaction” according to the Gene Ontology (GO) and Kyoto 

Encyclopedia of Genes and Genomes (KEGG) analysis (Figure 3A,B). We suspected SG 

formation may regulate the production of cytokines in MDMs-M2. Among the differen-

tially expressed cytokines, CCL13 was the dominantly highly expressed and most signif-

icantly downregulated in G3BP1-knockdown groups (Figure 3C). We also testified the 

downregulation of CCL13 after G3BP1 depletion in MDMs-M2 (Figure 3D,E). We treated 

OSCC cells with recombinant human (rh) CCL13 proteins (rhCCL13), which enhanced 

OSCC metastasis in vitro and in vivo (Figure 3F–I). We then adopted monoclonal anti-

CCL13 antibodies to neutralize the effects of CCL13 and the OSCC cells mobility was 

markedly inhibited (Figure 3J,K). These findings suggested that SG regulated the produc-

tion of CCL13 in MDMs-M2 to promote OSCC metastasis. 
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Figure 3. High-throughput sequencing analysis of differential expression of cytokines in G3BP1-

depleted MDMs-M2. (A,B) Go Enrichment and KEGG analysis of differential genes upon after 

G3BP1-knockdown in MDMs-M2. (C) Heat map of differential cytokines genes data revealed the 

downregulated cytokines in G3BP1-depleted MDMs-M2. (D) RT-qPCR confirmed the upregulated 

CCL13 mRNA expression in MDMs-M2 transfected with control or G3BP1 siRNA. (E) The de-

creased production of CCL13 from MDMs-M2 after transfected by control siRNA or G3BP1 siRNA 

were testified by ELISA assays. (F,G) Transwell assays of CAL27 and SAS cells treated by 0 or 40 

ng/mL recombinant human CCL13 cytokines. Statistical analysis results were shown as a bar graph. 

Scale bar, 50 μm. (H,I) SAS cells were injected into the tongue of BALB/c nude mice (n = 4) and 

followed by treatment of recombinant CCL13 cytokines. Bioluminescence signals of metastasis tu-

mors (neck lymph nodes) were quantified with an in vivo imaging system. (J,K) Transwell migra-

tion assays of CAL27 and SAS cells coculturing with indicated macrophages were shown, and the 

neutralized antibody of CCL13 were added into Transwell inserts. Scale bar, 50 μm. All experiments 
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were performed in triplicate, and the data were presented as the means ± SD. (* p < 0.01, **, p < 0.01, 

and ***, p < 0.001). 

3.4. The SG Mediated the Direct Connection between G3BP1 and DDX3Y-hnRNPF to Regulate 

the Expression of CCL13 

GO analysis showed that the differentially expressed genes upon G3BP1 knockdown 

in MDMs-M2 were involved in the biological processes of “protein binding” (Figure 3B). 

SG has been reported to mediate various cell bioprocesses through sequestering some im-

portant proteins or mRNAs into the shields or cores of SG [38]. We wondered whether the 

SG dynamics was linked to CCL13 expression. Here, we performed coimmunoprecipita-

tion followed by mass spectrometry to identify proteins interacting with G3BP1 in MDMs-

M2. A total of 138 candidate proteins were pulled down by endogenous G3BP1 in MDMs-

M2 (Figure S4A,B). Several proteins related to “response to stimulus” were screened out 

for further study (Table S1). Subsequently, we proved that G3BP1 interacted directly with 

DDX3Y, whereas DDX3Y binded directly to hnRNPF, facilitating the formation of G3BP1-

DDX3Y-hnRNPF complex (Figure 4A,B). We also observed that both DDX3Y and hnRNPF 

colocalize with G3BP1, whereas inhibition of SG formation disrupted their colocalization 

in SG (Figure 4C). These results implied the connection between G3BP1 and 

DDX3Y/hnRNPF was regulated by SG formation. To confirm whether the G3BP1-DDX3Y-

hnRNPF complex mediated by SG regulated the expression of CCL13, we blocked the 

interaction between G3BP1 and DDX3Y/hnRNPF by depleting the expression of DDX3Y 

and hnRNPF. Knockdown of DDX3Y and hnRNPF impaired the expression of CD206 and 

CCL13 (Figure 4D). Moreover, the migration of CAL27 and SAS cells co-culturing with 

