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Simple Summary: Early image-based diagnosis is crucial to improve outcomes in pancreatic ductal
adenocarcinoma (PDAC) patients, but is challenging even for experienced radiologists. Artificial
intelligence has the potential to assist in early diagnosis by leveraging high amounts of data to auto-
matically detect small (<2 cm) lesions. In this study, the state-of-the-art, self-configuring framework
for medical segmentation nnUnet was used to develop a fully automatic pipeline for the detection
and localization of PDAC lesions on contrast-enhanced computed tomography scans, with a focus
on small lesions. Furthermore, the impact of integrating the surrounding anatomy (which is known
to be relevant to clinical diagnosis) into deep learning models was assessed. The developed auto-
matic framework was tested in an external, publicly available test set, and the results showed that
state-of-the-art deep learning can detect small PDAC lesions and benefits from anatomy information.

Abstract: Early detection improves prognosis in pancreatic ductal adenocarcinoma (PDAC), but is
challenging as lesions are often small and poorly defined on contrast-enhanced computed tomography
scans (CE-CT). Deep learning can facilitate PDAC diagnosis; however, current models still fail to
identify small (<2 cm) lesions. In this study, state-of-the-art deep learning models were used to
develop an automatic framework for PDAC detection, focusing on small lesions. Additionally, the
impact of integrating the surrounding anatomy was investigated. CE-CT scans from a cohort of
119 pathology-proven PDAC patients and a cohort of 123 patients without PDAC were used to
train a nnUnet for automatic lesion detection and segmentation (nnUnet_T). Two additional nnUnets
were trained to investigate the impact of anatomy integration: (1) segmenting the pancreas and
tumor (nnUnet_TP), and (2) segmenting the pancreas, tumor, and multiple surrounding anatomical
structures (nnUnet_MS). An external, publicly available test set was used to compare the performance
of the three networks. The nnUnet_MS achieved the best performance, with an area under the receiver
operating characteristic curve of 0.91 for the whole test set and 0.88 for tumors <2 cm, showing that
state-of-the-art deep learning can detect small PDAC and benefits from anatomy information.

Keywords: pancreatic ductal adenocarcinoma; deep-learning; early detection

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic
cancer, which has the worst prognosis of all cancer diseases worldwide with a 5-year
relative survival rate of only 10.8% [1,2]. The incidence of pancreatic cancer is increasing,
and it is estimated to become the second leading cause of cancer-related deaths in Western
societies by 2030 [2,3]. Patients diagnosed in early disease stages, where the tumors are
small (size < 2 cm) and frequently resectable, present a much higher 3-year survival rate
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(82%) than patients diagnosed in later disease stages where the tumors are larger (17%) [4].
Unfortunately, tumors are rarely found in early stages, and approximately 80–85% of
patients present with either unresectable or metastatic disease at the time of diagnosis [1].
Given these statistics, it is clear that early diagnosis of PDAC is crucial to improve patient
outcomes, as reversing the stage distribution would more than double the overall survival,
without any additional improvements in therapy [5].

Early PDAC detection is challenging, as most patients do not present specific symp-
toms until advanced disease stages, and screening the general population is cost-prohibitive
with current technology [5,6]. Furthermore, PDAC tumors are difficult to visualize in com-
puted tomography (CT) scans, which are the most used modality for initial diagnosis,
as lesions present irregular contours and poorly-defined margins [5]. This becomes an
even more significant challenge in the initial disease stages as lesions are not only small
(<2 cm), but are also often iso-attenuating, making them easily overlooked even by experi-
enced radiologists [7]. A recent study that reconstructed the progression of CT changes in
prediagnostic PDAC showed that suspicious changes could be retrospectively observed
18 to 12 months before clinical PDAC diagnosis. However, the radiologists’ sensitivity at
identifying those changes, and consequently referring patients for further investigation,
was only 44% [8].

