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Simple Summary: The incidence of liver cancer is increasing worldwide. When detected early, the
most common form of primary liver cancer (hepatocellular carcinoma, or HCC) can be treated with
surgery and organ transplantation (when feasible). However, in most cases, HCC is detected at
advanced stages, and the survival benefit of current treatments (e.g., systemic therapy with kinase
inhibitors) is very limited. The advent of immune checkpoint inhibitors (ICIs) has changed the
treatment paradigm for multiple types of cancer, including HCC. The success of ICIs, especially in
combination with anti-angiogenic drugs, has extended survival times for a subset of patients with
HCC and has stimulated further preclinical and clinical development of immunotherapies, not just
ICIs, but also T cell therapy and oncolytic immunotherapy. Because the immunosuppressive tumor
microenvironment in HCC often allows cancer cells to escape destruction by the immune system and
develop resistance to immunotherapy, combinations with other agents that could sensitize HCC to
immunotherapy are actively pursued.

Abstract: Liver cancer is a life-threatening disease, and its incidence is increasing globally. The most
common form of liver cancer is hepatocellular carcinoma (HCC). Approximately half of patients with
HCC, especially those at advanced disease stages, receive systemic therapies, including the tyrosine
kinase inhibitors sorafenib and lenvatinib. Over the past few years, immune checkpoint inhibitors
(ICIs) have changed the landscape of HCC treatment. In particular, the combination therapy with
atezolizumab (an anti-PD-L1 antibody) and bevacizumab (an anti-VEGF antibody) significantly
improved survival benefits compared with sorafenib as a single agent, a finding that has stimulated
further preclinical and clinical development of immunotherapeutic approaches for treating HCC.
In addition to ICIs, oncolytic immunotherapy and adoptive T cell therapy have also emerged as
immunotherapeutic strategies. A major challenge is that the tumor microenvironment of HCC is
usually immunosuppressive, leading to immune escape and immunotherapy resistance. Hence,
combination therapies that could sensitize HCC to immunotherapy have become a growing area of
investigation. In this review, we summarize recent advances in HCC immuno-oncology and review
immunotherapeutic strategies that are under development for treating HCC.
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1. Introduction

The liver, which is the largest internal organ in humans, performs many crucial func-
tions. Liver cancer, estimated to reach more than one million cases per year by 2025, is
one of the most common cancers worldwide and is among the fastest-growing cancer
types in Western countries [1]. According to the American Cancer Society (www.cancer.org;
accessed in July 2022), the 5-year survival rate for patients with liver cancer in the United
States is approximately 20%. When the disease is diagnosed at an early stage, the 5-year
survival rate is higher (~35%); for patients with metastatic liver cancer, the 5-year survival
rate is less than 5%. The subtypes of primary liver cancer include hepatocellular carcinoma
(HCC), intrahepatic cholangiocarcinoma (iCCA), fibrolamellar carcinoma, and hepatoblas-
toma [2]. HCC accounts for ~90% of all liver cancer cases [1]. Chronic viral hepatitis (types
B and C), alcohol consumption, and aflatoxin exposure are the main risk factors for liver
cancer, whereas low-dose aspirin usage is associated with decreased risk of HCC [3,4].

Hepatic resection and liver transplantation are potentially curative for early-stage
HCC [3]. Unfortunately, many patients with liver cancer are not eligible for hepatic
resection, and the number of liver donors is quite small. For intermediate-stage HCC,
transarterial chemoembolization (TACE) is a standard of care [1]. For advanced-stage
HCC, the US Food and Drug Administration (FDA) approved the use of the tyrosine
kinase inhibitor (TKI) sorafenib in 2007, and since then, systemic therapies have become
available [5]. Over the past 5 years, three additional TKIs—lenvatinib, regorafenib, and
cabozantinib—have received worldwide approval [6]. As first-line systemic treatment
options for unresectable HCC, lenvatinib and sorafenib showed comparable survival
benefits [7]. When compared with placebo, regorafenib and cabozantinib could extend
overall survival as second-line treatment for HCC [8,9]. Over the past decade, the advent of
immunotherapy has changed the way that cancers are treated. For patients with advanced-
stage HCC, treatment with the immune checkpoint inhibitor atezolizumab (an anti-PD-
L1 antibody) plus the angiogenesis inhibitor bevacizumab (an anti-VEGFA antibody)
yielded better overall and progression-free survival outcomes than sorafenib as a single
agent [10,11], representing a breakthrough in the management of HCC. In this review,
we summarize the molecular mechanisms of HCC immune responses and discuss recent
developments in HCC immunotherapy.

