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Simple Summary: A variety of phytochemicals found in Moringa oleifera have been found to be
biomedically active. MAGE-A variants are expressed in most carcinoma cells, and the current study
aims at the computational discovery of phytochemicals in treating NSCLC via MAGE-A targeting.

Abstract: In the last decade, there have been significant advancements in the treatment of non-small
cell lung cancer, including remarkable gains in detection, diagnosis, and therapy. The emergence
of molecular targeted therapies, immunotherapeutic inhibitors, and antiangiogenesis medicines
has largely fueled improvements in combination therapy and systemic treatments, all of which
have dramatically ameliorated patient outcomes. The Moringa oleifera bioactive compounds have
been effective in the suppression of cancers, making them the therapeutic agents of choice for the
current investigation to treat MAGE-A presented in NSCLC. The ligand entrants were screened
for their pharmacological properties, and 2,2-diphenyl-1,3-benzodioxole was stipulated as the lead
candidate. 2,2-Diphenyl-1,3-benzodioxole exhibited better pharmacological properties and superior
binding with branched-chain amino acids, making it an ideal candidate to address MAGE-A. The
study concluded that addressing MAGE-A to impede their activity and antigenicity can be exploited
as immunotarget(s).

Keywords: lung cancer; non-small cell lung cancer; NSCLC; Moringa oleifera; phytocompounds

1. Introduction

Despite recent therapeutic improvements, NSCLC (non-small cell lung cancer) is still
a serious concern in terms of public well-being, with more cancer-related deaths than
any other malignancy in both males and females [1]. Pulmonary melanoma’s clinical
manifestations can be attributed to bronchial and alveoli lining destruction. The two kinds
of lung cancer are small cell lung cancer, and NSCLC, which account for 15 and 85 percent of
total lung cancer cases, respectively. Adenocarcinoma, squamous, and giant cell carcinomas
are the three major categories of NSCLC. NSCLC can harm any form of lung cell, including
alveolar, bronchial, epithelial, squamous, and other pulmonary cells [2–5].

Adenocarcinoma is frequently encountered among women and is localized to the
exterior portion of the pulmonary tissues and normally destroys the mucosal cells. It
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is also known as bronchoalveolar carcinoma, which can affect both smokers and non-
smokers. Squamous cell cancer occurs in the squamous cells that border the esophageal
and bronchial tree and is concentrated in the center of the lungs [6]. Large cell carcinoma
is undifferentiated cancer that can arise in any area of the lung and has the potential to
grow and spread quickly. NSCLCs are more common among the elderly, with the average
age of the patients being 70 years. These cancers are usually metastatic at presentation and
need immediate management [6,7]. Since the elderly are the target population, it makes
therapies challenging. In recent years, various immunotherapy methods have exposed
immune manipulation strategies to mediate the regression of malignancies and cure entails
the immunization process in contrast to CD 4 and 8+ T cells to eradicate the antigen-
expressing cancer cells [8,9]. Melanoma-associated gene expression antigens (MAGE-A)
have been identified in melanoma cell lines, and the Xq28 chromosome encodes the entire
protein family of this gene. The articulation of MAGE-A genes has been documented in a
multitude of diseases, and NSCLC expresses a variety of MAGE-A genes on a systematic
basis [10]. The MAGE-A clusters, which encompass 12 subgroups extending from A1 to
A12, have been identified most consistently in malignant tumors. MAGE-A variants are
expressed in different carcinoma cells; nonetheless, the prevalence of MAGE-A expression
varies between tumor types and subtypes, while MAGE-A translation is recognized to be
modulated by epigenetic mechanisms. However, the underlying factors that contribute to
their variation remain unexplained [11]. Numerous studies have suggested that certain
MAGE-A proteins may correspond with a poor therapeutic response(s). MAGE-A proteins
remain immunogenic and are key targets for new therapeutic strategies in NSCLC, though
their physiological role in cancer pathogenesis remains undiscovered [12]. All eukaryotes
share MAGE genes, which have quickly increased in number in mammals. Based on tissue
expression patterns, the human MAGE family can be classified into two groups: type I
MAGEs consisting of MAGE-A, -B, and -C and type II MAGEs (MAGE-D, -E, -F, -G, -H,
-L, and Necdin) [13,14]. Type I MAGEs are considered cancer–testis antigens, and type
II are expressed throughout various tissues in the body. A MAGE homology domain
with a length of about 170 amino acids exists in both type I and type II MAGEs, and
it is typically 46% conserved across all human MAGEs [15]. In NSCLC tumors, while
MAGE-A3 and -A9 expression levels have been substantially linked with shorter survival
times, few studies have looked at MAGE-A3 expression as a probable independent pointer
of poor prognosis in NSCLC patients [16–18]. The recombinant MAGE-A3 protein was
therapeutically administered in nearly 3,000 patients following the resection of lung cancer
tumor in the largest therapeutic study for lung cancer, MAGRIT (MAGE-A3 as Adjuvant
NSCLC Immunotherapy) [19]. MAGE-A4c1º32T is currently undergoing phase I clinical
testing to assess its safety and tolerability for a number of malignancies. [20].