MDMs-M2 transfected with DDX3Y and hnRNPF siRNA was blocked compared with 

controlled group (Figure 4E–H). Collectively, SG mediated the interaction between G3BP1 

and DDX3Y-hnRNPF to enhance the expression of CCL13. 
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Figure 4. SG regulated the interaction between G3BP1 and DDX3Y-hnRNPF and the expression of 

CCL13. (A,B) The lysates from MDMs-M2 were performed to coimmunoprecipitation using rabbit 

isotype IgG or G3BP1 and DDX3Y antibody. (C) The representative immunostaining images of 

G3BP1 and DDX3Y or hnRNPF were performed by IF in MDMs-M2 transfected with control or 

G3BP1 siRNA. Scale bar, 10 μm. (D) Immunoblotting analyzed the protein expression of CCL13 and 

CD206 in MDMs-M2 transfected with control or DDX3Y and hnRNPF siRNA. (E,F) Transwell assays 

of CAL27 and SAS cells co-cultured with MDMs-M2 transfected with control siRNA or DDX3Y and 

hnRNPF siRNA. Scale bar, 50 μm. (G,H) Wound healing assays of CAL27 and SAS cells treated by 

conditioned medium from MDMs-M2 transfected with control siRNA or DDX3Y and hnRNPF 

siRNA. Scale bar, 100 μm. All data were derived from three independent experiments. (*, p < 0.05; 

**, p < 0.01 and ***, p < 0.001). 

3.5. SG Enhanced DDX3Y/hnRNPF-Mediated CCL13 mRNA Stability via Binding with Its 

Transcripts 

Although SG formation was usually accompanied by limited global translation [43], 

SG-associated translation has been reported and whole translation cycles of transcripts 
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localizing in SG can been accomplished [44]. These data of fluorescence in situ hybridiza-

tion (FISH) demonstrated that some of CCL13 mRNA were localized in G3BP1+ SG (Figure 

5A), implying some of CCL13 mRNA were sequestered into SG. However, the ways of 

CCL13 mRNA moving into SG were still not clear. 

hnRNPF was an RNA binding protein correlating with tumor progression [45]. We 

needed to confirm whether the RNA binding activities of hnRNPF regulated the expres-

sion of CD206 and CCL13. Data from RNA immunoprecipitation (RIP) followed by RT-

qPCR showed that hnRNPF interacted with rich mRNA of CCL13 and CD206 (Figure 5B). 

However, inhibition of SG formation decreased the abundance of CCL13 and CD206 bind-

ing with hnRNPF (Figure 5C), indicating that SG formation mediated the RNA binding 

activity of hnRNPF to regulate the expression of these transcripts. hnRNPF has been re-

ported to regulate mRNA alternative splicing or the stability of specific mRNA transcripts 

by binding to the 3′ UTRs of genes [45,46]. The mRNA stability assay indicated that the 

stabilities of CCL13 and CD206 mRNA were higher in control MDMs-M2 than those in 

hnRNPF-depleted MDMs-M2 (Figure S5A,B). We treated G3BP1-knockdown MDMs-M2 

with actinomycin D and discovered that G3BP1 depletion decreased the stability of CCL13 

and CD206 mRNA, demonstrating SG formation had positive effects on hnRNPF-medi-

ated stabilization of CD206 and CCL13 mRNA (Figure 5D). Disruption of G3BP1 expres-

sion further decreased the stability of CD206 and CCL13 mRNA in hnRNPF-knockdown 

MDMs-M2 (Figure 5E). Finally, we depicted a schematic diagram to clarify all works per-

formed in this study (Figure 5F). These data supported the hypothesis that SG formation 

enhanced DDX3Y/hnRNPF-mediated stabilization of CD206 and CCL13 mRNA, thus el-

evating CCL13 expression and promoting OSCC metastasis. 
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Figure 5. SG formation enhanced DDX3Y/hnRNPF-mediated mRNAs stability via binding with 

these transcripts. (A) Representative images of mRNA FISH detecting CCL13 mRNA and immuno-

fluorescence of G3BP1. Scale bar, 10 μm. (B) RIP was performed with MDMs-M2 lysates using an-

tibody against hnRNPF. Bar chart showed RT-qPCR data for the indicated transcripts. (C) RIP was 

performed using lysates from MDMs-M2 transfected with control or G3BP1 siRNA via antibody 
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against hnRNPF. The bar chart showed results of the analysis of the indicated transcripts. (D) The 

degradation of CCL13 mRNA was determined by RT-qPCR after treatment with actinomycin D (5 