2. The Immune Microenvironment of HCC

The tumor immune microenvironment plays pivotal roles in regulating tumor progres-
sion and therapy resistance [12]. In HCC, the immune microenvironment is dominated by
immunosuppressive cells and signals that promote immune evasion and metastasis [13,14].
The main immune-suppressive cells in HCC are Kupffer cells, M2-type tumor-associated
macrophages (TAMs), regulatory T cells (Tregs), and myeloid-derived suppressor cells
(MDSCs) [13,14] (Figure 1). Kupffer cells are liver-resident macrophages that are responsi-
ble for the phagocytic clearance of pathogens [15,16]; on the other hand, Kupffer cells also
induce T cell tolerance by secreting immunosuppressive factors such as interleukin (IL)-10,
transforming growth factor (TGF)-β, and prostaglandin E2 [17,18]. During the progression
of HCC, hepatic macrophages convert from an M1 phenotype to an M2 phenotype charac-
teristic of cancer-promoting TAMs, which function as immune suppressor cells to support
tumor growth, metastasis, and resistance to targeted therapy and immunotherapy [19,20].
Mechanistically, Kupffer cells and M2-polarized TAMs induce immune escape in HCC
through the expression of PD-L1, the downregulation of MHC-II, the secretion of im-
munosuppressive cytokines, and the recruitment of Tregs and CD4+ cells [13,14,21]. Tregs,
which are characterized by the expression of the transcription factor forkhead box p3
(Foxp3), promote immune tolerance in HCC by targeting effector T cells or by modulating
antigen-presenting cells (APCs). It has been shown that Tregs can target APCs through the
expression of negative regulatory cell surface receptors, such as cytotoxic T lymphocyte
antigen 4 (CTLA-4), CD39, and CD73, or directly kill APCs by producing perforin and
granzyme B [22]. In addition, Tregs can alter the immune microenvironment and suppress
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the immune response through the secretion of anti-inflammatory factors and the inhibition
of IL-2 production by effector T cells [13,14,23]. MDSCs are usually present in cancer or
other pathological conditions, but not in healthy individuals, although they are morpholog-
ically and phenotypically similar to neutrophils and monocytes. MDSCs can be classified
into two groups: monocytic and polymorphonuclear. The monocytic MDSCs inhibit T cell
responses through the production of anti-inflammatory cytokines and nitric oxide, whereas
the polymorphonuclear MDSCs suppress T cells by generating peroxynitrite, which nitrates
T cell receptors to reduce their responsiveness to antigen-MHC complexes [24–26].
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Figure 1. A schematic overview of the tumor immune microenvironment of hepatocellular carcinoma
(HCC). Liver cancer cells and immune cells interact dynamically through cell–cell contact and the
secretion and recognition of soluble factors, such as cytokines. Among various immune cells in
the tumor microenvironment of HCC, regulatory T cells (Tregs), myeloid-derived suppressor cells
(MDSCs), M2-type tumor-associated macrophages (TAMs), and Kupffer cells (KCs) suppress anti-
tumor immunity, whereas cytotoxic T lymphocytes (CTLs) and dendritic cells (DCs) promote immune
tumor rejection.

In HCC, CD8+ cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and dendritic
cells are the major cell types for immunosurveillance [27] (Figure 1). CTLs, also known as
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effector T (Teff) cells, kill cancer cells through granule exocytosis and Fas ligand-mediated
apoptosis. CTLs also secrete interferon-γ (IFN-γ) and tumor necrosis factor α (TNFα) to
trigger cytotoxicity in cancer cells. The activated T cells then start to express immune
co-inhibitory receptors, such as programmed death-1 receptor (PD-1), which dampens the
effector function of CTLs [28]. Similarly, NK cells exert their anti-cancer effects by secreting
perforin and granulein to induce tumor cell apoptosis or by releasing pro-inflammatory
cytokines and chemokines [29–31]. Dendritic cells are antigen-presenting cells that activate
CTLs by presenting antigens to T cells and secreting immune co-stimulatory factors. Hence,
dendritic cell vaccination against HCC may represent a promising immunotherapeutic
strategy [27,32–34]. In addition, it has been suggested that M1-polarized macrophages may
play a role in cancer immunosurveillance [35], but evidence supporting this role in HCC is
still lacking.