Natural ingredient-based solutions have been established to be useful in the treatment
and prevention of an assortment of diseases and conditions. Plants have been utilized
in folk treatment owing to their therapeutic properties, and different plant parts, such as
foliage, flowers, branches, roots, stems, and bark, are maneuvered into discrete forms to
be implemented as drugs. Herbal medicines promise better lifestyle management with
increased health benefits, and reduced risks and side effects [21]. Based on the literature, we
considered Moringa oleifera (M. oleifera) phytochemicals as therapeutic entrants to address
MAGE-A expressed in NSCLC [22–24]. M. oleifera extracts have been demonstrated to
possess promising antineoplastic activity against a variety of cancers. The in vitro cytotoxic
tests of the leaf and bark extracts revealed the arrest of the cell cycle at the G2/M phase
in both breast and colorectal cancers [25]. Furthermore, water extracts were found to
bring about intensification in the reactive oxygen species, leading to p53 activation and
breakage of the poly(ADP–ribose) polymerase 1 enzyme, eventually causing apoptosis
in lung cancer cells [26]. Aqueous extracts have also induced time- and concentration-
dependent cytotoxicity in Ehrlich ascites carcinoma and laryngeal carcinoma by modifying
the mitochondrial membrane potential, prompting apoptosis [27]. Furthermore, these
extracts exhibited a dose-dependent inhibition of cell proliferation, which was evidenced
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by in vivo studies in the liver- and lung-cancer-bearing mouse models [28]. Similar re-
sults were reported by other researchers using rat models [29]. Although the extracts of
M. oleifera have favored pro-apoptosis events in many cancer cell lines, studies highlight-
ing molecular targets for therapeutic purposes are less frequently reported. Identifying
effective therapeutic targets plays a vital part in the treatment of any disorder including
cancer. Only a handful of computational analyses reported on the antitumor potential
of M. oleifera bioactive compounds. The phytochemicals of M. oleifera were evaluated
against Bcl-2-associated X protein using a computational approach, revealing the successful
docking of ligands to the protein [30]. The studies by Apeh et al. [31] successfully identified
β-Sitosterol as a potent anticancer agent against breast and prostate cancers, with strong
binding capabilities against human placenta aromatase, poly(ADP–ribose) polymerase,
phosphoinositide-3-kinase, tumor necrosis factor-α, and caspase 8 proteins [31]. These
studies revealed the efficacy of computational tools in identifying the potential molecular
targets in cancer and their interaction with phytobioactives. The current work focuses
on computational evaluation via virtual screening and molecular docking simulations of
M. oleifera bioactive compounds against MAGE-A, a viable treatment modality for
NSCLC management.

2. Materials and Methods

An incremental and exhaustive virtual screening and molecular docking analysis were
performed to uncover the most promising therapeutic targets in pursuit of a lead that might
impede NSCLC serotypes.

2.1. Compilation of the Dataset and Ligand Preparation

The 3D structures of the phytoconstituents from Moringa oleifera were retrieved
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/(accessed on 13 June
2022)) [32]. The SDF format (standard data format) was used to extract all the compounds
from the default PubChem database. Using OpenBabel (v2.4.1) (https://sourceforge.net/
projects/openbabel/files/openbabel/2.4.1/ (accessed on 18 June 2022)), the .sdf files were
converted to .pdb format and was purified using the Biovia Discovery visualization tool
(v21.1.0.20298, Dassault Systèmes) (https://discover.3ds.com/discovery-studio-visualizer-
download (accessed on 18 June 2022)) [33,34].

2.2. Homology Modeling of MAGE-A

Comparative modeling is the only approach that can accurately construct a three-
dimensional model for a protein from its presented amino acid composition, as opposed
to all other methodologies. MAGE’s 3D model topology was generated, projected, and
evaluated using the Swiss Model (https://swissmodel.expasy.org/ (accessed on 13 June
2022)) [35].

2.3. Refinement of Validation of the Model

The projected model went through an energy reduction procedure implemented by
using DS BIOVIA Discovery Studio and evaluated by using Swiss PDB Viewer (v4.1.1)
(https://spdbv.unil.ch/ (accessed on 13 June 2022)) [36]. The assessment of the modeled
structure was accomplished using a structural assessment and evaluation server. A crucial
aspect of the comparison modeling procedure is the evaluated output of the modeled
proteins from the server.

2.4. Prediction of Active Binding Site

To determine the active binding site, CASTp (http://sts.bioe.uic.edu/castp/calculation.
html (accessed on 18 June 2022)) was utilized to extract all potential binding or predicted
sites. Such chains could be found on the surface and as well as inside proteins. CASTp, a
visual interface software, displays the user-uploaded structures’ flexible interactive repre-
sentation as well as the calculation [37].

https://pubchem.ncbi.nlm.nih.gov/(accessed
https://sourceforge.net/projects/openbabel/files/openbabel/2.4.1/
https://sourceforge.net/projects/openbabel/files/openbabel/2.4.1/
https://discover.3ds.com/discovery-studio-visualizer-download
https://discover.3ds.com/discovery-studio-visualizer-download
https://swissmodel.expasy.org/
https://spdbv.unil.ch/
http://sts.bioe.uic.edu/castp/calculation.html
http://sts.bioe.uic.edu/castp/calculation.html


Cancers 2022, 14, 5052 4 of 19

2.5. In Silico Preclinical Testing of Phytocompounds

The process of drug discovery, research, and development is marked by a high level
of complexity and is related to technical advancements to track its progress. Several
biotechnological tools associated with medicinal chemistry approaches have disclosed a
prominent role in the development process of novel molecules with biological activity.