μg/mL) for the indicated times in MDMs-M2 following G3BP1 knockdown. (E) The assays of CCL13 

mRNA stability were performed by RT-qPCR for the indicated times in MDMs-M2 followed by 

knockdown of G3BP1 and hnRNPF. (F) The working model elucidated how M2 TAMs released 

CCL13 to promote OSCC metastasis. The SG formation enhanced the DDX3Y/hnRNPF-dependent 

mRNA stability of CCL13 and CD206. TME stressors facilitated SG formation, thus sequestering 

CCL13 and CD206 mRNA into SG via binding with hnRNPF. The mRNA stability of CCL13 and 

CD206 were improved in SG. which increased the expression of CD206 and CCL13 in TAMs. Finally, 

the CCL13 from M2 TAMs promoted OSCC metastasis. (*, p < 0.05; **, p < 0.01 and ***, p < 0.001). 

3.6. SG Formation in M2 TAMs Promoted OSCC Metastasis In Vivo 

 In this part, we verified the pro-tumor effects of SG formation in M2 TAMs in vivo. 

We established mice xenograft model with lingual implantation of SAS cells (transfected 

with the luciferase genes) mixed with MDMs-M2 transfected with control or G3BP1 

shRNA in mice (Figure 6A) and monitored tumors metastasis to the cervical lymph nodes 

and SG formation in vivo. After mice were sacrificed, we harvested tongue xenografts and 

cervical lymph nodes. Compared with those in control mice, tumors in mice implanted 

with SAS cells mixed with MDMs-M2 expressing G3BP1 shRNA exhibited limited growth 

and metastatic ability (Figure 6B,C). The average weight and volume of the xenograft tu-

mors and cervical lymph nodes in shG3 group mice were lower than those in control 

group (Figure 6D,E). In addition, the mice in the shG3 group showed significantly longer 

survival times (Figure 6F). The immunohistochemical data showed lower expression of 

G3BP1, CCL13 and CD206 in the group of mice implanted with SAS cells mixed with 

G3BP1-knockdown MDMs-M2 than in the control group, and smaller tumor sizes were 

observed in G3BP1-depleted group as revealed by H&E staining (Figure 6G,H). These re-

sults demonstrated that SG formation in M2 TAMs elevated the production of CCL13 to 

promote tumor metastasis in vivo. 
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Figure 6. CCL13 regulated by SG formation in M2 TAMs promoted OSCC metastasis in vivo. (A) 

The schematic diagram of orthotopic metastasis model in BALB/c nude mice. SAS cells stably ex-

pressing the luciferase and mixed with MDMs-M2 transfected with control or G3BP1 shRNA were 

injected into the tongue of mice. (B) The sizes of primary tumor or neck lymph nodes on 28 days 

after tumor injection in control or G3BP1-depleted group. The enlarged pictures were also inserted 

at the right side. (C) Xenograft growth statistics on 28 days after tumor injection in control or G3BP1-

depleted group. (D) The average weight of transplanted tumors in control or G3BP1-depleted 

group. (E) The mean weight of lymph nodes in control or G3BP1-depleted group. (F) Kaplan–Meier 

survival curves were used to assess the overall survival rate of mice (n = 6) with tumors, and a log-

rank test was used to calculate the statistical significance. (G) Representative images of IHC staining 

showed lower expression of CCL13 and CD206 in G3BP1-depleted group than control group. Scale 

bar, 30 μm. H&E staining of xenografts was used to assess the tumor sizes of the two groups. The 

areas marked by blue circles were the xenograft in mice tongues. T, Tumor. Scale bar, 100 μm. (H) 

The statistical results of IHC and H&E staining images were shown via the bar graphs. (*, p < 0.05 

and **, p < 0.01). 

3.7. High Expression of CCL13 Predicts Shorter Overall Survival of OSCC Patients 

To correlate the above findings with the physiopathology observed in the clinic, we 

measured the expression of G3BP1, DDX3Y, hnRNPF and CCL13 in the OSCC tissues. 