3. HCC Immunotherapy
3.1. Immune Checkpoint Inhibitors

The immune checkpoint is an immune regulation mechanism by which immune co-
inhibitory receptor signaling prevents strong immune responses from destroying healthy
cells. Cancer cells exploit immune checkpoints to escape immunosurveillance. Several
inhibitory immunoreceptors, including but not limited to PD-1, CTLA-4, T cell immunoglob-
ulin, and mucin domain containing-3 (TIM3), lymphocyte-activation gene 3 (LAG3), and
T cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT), have been iden-
tified and characterized in cancer [36–38]. Immune checkpoint inhibitors (ICIs) target
inhibitory immunoreceptor signaling to reprogram the tumor immune microenvironment
from pro-cancer to anti-cancer, and many ICIs have been translated into therapies for cancer
patients [36–38].

Several clinical trials have been carried out to test ICIs as single agents to treat HCC
(selected mono-immunotherapy trials are listed in Table 1), some of which led to FDA
approvals. Nivolumab and pembrolizumab were approved in 2017 and 2018, respec-
tively, to treat patients with HCC who had been previously treated with sorafenib (i.e.,
for second-line treatment). Nivolumab is a fully human immunoglobulin G4 monoclonal
antibody targeting PD-1. In a phase I/II trial (CheckMate 040), the objective response rate to
nivolumab was 20% in patients with HCC [39]. However, a randomized multi-center phase
III trial (CheckMate 459) indicated that first-line treatment with nivolumab did not signifi-
cantly improve the overall survival of patients with advanced HCC when compared with
sorafenib [40]. Pembrolizumab is a humanized antibody targeting PD-1. A phase II clinical
trial (KEYNOTE-224) testing pembrolizumab as a second-line therapy demonstrated an
objective response in 18 of 104 (17%) HCC patients who had previously been treated with
sorafenib [41]. Subsequently, a phase III trial (KEYNOTE-240) showed that pembrolizumab
improved progression-free survival and overall survival of Asian patients with advanced
HCC who had previously been treated with sorafenib [42], supporting further evaluation
of pembrolizumab as a second-line agent for HCC treatment. Moreover, camrelizumab
(SHR-1210), another humanized anti-PD-1 antibody, showed manageable toxicity and an
objective response rate of 14.7% (32 of 217) as a second-line agent in treating Chinese
patients with advanced HCC, according to a multi-center randomized phase II trial [43].
In addition, tremelimumab is a humanized monoclonal antibody targeting CTLA-4 and is
one of the earliest ICIs tested in clinical trials for treating HCC patients. Although a phase
II trial demonstrated the safety of tremelimumab in HCC patients with chronic hepatitis
C virus (HCV) [44], phase III trial data on tremelimumab for treating HCC patients with
HCV are not yet available.
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Table 1. Selected clinical trials of single-agent immunotherapy for HCC.

Drug Trial ID Phase N Population mOS ORR Reference

ICI

Nivolumab
NCT01658878 I/II 214 Advanced HCC 13.8 20% [39]
NCT02576509 III 371 Advanced HCC 16.4 15.4% [40]

Pembrolizumab NCT02702414 II 104 Advanced HCC 12.9 17.3% [41]
Camrelizumab NCT02989922 II 217 Advanced HCC N/A 14.7% [43]
Tremelimumab NCT02519348 I/II 69 Unresectable HCC 15.1 7.2% [45]

Oncolytic
virus Pexa-Vec NCT00554372 II 30 Unresectable HCC 6.7 (low dose),

14.1 (high dose), 15% [46]

Vaccine Ilixadencel NCT01974661 I 11 Advanced HCC 2.7 (first-line),
10.9 (second-line) N/A [47]

6ORR, objective response rate; mOS, median overall survival (months); N/A, not available.