The computer-assisted screening technique minimizes the likelihood of failure while
also saving time and resources. To assess the pharmacological properties, the SwissADME
web browser (http://www.swissadme.ch (accessed on 18 June 2022)) was utilized to
evaluate the compounds for ADME, physiochemical, drug-likeness, pharmacokinetics, and
medicinal chemistry parameters [38,39].

2.5.1. Drug Likeness, ADMET Analysis, and Prediction of Toxicity

SwissADME and pre-ADMET analyses with respect to the five rules of Lipinski filter
analysis were used to examine the absorption, distribution, metabolism, excretion, and
toxicity (ADMET), and drug-likeness analyses. There are various established criteria
for analyzing orally active drugs, such as cLogP, molecular mass, and hydrogen bond
donor and acceptor. SwissADME, a drug discovery tool, was used to examine or select
all the physicochemical features of phytochemical constituents [38,39]. The toxicity of the
compounds was predicted using the online Protox II suite (http://tox.charite.de/protox_II/
(accessed on 18 June 2022)) ), which categorizes the compounds into six classes based on
their toxic doses.

2.5.2. BOILED-Egg Analysis

The BOILED-Egg method is used to forecast drug development based on gastroin-
testinal absorption and blood–brain barrier permeability. According to the BOILED-Egg
plot, adequately positioned compounds in the white part of the egg have the likelihood
of greater GI absorption, and the chance of brain barrier permeability is higher for the
compound perfectly positioned in the yellow zone. The SwissADME webserver was used
to investigate the chosen compounds for BOILED-Egg analysis [38,39].

2.6. Quantitative Structure–Activity Relationship Analysis
2.6.1. Collection of Datasets

A library of 14 M. oleifera phytocompounds with known pharmacological properties
was prepared based on the results documented in previous research (Table 1).

2.6.2. Optimization of the Geometry

The chemical structures of the above phytocompounds (Table 1) were acquired from
the PubChem database, and each molecule underwent molecular mechanic preoptimization
before being reoptimized with the 3D QSAR tools (https://www.3d-qsar.com/ accessed
on 18 June 2022)) [40,41].

2.6.3. Molecular Descriptor Calculation

Molecular descriptors, on the other hand, are mathematical variables that elucidate
various properties of the molecules. The descriptor calculation for all phytochemicals was
accomplished with the aid of the QSAR build tool (https://www.computabio.com/3d-qsar-
service.html?gclid=EAIaIQobChMIm7umucHf-gIVTTErCh0zEAiPEAAYASAAEgLHzvD_
BwE (accessed on 18 June 2022)) [40–42].

2.6.4. QSAR Model Generation

In terms of model generation, genetic algorithm techniques were employed to produce a
QSAR model (multilinear regression model) utilizing the 3D-QSAR build and toolbox [40–42].

http://www.swissadme.ch
http://tox.charite.de/protox_II/
https://www.3d-qsar.com/
https://www.computabio.com/3d-qsar-service.html?gclid=EAIaIQobChMIm7umucHf-gIVTTErCh0zEAiPEAAYASAAEgLHzvD_BwE
https://www.computabio.com/3d-qsar-service.html?gclid=EAIaIQobChMIm7umucHf-gIVTTErCh0zEAiPEAAYASAAEgLHzvD_BwE
https://www.computabio.com/3d-qsar-service.html?gclid=EAIaIQobChMIm7umucHf-gIVTTErCh0zEAiPEAAYASAAEgLHzvD_BwE
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Table 1. Canonical smiles of selected ligands.

Compound No. Compound PubChem CID Canonical Smiles

1 Hexadecanoic acid 985 CCCCCCCCCCCCCCCC(=O)O

2 Cis-Vaccenic acid 5282761 CCCCCCC=CCCCCCCCCCC(=O)O

3 2,2-Diphenyl-1,3-benzodioxole 343959 C1=CC=C(C=C1)C2(OC3=CC=CC=C3O2)C4=CC=CC=C4

4 Cyclohexanone,2-(3-chloro-2-butenyl)
-2-methyl-6,6-diphenyl 57116063 CC(=CCC1(CCCC(C1=O)(C2=CC=CC=C2)C3=CC=CC=C3)C)Cl

5 Palmitoyl chloride 8206 CCCCCCCCCCCCCCCC(=O)Cl

6 Piperazinedione,4-benzoyl-,2-oxime 135594388 C1C(=NO)NC(=O)CN1C(=O)C2=CC=CC=C2

7 3-Chloro-N-isochroman-1-
ylmethyl-propionamide 583868 C1COC(C2=CC=CC=C21)CNC(=O)CCCl