Staining of G3BP1 and CCL13 in metastatic OSCC tissues were stronger than those in 

OSCC tissues without metastasis (Figure 7A,B). Moreover, CCL13 co-localized with 

CD206 in metastatic OSCC tissues (Figure 7C). Furthermore, the levels of CCL13 in the 

serum and tumor tissues of OSCC patients with lymph node metastasis were significantly 

higher than those in OSCC patients without metastasis (Figure 7D). Finally, a higher level 

of CCL13 could predict poor survival outcomes of OSCC patients, implying CCL13 can 

be termed as a potential prognostic indicator for OSCC (Figure 7E). The correlations be-

tween CCL13 expression and the clinicopathological features of 48 OSCC patients have 

been listed in Table S2, which uncovered a positive association between CCL13 expression 

and lymph nodes metastasis of OSCC (n value). 
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Figure 7. CCL13 was a significant indicator for prognosis of OSCC patients. (A,B) Representative 

images of IHC staining showed that metastasis OSCC with higher G3BP1 and CCL13 levels. Scale 

bar, 10 μm. Statistical analysis of positive staining of indicated proteins in 22 OSCC patients without 

metastasis or 26 OSCC patients with metastasis. (C) The images of mIHC staining showed the co-

localization of CD206 and CCL13 in metastatic OSCC tissues. Scale bar, 50 μm. Enlarged pictures 

were inserted on the bottom. Scale bar, 10 μm. (D) CCL13 levels from tumor tissues or serum of 

OSCC patients were tested by ELISA. Bars correspond to mean ± SD of 3 independent experiments. 

(E) Survival curves of 48 OSCC patients with low or high CCL13 proteins expression. The p value 

was determined by log-rank test. (*, p < 0.05; **, p < 0.01 and ***, p < 0.001). 

4. Discussion 

Macrophage-targeted cancer therapy has been proposed as a promising method for 

tumor elimination [47,48]. A recent study noted that the CD163+CD206− TAMs were asso-

ciated with up-regulated immune signaling and improved survival in gastric cancer, 

whereas the infiltration of CD68+ only and CD163-CD206+ only TAMs was correlated with 

a high expression of PD-L1 and tumor immune escape [12]. Both CD163+ TAMs and 

CD206+TAMs were correlated with OSCC progression [25,49–51]. In this study, we ob-

served that CD206+ TAMs promote OSCC metastasis and were linked to poor prognosis 
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of OSCC patients. The main goals of this study were to disclose the novel regulatory mech-

anisms that M2 TAMs improve OSCC metastasis. 

As reported, endoplasmic reticulum stress (ERS) and ISR promoted the expression of 

stress-associated proteins to support cell survival and cancer progression [32]. Indeed, 

stress-associated proteins (including G3BP1) in MDMs-M2 were upregulated in our 

study. G3BP1, one of SG nucleating proteins, is one of “switches” to trigger SG formation, 

whose inhibition can block SG assembly [38,39]. SG was also deemed as one of membrane-

less organelles whose formation depends on liquid–liquid phase separation [52]. Re-

searchers found that the SG-associated protein YB-1 mediated SG assembly by binding to 

the 5′ UTR of G3BP1 mRNA, thus promoting sarcoma invasion and metastasis [29]. In 

stressed cells, global translation level was limited to prevent the translation of energy-

consuming proteins, which facilitated the accumulation of misfolded proteins [43]. As re-

ported, SG formation can be probed in activated T cells in vitro, which has regulated the 

mRNA translation of the immune checkpoint PD-1 in a microtube-dependent manner 

[53]. TAMs were also exposed to diverse stressors in TME [27]. In this study, we found SG 

formed in activated MDMs-M2 in vitro. Interestingly, SG can be detected in MDMs-M2 

consecutively treated by inflammatory cytokines cocktails of IL-4/IL-10/IL13, whereas the 

number of SG induced by positive-controlled sodium arsenate were larger. These results 

may indicate chronical inflammatory cytokines can stimulate TAMs to induce SG for-

mation. It seems that the acute and strong stress would lead to the incidence of granules 

larger in size and number inside cells. In order to observe the effects of MDMs-M2 on 

OSCC cells migration, we established a co-cultured model between MDMs-M2 and OSCC 

cells utilizing the transwell devices. According to previous studies, SAS cells were 

acknowledged as a potent OSCC cells with greater metastatic potentials [54], whereas 

CAL27 cells appeared to be weaker in respect of metastatic potentials. If the pro-metasta-

sis effects of CCL13 can be demonstrated in the two cell lines with distinct metastatic po-

tentials, the hypothesis about pro-tumor properties of CCL13 would be more persuasive. 

For the next step, we confirmed the roles of SG in improving OSCC metastasis. Inhibition 

of SG formation attenuated the premetastatic effects of MDMs-M2 according to data in 

vitro and in vivo and significantly decreased the expression of CD206, which highlighted 

the critical effects of SG formation. 