3.2. Chimeric Antigen Receptor (CAR) T Cells

CAR T-cell therapy involves engineering a cancer patient’s own T cells to recognize
and eliminate tumor cells [48,49]. To date, the FDA has approved CAR T cells targeting
CD19 or B-cell maturation antigen for treating blood cancers, including acute lymphoblastic
leukemia, non-Hodgkin lymphoma, multiple myeloma, and relapsed or refractory large B
cell lymphoma [50–52]. Although CAR T-cell therapy has not yet been approved by the
FDA for the treatment of HCC and other solid cancers, CAR T cells targeting different
tumor-associated antigens have been developed, and some have been tested in clinical
trials. For example, glypican-3 (GPC3) is overexpressed in HCC, but shows little or no ex-
pression in normal tissues, making it an excellent HCC antigen for CAR T-cell therapy [53].
GPC3 CAR T cells were found to eliminate GPC3-positive HCC cells in mouse models [54],
and a phase I clinical trial demonstrated its safety, as well as some early signs of anti-
tumor activity of GPC3 CAR T cells in patients with advanced HCC [55]. CAR T cells
have also been engineered to target other HCC-associated antigens, such as α-fetoprotein
(AFP) [56], CD147 [57], CD133 [58], HBV surface protein [59], NKG2D [60], and c-MET [61].
These CAR T cells have yet to be tested in clinical studies. In addition, further identifica-
tion of novel HCC-specific antigens may help to improve the safety and efficacy of CAR
T-based immunotherapy.

3.3. Oncolytic Immunotherapies

Oncolytic immunotherapy involves the use of oncolytic viruses that are naturally
occurring or genetically altered to kill tumor cells by selectively replicating in cancer cells,
but not in normal cells [62]. Like CAR T-cell-based HCC therapy, oncolytic immunotherapy
for treating HCC is still in the early development stages. In 2013, the Kim laboratory
reported a phase I/II dose-finding clinical trial for oncolytic immunotherapy in liver
cancer [46]. In this early trial, the vaccinia virus (Wyeth vaccine strain) known as JX-594, or
Pexa-Vec, showed safety, oncolytic activity, and a dose-related survival benefit in advanced
HCC. However, in a subsequent phase IIb trial, Pexa-Vec did not improve overall survival
as a second-line therapy for patients with advanced HCC who had previously been treated
with sorafenib [63].

3.4. HCC Vaccines

Therapeutic cancer vaccines are dendritic cell-based immunotherapies that achieve
vaccination through the administration of tumor-specific antigens in combination with
dendritic cell-activating adjuvants, or the administration of dendritic cells loaded with
specific tumor antigens [64]. Hence, cancer vaccines activate the patient’s adaptive immune
system to eliminate cancer cells. Among the various types of antigens, cancer researchers
have turned their attention to tumor “neoantigens,” which arise from non-synonymous
somatic mutations in the protein-coding regions, frameshift mutations, endogenous retro-
viruses, or tumor-specific post-translational modifications, such as phosphorylation and
glycosylation [64]. Because of their tumor specificity and immunogenic characteristics,
neoantigens have become attractive targets for developing cancer vaccines. Both neoanti-
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gen peptides and dendritic cells loaded with neoantigen have been developed to treat
HCC. For instance, in a recent clinical study, treating HCC patients with personalized
neoantigen peptides led to improved postoperative recurrence-free survival [65]. In a phase
I trial that enrolled 17 HCC patients, intratumoral injections of the immune primer ilix-
adencel (pro-inflammatory allogeneic dendritic cells) were safe and elicited tumor-specific
immunologic responses [47]. In a phase I/II trial that included 22 patients diagnosed
with early- to immediate-stage HCC, intradermal administrations of HepaVac-101, a com-
bination of peptide antigens and an RNA-based immunostimulator, showed safety and
immunogenicity [66]. Further evaluations of clinical outcomes are warranted.

3.5. Immunotherapy Resistance in HCC

Despite promising clinical trials and recent FDA approvals of several immunothera-
pies, only a subset of HCC patients responded to this type of treatment [1,14]. Immunother-
apy resistance in HCC can be attributed to the immune tolerance of the liver, as well as
tumor-induced immune evasion [67]. As mentioned above, liver-resident macrophages,
also known as Kupffer cells, are phagocytic cells that clear pathogens, and these cells also
secrete immunosuppressive factors to induce tolerance to T cells [17,18]. In liver cancer,
both tumor-intrinsic signaling, as well as crosstalk between cancer cells and the tumor
microenvironment, contribute to immune suppression and immunotherapy resistance. For
instance, HCC-intrinsic CDK20, also known as cell cycle-related kinase (CCRK), has been
reported to induce immune escape through an NF-κB−EZH2−IL-6 axis [68]. HCC-secreted
IL-6 recruits polymorphonuclear MDSCs, resulting in the suppression of T cell activity. In a
preclinical model of liver cancer, inhibition of CCRK signaling led to increased sensitivity
to anti-PD-L1 immunotherapy [68]. For HCC patients treated with ICIs, the activation of
β-catenin signaling correlated with lower disease control rates, shorter progression-free sur-
vival, and shorter overall survival [69]. By using a transposon-mediated oncogene-induced
HCC model, the Lujambio laboratory found that the activation of β-catenin signaling in
HCC blocked CCL5 secretion, resulting in reduced dendritic cell recruitment, decreased
T cell activity, and resistance to anti-PD-1 treatment [70]. In addition, the activation of
PKCα−ZFP64−CSF1 signaling in HCC has been found to promote anti-PD-1 resistance via
M2 macrophage polarization induced by CSF1 [71]. The rapid expansion of preclinical and
clinical research on immune therapies for treating HCC is expected to reveal more insights
into the mechanisms of immunotherapy resistance in HCC.