8 (Z)-1-(1-Ethoxyethoxy)hex-3-ene 108504 CCC=CCCOC(C)OCC

9 Phenacylidene diacetate 569561 CC(=O)OC(C(=O)C1=CC=CC=C1)OC(=O)C

10 L-Galactose, 6-deoxy-2-O-methyl- 169586 CC(C(C(C(C=O)O)O)O)O

11 3,7,11,15-tetramethylhexadec-2-en-1-
ol/phytol 145386 CC(C)CCCC(C)CCCC(C)CCCC(=CCO)C

12 2-Pyrazoline,1-isopropyl-5-methyl 573933 CC1CC=NN1C(C)C

13 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl 119838 CC1=C(C(=O)C(CO1)O)O

14 1,2,3-Cyclopentanetriol 92530 C1CC(C(C1O)O)O

2.7. Virtual Screening

PyRx (V0.8) (https://pyrx.sourceforge.io/ (accessed on 18 June 2022)) was employed
for the virtual screening examination of all the identified phytocompounds in this work.
The structures were subjected to the removal of all water molecules and heteroatoms.
Additionally, before employing the docking tools, the protein was given Gasteiger charges
and hydrogen bonds. PyRx was used to perform multiple ligands docking in the AutoDock
vina wizard environment, and configurations were assessed using the RMSD (root mean
square deviation) values, lowest energy conformer, and hydrogen bond interactions [43].

2.8. Molecular Dynamic Simulations Analysis (MD Simulations)

The best-docked complexes with MAGE-A were subjected to MD simulations to con-
firm the compound that had the highest binding affinity and the most desirable molecular
interaction topology. Desmond–Schrodinger (v20.4, Schrödinger, Inc.: New York, NY, USA)
was employed for molecular docking analysis as well as for checking the compounds’
stability [44]. The Desmond–Schrodinger explicit solvent MD simulations were performed
for 300 ns to analyze the stability of the compounds against MAGE-A, and the OPLS force
field was used to produce ligand topology files. Ligand–protein complexes were also
solvated in an octahedron box to validate the precise simulated structures.

3. Results

In total, 14 phytobioactives of M. oleifera were identified and selected based on a
literature survey and subjected to 3D-QSAR and molecular docking techniques to evaluate
their activity against MAGE-A protein.

3.1. Ligand Dataset

The chosen ligand dataset is listed in Table 1.

3.2. Homology Modeling

The disparity between predicted protein sequences and empirically determined struc-
tures can be bridged by homology modeling. Protein 3D structures deliver significant
input into their molecular functioning and reassure their myriad application(s) in scientific
research. For a complete understanding of the biological processes, how protein structures

https://pyrx.sourceforge.io/
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and pathways operate, and systemic manipulations, a complete description of protein
associations and their general quaternary structure is necessary.

The MAGE-A protein sequence (Gene ID: 4100) was obtained in FASTA format from
NCBI and used to find templates in the Swiss Model. A comparison of the templates was
carried out to confirm whether the highest-scored templates and alignments indicate differ-
ent conformation or represent distinct sections of the target molecule. A 3D protein model
of the MAGE-A protein (Figure 1) was immediately obtained for each given template, and
in the Swiss Model, the QMEAN scoring tool was used to measure modeling inaccuracies
and provide predictions on model accuracy.
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Figure 1. The 3D Structure of MAGE-A build using Swiss Model.

3.3. Prediction of Active Binding Site

Two binding pockets were considered for the present study based on the drug score
(Figure 2). A complete description of the binding pocket is tabulated in Table 2.

Table 2. Properties of binding pocket.

Pocket
Name

Volume
Å3

Surface
Å2

Drug
Score

H-Bond
Acceptors

Hydrophobic
Interactions

Pocket
Atoms

Apolar Amino
Acid Ratio

Polar Amino
Acid Ratio

Pocket 1 561.86 872.29 0.77 40 47 124 0.33 0.33

Pocket 2 517.12 764.62 0.77 37 49 125 0.56 0.28
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3.4. In Silico Preclinical Testing of Phytocompounds
3.4.1. Drug Likeness, ADMET Analysis, and Prediction of Toxicity

The drug-likeness analysis helps to predict the potency of the drug candidate to
become an oral drug based on the bioavailability score. The scoring parameters are funda-
mentally based on the structural properties of small molecules. The Lipinski rule of five is
used to filter the small molecules and to assess their drug likeness (Tables 3 and 4). The
medicinal chemistry properties of the drug molecules are demonstrated via the PAINS score,
which demonstrates the substructures that display robust reactions in the experiments
regardless of the protein target.

Table 3. Physiochemical properties of the ligand molecules.