Based on the above analysis, we motivated to identify the mechanisms by which SG 

formation enhanced the protumor effects of MDMs-M2. We analyzed the genome-wide 

changes in G3BP1-knockdown MDMs-M2 and observed that the cluster of differentially 

expressed genes were related to the inflammatory responses. CCL13 was the most signif-

icantly down-regulated cytokine upon G3BP1 knockdown. Chemokines can induce chem-

otaxis of various cells in the immune system for the recruitment of non-malignant cells 

into TME and they were also responsible for the migration, invasion, and metastasis of 

cancer cells [55]. The up-regulation of CCL13 (a member of the CCL chemokine family) 

was also associated with the development of rheumatoid arthritis and [56] and cancer 

progression [57]. A prognostic risk model has identified CCL13 as a risk factor for poor 

prognosis of HNSCC patients [58]. In our study, we confirmed CCL13 promoted OSCC 

metastasis in vitro and in vivo. The OSCC cells migration were enhanced by approxi-

mately two folds by recombinant CCL13 proteins. Collectively, these observations indi-

cated that SG could regulate OSCC metastasis by mediating the production of CCL13. 

It was revealed that most differentially expressed genes upon G3BP1 knockdown 

were associated with the biological processes of protein binding. As one of most vital nu-

cleating proteins, G3BP1 was in charge of searching and sequestering available RNA bind-

ing proteins or translationally inhibited mRNA into the shields or cores of SG [40]. Under 

this circumstance, we identified a series of proteins interacting with endogenous G3BP1 

in MDMs-M2 via coimmunoprecipitation and mass spectrometry. We subsequently re-

vealed SG facilitated the connection between G3BP1 and DDX3Y/hnRNPF by coimmuno-

precipitation. Disrupting their interaction by knocking down the expression of DDX3Y 

and hnRNPF decreased the expression of CCL13 and CD206 in MDMs-M2. Moreover, we 
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confirmed that both DDX3Y and hnRNPF were co-localized in SG, but inhibition of SG 

formation in MDMs-M2 impaired their co-localization. SG formation appeared to repro-

gram mRNA translation to improve the adaptive response under adverse conditions. SG-

associated translation was not rare, whose translation cycles can occur inside SG [44]. SG 

has been reported to maintain mRNA stability, but the detailed molecular mechanisms 

remain unclear[59]. In this study, we observed that CCL13 mRNA localized in G3BP1+ SG. 

We wondered whether SG regulates mRNA stability to mediate the CCL13 expression. 

Heterogeneous nuclear ribonucleoprotein F (hnRNPF) belongs to the subfamily of 

ubiquitously expressed heterogeneous nuclear ribonucleoproteins (hnRNPs). The 

hnRNPs protein family has been reported to promote cancer development [45,60,61]. In 

our study, we found that knockdown of hnRNPF abolished the migration-promoting abil-

ities of MDMs-M2. Several studies have discovered that hnRNPF regulated gene expres-

sion by mediating pre-mRNA alternative splicing via the three repeated quasi-RNA 

recognition motifs of hnRNPF [62]. The management of mRNA stability is a crucial aspect 

of gene expression, especially for unstable mRNA transcripts. hnRNPF has been observed 

to mediate the preservation of targeted mRNAs to decelerate their degradation [45]. In 

this study, we demonstrated that hnRNPF knockdown reduced the mRNA stability of 

CCL13 and CD206 in MDMs-M2. SG formation enhanced DDX3Y/hnRNPF-mediated 

mRNA stability via binding with these transcripts, slowing down their decay to improve 

their expression. Collectively, SG elevated CCL13 mRNA stability, which was initially 

sustained by hnRNPF, and therefore upregulated CCL13 expression and promoted OSCC 

metastasis. 

In summary, this study firstly reported that SG formation regulated the expression 

of CCL13 in M2 TAMs to promote OSCC metastasis. For mechanisms, this study offered 

new insights into mRNA stabilization regulated by SG. Furthermore, this study provided 

a novel perspective on TAM-mediated OSCC metastasis and proposed potential targets 

for TAM-directed cancer therapy. 

5. Conclusions 

This study demonstrated the pro-tumor roles of CCL13 in oral cancer and illustrated 

that stress granules appeared to a positive regulator of CCL13 expression in M2 TAMs via 

improving the DDX3Y/hnRNPF-mediated mRNA stability of CCL13. Nonetheless, fur-

ther studies are still required to disclose more specific molecular mechanism of stress-

granule-regulating cancer progression. 
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