4. Combinatorial Therapeutic Strategies for HCC Treatment

As mentioned above, single-agent immunotherapies have shown promising results in
treating HCC, but response rates remain low. To overcome HCC immunotherapy resistance,
it is beneficial to identify targets that can transform the HCC tumor microenvironment from
immunologically “cold” to “hot,” thereby enhancing responsiveness to immunotherapy. In
fact, a growing body of evidence has demonstrated the benefits of combinatorial therapeutic
strategies for treating HCC (Figure 2 and Table 2).

Liver tumors usually contain multiple immunosuppressive factors, and blocking one
factor is unlikely to substantially improve HCC treatment. Therefore, the simultaneous
blockade of non-redundant pathways of immune suppression is expected to have better
efficacy than the blockading of a single immune checkpoint. Indeed, in the CheckMate
040 trial (NCT01658878), the concomitant inhibition of the PD-1 and CTLA-4 pathways
by nivolumab plus ipilimumab (an anti-CTLA-4 antibody) showed manageable safety
and an objective response rate of 32% in patients with advanced HCC previously treated
with sorafenib [72]. This combination therapy was approved by the FDA in 2020 [73]. In
another study of HCC patients with disease progression on prior single-agent ICI treatment,
dual ICI therapy with ipilimumab plus either nivolumab or pembrolizumab was found to
achieve durable anti-tumor response and encouraging survival outcomes [74].
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Figure 2. Schematic illustrations of how immune checkpoint inhibitors (ICIs) interact with other
forms of treatment as combinatorial therapeutic strategies for hepatocellular carcinoma (HCC) treat-
ment. (a). Combining ICIs with anti-angiogenic drugs (e.g., anti-VEGF) blocks HCC angiogen-
esis and boosts anti-tumor immune responses. (b). Dual ICIs that target non-redundant path-
ways of T cell inactivation (e.g., PD-1 and CTLA-4 pathways) outperform single-agent ICI therapy.
(c). Adding chemotherapeutic drugs to ICIs promotes immunogenic cell death by activating dendritic
cells, increasing T cell cross-priming, and suppressing myeloid-derived suppressor cells (MDSCs)
and regulatory T cells (Tregs), which collectively boosts anti-tumor immunity. (d). Combining
ICIs with neoadjuvant or adjuvant therapies can upregulate HCC antigens (e.g., glypican 3 and
AFP), thereby enhancing immunotherapy efficacy. Abbreviations in this figure: CTL, cytotoxic T
lymphocyte; MHC-1, major histocompatibility complex class I; RFA, radiofrequency ablation; TACE,
transarterial chemoembolization; TARE, transarterial radioembolization; TCR, T cell receptor; TME,
tumor microenvironment.
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Table 2. Selected clinical trials of combinations of ICIs and other therapies for HCC.

Drug Trial ID Phase N Population mOS ORR Reference

Nivolumab +
ipilimumab NCT01658878 I/II 49 (arm A) Advanced HCC 22.8 (arm A) 32% (arm A) [72]

Atezolizumab +
bevacizumab NCT03434379 III 336 Unresectable HCC 19.2 30% [10,11]

Camrelizumab +
FOLFOX4 NCT03605706 III 396 Advanced HCC N/A N/A N/A

Pembrolizumab +
lenvatinib NCT03006926 Ib 104 Unresectable HCC 22.0 36% [75]

Pembrolizumab +
lenvatinib NCT03713593 III 794 Advanced HCC N/A N/A N/A

Nivolumab + TACE NCT04268888 II/III Recruiting Intermediate stage HCC N/A N/A N/A
Durvalumab +

bevacizumab + TACE NCT03778957 III 724 Locoregional HCC N/A N/A N/A

ORR, objective response rate; mOS, median overall survival (months); N/A, not available.