Compound Molecular
Weight Heavy Atoms Aromatic

Heavy Atoms TPSA

Hexadecanoic acid 256.42 18 0 37.3

Cis-Vaccenic acid 282.46 20 0 37.3

2,2-Diphenyl-1,3-benzodioxole 274.31 21 18 18.46

Cyclohexanone,2-(3-chloro-2-butenyl)
2-methyl-6,6-diphenyl 352.9 25 12 17.07

Palmitoyl chloride 274.87 18 0 17.07

Piperazinedione,4-benzoyl-,2-oxime 233.22 17 6 82

3-Chloro-N-isochroman-1-
ylmethyl-propionamide 253.72 17 6 38.33

(Z)-1-(1-Ethoxyethoxy)hex-3-ene 172.26 12 0 18.46

Phenacylidene diacetate 236.22 17 6 69.67

L-Galactose, 6-deoxy 164.16 11 0 97.99

3,7,11,15-tetramethylhexadec-2-en-1-
ol/phytol 296.53 21 0 20.23

2-Pyrazoline, 1-isopropyl-5-methyl 126.2 9 0 15.6

4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl 144.13 10 0 66.76

1,2,3-Cyclopentanetriol 118.13 8 0 60.69

Lipinski filter criteria: The molecule weight of H-bond donors must be between 150
and 500 g/mol, and the molecular weight of H-bond acceptors must be between 5 and
10. The Lipinski filter analysis passed all the phytochemicals (Table 4), indicating them
to possess potential medicinal characteristics, as their values were within the permissible
range for human use. ADME analysis details are tabulated in Table 5.

All 14 selected ligands were observed to be non-toxic to vital organs (most importantly
the liver), non-immunotoxic, and non-mutagenic. From the toxicity prediction analy-
sis (Table 6), cis-vaccenic acid displayed fatal toxicity with 5 < LD50 ≤ 50 mg/kg body
weight. Hexadecanoic acid, 2,2-diphenyl-1,3-benzodioxole, cyclohexanone, 2-(3-chloro-2-
butenyl) -2-methyl-6,6-diphenyl, palmitoyl chloride, 3-chloro-N-isochroman-1-ylmethyl-
propionamide, L-galactose, 6-deoxy-, 2-pyrazoline,1-isopropyl-5-methyl, and 4H-pyran-4-
one,2,3-dihydro-3,5-dihydroxy-6-methyl were found to belong to class IV toxicity (harmful
if swallowed), with those having higher LD50 values between 300 and 2000 mg/kg belong-
ing to class V, which may be considered harmful when ingested, and the compounds (Z)-
1-(1-ethoxyethoxy)hex-3-ene, phenacylidene diacetate, and 3,7,11,15-tetramethylhexadec-
2-en-1-ol/phytol presented with toxic doses between 2000 and 5000 mg/kg body weight.
1,2,3-Cyclopentanetriol, L-galactose, 6-deoxy- and piperazinedione,4-benzoyl-,2-oxime
were found to be non-fatal and non-harmful, belonging to class VI, with LD50 greater than
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5000 mg/kg body weight. Hence, these compounds were considered safer to use when
compared with cis-vaccenic acid based on the data.

Table 4. Evaluation of Lipinski filter.

Compound Molecular
Weight

H-Bond Acceptors H-Bond Donors Molar Refractivity Consensus Log P

Hexadecanoic acid 256.42 2 1 80.8 5.2

Cis-Vaccenic acid 282.46 2 1 89.94 5.68

2,2-Diphenyl-1,3-benzodioxole 274.31 2 0 81.36 4.25

Cyclohexanone,2-(3-chloro-
2-butenyl) -2-methyl-6,6-diphenyl

352.9 1 0 106 5.62

Palmitoyl chloride 274.87 1 0 84.02 5.96

Piperazinedione,4-benzoyl-,
2-oxime

233.22 4 2 67.09 0.45

3-Chloro-N-isochroman-1-
ylmethyl-propionamide

253.72 2 1 67.18 2.06

(Z)-1-(1-Ethoxyethoxy)hex-3-ene 172.26 2 0 51.88 2.6

Phenacylidene diacetate 236.22 5 0 58.43 1.62

L-Galactose, 6-deoxy- 164.16 5 4 35.8 –1.49

3,7,11,15-tetramethylhexadec-2-
en-1-ol/phytol

296.53 1 1 98.94 6.22

2-Pyrazoline,1-isopropyl-
5-methyl

126.2 1 0 47.47 1.29

4H-Pyran-4-one, 2,3-dihydro-3,5-
dihydroxy-6-methyl

144.13 4 2 32.39 –0.22

1,2,3-Cyclopentanetriol 118.13 3 3 27.52 –0.58

Table 5. ADME analysis.

Molecule
Number Compound GI Absorption BBB Permeability Pgp Substrate Silicos-IT LogSw Silicos-IT Class

1 Hexadecanoic acid High Yes No –5.31 Moderately soluble

2 Cis-Vaccenic acid High No No –5.39 Moderately soluble

3 2,2-Diphenyl-1,3-benzodioxole High Yes Yes –7.17 Poorly soluble

4
Cyclohexanone,2-(3-chloro-

2-butenyl)
-2-methyl-6,6-diphenyl

Low No No –8.29 Poorly soluble

5 Palmitoyl chloride Low No No –6.5 Poorly soluble

6 Piperazinedione,4-benzoyl-,
2-oxime High No No –2.2 Soluble

7 3-Chloro-N-isochroman-1-
ylmethyl-propionamide High Yes No –4.57 Moderately soluble

8 (Z)-1-(1-Ethoxyethoxy)hex-
3-ene High Yes No –2.27 Soluble

9 Phenacylidene diacetate High Yes No –2.56 Soluble

10 L-Galactose, 6-deoxy- Low No No 1.9 Soluble

11 3,7,11,15-tetramethylhexadec-2-
en-1-ol/phytol Low No Yes –5.51 Moderately soluble

12 2-Pyrazoline,1-isopropyl-
5-methyl High No No –0.8 Soluble

13 4H-Pyran-4-one, 2,3-dihydro-
3,5-dihydroxy-6-methyl High No No 0.15 Soluble

14 1,2,3-Cyclopentanetriol High No No 1.2 Soluble
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Table 6. Toxicity prediction.