Because HCC is a highly vascularized cancer, targeting angiogenesis has become a
promising therapeutic strategy. Currently, many clinical trials are testing angiogenesis
inhibitors for HCC treatment, and a few of them have been approved by the FDA [76].
Vascular endothelial growth factor (VEGF) is not only a pro-angiogenic protein, but also
an immune-suppressive factor [77]. It has been shown that VEGF suppresses immune
responses by modulating cytotoxic T cells, dendritic cells, Tregs, and MDSCs [78–80]. Thus,
one plausible approach is to combine immunotherapy with anti-angiogenic drugs to block
HCC angiogenesis and boost anti-tumor immune responses. In patients with unresectable
HCC, atezolizumab (anti-PD-L1) plus bevacizumab (anti-VEGF) was the first systemic
therapy demonstrating an overall survival benefit surpassing that of sorafenib, based on a
global open-label phase III trial, IMbrave150 (NCT03434379) [10,11,81]. This combination
therapy was approved by the FDA to treat unresectable or metastatic HCC in 2020 [82]. A
subsequent study identified potential biomarkers for clinical responses to this combination
therapy, including high CD274, low GPC3 and AFP, high intratumor CD8+ T cell density,
and low Treg/Teff ratio [83].

Therapies that combine ICIs with chemotherapy, radiotherapy, targeted therapy, or
TACE are also under active clinical investigation. For instance, camrelizumab (anti-PD-1)
combined with a standard FOLFOX4 (infusional fluorouracil, leucovorin, and oxaliplatin)
regimen was used as a first-line treatment for advanced HCC in a multi-center phase
Ib/II clinical trial, and this combination showed promising anti-tumor responses with
good safety and tolerability [84]. That study led to a phase III trial (NCT03605706), now
underway, comparing camrelizumab plus the FOLFOX4 regimen with the placebo plus the
FOLFOX4 regimen for treating advanced HCC. In a phase Ib study (NCT03006926) that
enrolled patients with unresectable HCC, the combination of lenvatinib (a multi-kinase
inhibitor) with pembrolizumab showed promising anti-tumor activity with a manageable
safety profile [75], and a phase III trial is now underway to compare this combination
therapy with lenvatinib alone as a first-line treatment for advanced HCC (NCT03713593).
In addition, several clinical trials are now ongoing to test combinations of immunotherapy
with TACE for HCC treatment (e.g., NCT03778957, NCT04268888, and NCT04246177).

5. Conclusions

Immunotherapy has opened a new era in HCC treatment, and many clinical trials
are underway to test ICIs and combination therapies in liver cancer. Compared with
other systemic therapies, such as chemotherapy and targeted therapy, immunotherapy
has unique advantages in managing advanced HCC. In particular, immune therapy has
the potential to achieve systemic and durable anti-cancer responses via immunological
memory, and this is clinically beneficial against HCC, which often exhibits multicentric and
metachronous occurrences. Currently, the best available first-line therapy for advanced-
stage HCC is the combination of the PD-L1 blockade with atezolizumab and the VEGF
blockade with bevacizumab.
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A major challenge for HCC immunotherapy is the unique immunosuppressive mi-
croenvironment of HCC, in addition to the immune tolerance of the liver itself. Despite
recent breakthroughs in clinical trials and FDA approvals, only a small subset of patients
with HCC respond to immunotherapy. Therefore, it is important to better understand
the mechanisms of immune regulation in HCC and to identify biomarkers that predict
immunotherapy response and guide the clinical use of ICIs and their combinations for
HCC treatment. Compared with ICIs, CAR T-cell-based immunotherapies, oncolytic im-
munotherapies, and HCC vaccines are still in the early development stages. Future research
should not only focus on improving the efficacy and safety of these immunotherapies,
but also continue to identify HCC-specific antigens. Moreover, efforts should be made
to identify new immune checkpoints and to develop novel immunotherapeutic agents,
such as bispecific antibodies, antibody-drug conjugates, and agonist antibodies targeting
immune co-stimulatory receptors. Ultimately, therapies that combine immunotherapies
with other treatments are anticipated to improve clinical outcomes in advanced HCC.
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