Compound Toxic Dose (LD50 Values in
mg/kg Body Weight) Toxicity Class Hepatotoxicity

Hexadecanoic acid 900 Class IV No

Cis-Vaccenic acid 48 Class II No

2,2-Diphenyl-1,3-benzodioxole 720 Class IV No

Cyclohexanone,2-(3-chloro-2-butenyl)
-2-methyl-6,6-diphenyl 750 Class IV No

Palmitoyl chloride 400 Class IV No

Piperazinedione,4-benzoyl-,2-oxime 6800 Class VI No

3-Chloro-N-isochroman-1-
ylmethyl-propionamide 380 Class IV No

(Z)-1-(1-Ethoxyethoxy)hex-3-ene 5000 Class V No

Phenacylidene diacetate 5000 Class V No

L-Galactose, 6-deoxy 23,000 Class VI No

3,7,11,15-tetramethylhexadec-2-en-1-
ol/phytol 5000 Class V No

2-Pyrazoline,1-isopropyl-5-methyl 800 Class IV No

4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl 595 Class IV No

1,2,3-Cyclopentanetriol 12,500 Class VI No

3.4.2. Boiled-Egg Analysis

The white section (egg white) represents a greater likelihood of passive absorption
through the GI tract, while the yellow region (egg yolk) indicates a high potential for brain
invasion (Figure 3). The egg-yolk and egg-white sections are not mutually exclusive. The
spots are also colored blue if they are projected to be effectively effluxed by P-glycoprotein
(PGP)+ and in red if they are anticipated to be non-substrate of PGP-.

3.5. QSAR Analysis
3.5.1. Biological Activity

The constructed dataset was run through PyMol-Edit to determine the comparative
molecular field analysis (CoMFA) and comparative molecular similarity index analysis
(CoMSIA) values, which were then compared with the MLR outcomes. The most exten-
sively utilized methods for generating 3D-QSAR are CoMFA and CoMSIA. The CoMFA
and CoMSIA descriptors were created by deploying a superposed chemical 3D lattice
structure separation using a grid distance of two.

The steric, hydrogen bond acceptor (HBA), electrostatic, hydrogen bond donor (HBD),
and hydrophobic effects were all quantitatively involved in this study. SYBYL was used to
perform a 3D-QSAR assessment with the standard settings (Table 7).

3.5.2. Alignment

The reference conformer was then utilized to align the training and test set compounds
using modified thresholds and the maximum common substructure (MCS). The conforma-
tion quest was carried out using a very accurate and time-consuming calculation method,
with a limit of 500 conformations per molecule. The 3D-QSAR model was created using
the least active configurations in comparison to the reference. To produce the best possible
model, all orientations were meticulously validated. Using the random selection method,
the original training dataset of 6 ligands was then separated into the training and test sets.
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Figure 3. Boiled-Egg assessment: Molecule 1—hexadecanoic acid; Molecule 2—cis-vaccenic acid;
Molecule 3—2,2-diphenyl-1,3-benzodioxole; Molecule 4—cyclohexanone,2-(3-chloro-2-butenyl) -
2-methyl-6,6-diphenyl; Molecule 5—palmitoyl chloride; Molecule 6—piperazinedone, 4-benzoyl,
2-oxime; Molecule 7—3-chloro-N-isochroman-1-ylmethyl-propionamide; Molecule 8—(Z)-1-(1-
Ethoxyethoxy)hex-3-ene; Molecule 9—phenacylidene diacetate; Molecule 10—L-galactose, 6-deoxy;
Molecule 11—3,7,11,15-tetramethylhexadec-2-en-1-ol/phytol; Molecule 12—2-pyrazoline,1-isopropyl-
5-methyl; Molecule 13—4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy, 6-methyl; Molecule 14—
1,2,3-cyclopentanetriol.

Table 7. Biological activity and conformer of compounds.

Property GM Label GM ID GM Conf Longest Label Longest ID Longest Conf

Least Active 2,2-Diphenyl-1,3-
benzodioxole 3623329 0 2,2-Diphenyl-1,3-

benzodioxole 3623329 2

Most Active
Cyclohexanone,2-(3-

chloro-2-butenyl)
-2-methyl-6,6-diphenyl

3623333 0

Cyclohexanone,2-(3-
chloro-2-butenyl)

-2-methyl-6,6-
diphenyl

3623333 6

Heaviest
Cyclohexanone,2-(3-

chloro-2-butenyl)
-2-methyl-6,6-diphenyl

3623333 0

Cyclohexanone,2-(3-
chloro-2-butenyl)

-2-methyl-6,6-
diphenyl

3623333 6

Longest Palmitoyl chloride 3623337 0 Cis-Vaccenic acid 3623332 12

Most Flexible Phytol 3623339 0 Phytol 3623339 12

Most Rigid 2,2-Diphenyl-1,3-
benzodioxole 3623329 0 2,2-Diphenyl-1,3-

benzodioxole 3623329 2

Least Polar Pyrazoline 3623341 0 Pyrazoline 3623341 0

Most Polar Fucose 3623334 0 Fucose 3623334 0

The maximum number of components used in QSAR modeling was 20, and the
maximum distance between sample locations was 1.0 (Figure 4).
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3.5.3. C.Y Randomization Test

To assess the model’s resiliency, the Y randomization test was utilized. By randomly
mixing the dependent variable after each cycle, a new QSAR model was constructed
(-loglC50). The created 3D-QSAR model with original data had low q2 and r2 values,
indicating that it is powerful and not inferred by coincidence (Tables 8 and 9).

Table 8. The results of r2, q2, and the corresponding SDEC and SDEP values.

PC r2 SDEC q2 SDEP

1 0.579 0.203 –0.271 0.354

2 0.812 0.136 –0.317 0.36

3 0.917 0.091 –0.183 0.341

4 0.963 0.06 –0.392 0.37

5 0.982 0.042 –0.427 0.375

6 0.996 0.02 –0.484 0.382

7 0.999 0.009 –0.494 0.383

8 1 0.005 –0.488 0.383

3.5.4. Contour Map Analysis

The contour maps for CoMFA/CoMSIA were constructed to discover the structural
requirements that influence binding affinity, which could lead to a boost in the molecules’
biological activity (Figure 5).

Figure 6 shows the most active molecule, 2,2-diphenyl-1,3-benzodioxole, as a reference
structure across the contour maps of CoMFA and CoMSIA. The steric, electrostatic, H-
bonding, and hydrophobic interaction fields were studied using the CoMSIA/CoMFA
contour plot technique to reveal the important molecular features.

3.6. Molecular Docking and Visualization

Table 10 lists the binding affinity of each selected ligand for MAGE-A, as determined
by PyRx, indicating the strength of the interaction between each ligand and MAGE-A.
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Table 9. Experimental values for the selected compounds.

Sl No Name Experimental Activity

1 1,2,3-Cyclopentanetriol 7.63827

2 2,2-Diphenyl-1,3-benzodioxole 7.63827

3 3-Chloro-N-isochroman-1-
ylmethyl-propionamide 7.33724

4 4H-Pyran-4-one,
2,3-dihydro-3,5-dihydroxy-6-methyl 8.22185

5 Cis-Vaccenic acid 8.22185

6 Cyclohexanone,2-(3-chloro-2-butenyl)
-2-methyl-6,6-diphenyl 7.92082

7 L-Galactose, 6-deoxy- 8.22185

8 (Z)-1-(1-Ethoxyethoxy)hex-3-ene 8.22185

9 hexadecanoic acid 8.22185

10 Palmitoyl chloride 7.49485

Table 10. Docking score of MAGE-A protein with selected ligands.

Compound Binding Affinity

3-Chloro-N-isochroman-1-ylmethyl-propionamide –5.5

(Z)-1-(1-Ethoxyethoxy)hex-3-ene –3.3

4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl –3.8

Cis-Vaccenic acid –4

2-(3-chloro-2-butenyl) -2-methyl-6,6-diphenyl –6.3

1,2,3-Cyclopentanetriol –3.6

2,2-Diphenyl-1,3-benzodioxole –7.3

L-Galactose, 6-deoxy- –3.4

Hexadecanoic acid –4.1

Palmitoyl chloride –4.1

Phenacylidene diacetate –4.9

3,7,11,15-tetramethylhexadec-2-en-1-ol –4.3

2-Pyrazoline,1-isopropyl-5-methyl –3.6

Piperazinedione,4-benzoyl-,2-oxime –4.4

3.7. Molecular Dynamic Simulation

2,2-Diphenyl-1,3-benzodioxole was selected for molecular dynamic studies against
MAGE-A to investigate the root mean square deviation (RMSD) and root mean square
fluctuation (RMSF) calculations. We carried out a molecular dynamic simulation using
the Desmond–Schrodinger v20.4 unit. We prepared all the protein topologies and ligand
correlations (Figure 8 using the OPLS force field, which is an in-built force in Schrodinger.
According to the RMSD and RMSF graphs (Figures 9 and 10), we observed a very minimal
fluctuation rate in the protein trajectories. For a better outcome, we ran the protein apo
simulation to observe the possible mutation or variation in the protein trajectories and
residues. Figure 11 depicts the protein secondary structure histogram.
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The docking conformation that yielded the highest binding energy was considered for
further evaluation (Figure 7).
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4. Discussion

Significant advancements in the detection of non-cell lung cancer were accomplished
in the recent decade, including advances in disease processes and malignancy progression
routes, as well as accurate diagnosis and specialized care. With a strong belief that molecu-
larly delineated subtypes are therapeutically exploitable, novel molecular diagnostics and
tailored treatments for NSCLC are being continuously explored to identify and manage
cancer [45].

Several MAGE peptides are only prevalent in reproductive cells; nevertheless, they are
abnormally amplified in cancers. MAGEs were first found as antigens on cancerous cells,
and later, they were targeted for cancer immunotherapy. Notwithstanding, current research
findings reveal that MAGE peptides play significant roles in carcinogenesis [15]. In NSCLC
tumors, MAGE-A3 and -A9 activation is linked to a worse probability of survival. MAGEs
are also linked to a higher likelihood of tumor reappearance after treatment. Different
cancer forms grow accustomed to MAGEs for survival when they are expressed, such as
that of MAGE-As or MAGE-Cs in lung cancer, which boost their invasiveness [46,47].

The current study employed 14 phytocompounds (hexadecanoic acid, cis-vaccenic acid,
2,2-diphenyl-1,3-benzodioxole, cyclohexanone,2-(3-chloro-2-butenyl) -2-methyl-6,6-diphenyl,
palmitoyl chloride, piperazinedione,4-benzoyl-,2-oxime, 3-chloro-N-isochroman-1-ylmethyl-
propionamide, (Z)-1-(1-ethoxyethoxy)hex-3-ene, phenacylidene diacetate, L-galactose, 6-
deoxy-, 3,7,11,15-tetramethylhexadec-2-en-1-ol/phytol, 2-pyrazoline,1-isopropyl-5-methyl,
4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl, and 1,2,3-cyclopentanetriol) from
Moringa oleifera, which were selected based on their reported bioactivities. All 14 com-
pounds underwent stringent in silico pharmacological analysis and were assessed for
various parameters such as physicochemical properties, topological surface area, number of
flexible bonds, toxicity, number of hydrogen atom donors and acceptors, molecular weight,
etc. From the results of the analyses, it is evident that all the selected compounds had
druggable parameters and passed the filters of Lipinski and ADMET analysis. However,
these compounds displayed varied GI absorption and BBB permeability. Of the 14 com-
pounds screened in the current study, 10 of them (hexadecanoic acid, cis-vaccenic acid, 2,2-
diphenyl-1,3-benzodioxole, piperazinedione,4-benzoyl-,2-oxime, 3-chloro-N-isochroman-
1-ylmethyl-propionamide, (Z)-1-(1-ethoxyethoxy)hex-3-ene, phenacylidene diacetate, 2-
pyrazoline,1-isopropyl-5-methyl, 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl,
and 1,2,3-cyclopentanetriol) displayed high GI absorption, while 5 of the 14 compounds
(hexadecanoic acid, 2,2-diphenyl-1,3-benzodioxole, 3-chloro-N-isochroman-1-ylmethyl-
propionamide, (Z)-1-(1-ethoxyethoxy)hex-3-ene, and phenacylidene diacetate) exhibited
BBB permeability [48,49].
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All the selected molecules were subjected to 3D-QSAR analysis, and 2,2-diphenyl-
1,3-benzodioxole was utilized to develop the contour maps. The ligands were further
subjected to molecular docking, and the results of docking corroborated the previous
findings from QSAR analysis with 2,2-diphenyl-1,3-benzodioxole being the compound
with the highest binding affinity. The binding of 2,2-diphenyl-1,3-benzodioxole with MAGE-
A was visualized, and it was noticed that the ligand had established better associations
at MET A:201, GLU A:217, MET A:221, ILE A:197, VAL A:200, VAL A:286, VAL A:283,
LEU A: 153, etc. As they operate as nitrogen donors, branched-chain amino acids are
essential for cancer cell growth and development. The validation of docking results
revealed that 2,2-diphenyl-1,3-benzodioxole established bonds with branched-chain amino
acids. Although not much biomedical activity of 2,2-diphenyl-1,3-benzodioxole has been
established so far, other benzodioxoles have been identified as potent biomedical agents.
1,3-Benzodioxole has been reported to have a strong antioxidative capacity [50]. 1,3-
Benzodioxole-pyrimidine and its derivatives have been identified as potential succinate
dehydrogenase inhibitors and as antifungal agents [51]. The same compound has also been
reported to have anticancer properties in both in vitro and in vivo studies against breast,
liver, bone, and lung cancers [52].

5. Conclusions

Non-small cell lung tumors have multiple genetic abnormalities that can be targeted,
and medications that address these variations have been recommended for the treatment
of progressed NSCLC subjects. Moringa oleifera is one of the most crucial medicinal plants,
which demonstrated several medicinal utilities as antitumor, anti-inflammatory, antidi-
abetic, and hepatoprotective properties. The current study employed various in silico
techniques to screen for potential druggable bioactive ligands present in Moringa oleifera.
2,2-Diphenyl-1,3-benzodioxole displayed potential pharmacological properties to address
the MAGE-A protein, one of the prominent protein(s) in NSCLC tumorigenesis. The
ligand 2,2-diphenyl-1,3-benzodioxole actively binds to the branched-chain amino acids
of MAGE-A.
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