Artificial intelligence (AI) can potentially assist radiologists in early PDAC detection
by leveraging high amounts of imaging data. Deep learning models, and more specifically
convolutional neural networks (CNNs), are a class of AI algorithms especially suited for
image analysis and have shown high accuracy in the image-based diagnosis of various types of
cancer [9–11]. CNNs take the scan as the input and automatically extract relevant features for
the diagnostic task by performing a series of sequential convolution and pooling operations.

Clinically relevant computer-aided diagnostic systems should have the ability to both
detect the presence of cancer and, in the positive cases, localize the lesion in the input
image, with minimal to no required user interaction.

Recently, deep learning models have started to be investigated for automatic PDAC
diagnosis [12–17]. However, most studies perform only binary classification of the input
image as cancerous or not cancerous, without simultaneous lesion localization. Further-
more, the majority of publications do not focus on small, early-stage lesions, with only one
study reporting the model performance for tumors with size < 2 cm [15].

In this study, we hypothesize that state-of-the-art deep learning architectures can be
used to detect and localize PDAC lesions accurately, especially regarding the subgroup of
tumors with a size < 2 cm. We propose a fully automatic deep-learning framework that
takes an abdominal CE-CT scan as the input and produces a tumor likelihood score and a
likelihood map as the output. Furthermore, we assess the impact of surrounding anatomy
integration, which is known to be relevant for clinical diagnosis [7], on the performance of the
deep-learning models. The framework performance is validated using an external, publicly
available test set, and the results on the subgroup of tumors < 2 cm in size are also reported.

2. Materials and Methods
2.1. Dataset

This study was approved by the institutional review board (Radboud University Medical
Centre, Nijmegen, The Netherlands, CMO2016-3045, protocol version 3, 21 September 2018),
and informed consent from individual patients was waived due to its retrospective design.
CE-CT scans in the portal venous phase from 119 patients with pathology-proven PDAC in
the pancreatic head (PDAC cohort) and 123 patients with normal pancreas (non-PDAC cohort),
acquired between 1 January 2013 and 1 June 2020, were selected for model development.

Two publicly available abdominal CE-CT datasets containing scans in the portal
venous phase were combined and used for model testing: (1) The training set of the “The
Medical Segmentation Decathlon” pancreatic dataset (MSD) from the Memorial Sloan
Kettering Cancer Center (Manhattan, NY, USA), consisting of 281 patients with pancreatic
malignancies (including lesions in the head, neck, body, and tail of the pancreas) and voxel-
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level annotations for the pancreas and lesion [18], and (2) “The Cancer Imaging Archive”
dataset from the US National Institutes of Health Clinical Center, containing 80 patients
with normal pancreas and respective voxel-level annotations [19,20].

The size of the tumors was measured from the tumor segmentation as the maximum
diameter in the axial plane.

2.2. Image Acquisition and Labeling

The CE-CT scans were acquired with five scanners (Aquilion One, Toshiba (Tochigi,
Japan); Sensation 64 and SOMATOM Definition AS+, Siemens Healthcare (Forchheim,
Germany); Brilliance 64, Philips Healthcare (Best, The Netherlands); BrightSpeed, GE Medical
system, (Milwaukee, WI, USA)). The slice thickness was 1.0–5.0 mm, and the image size
was either 512 × 512 pixels (232 images) or 1024 × 1024 pixels (10 images). Images with
1024 × 1024 pixels were resampled to 512 × 512 prior to inclusion in model development.

All images from the PDAC-cohort were manually segmented using ITK-SNAP version
3.8.0 [21] by trained medical students, and were verified and corrected by an abdominal ra-
diologist with 17 years of experience in pancreatic radiology. The annotations included the
segmentation of the tumor, pancreas parenchyma, and six surrounding relevant anatomical
structures, namely the surrounding veins (portal vein, superior mesenteric vein, and splenic
vein), arteries (aorta, superior mesenteric artery, celiac trunk, hepatic artery, and splenic
artery), pancreatic duct, common bile duct, pancreatic cysts (if present), and portomeseneric
vein thrombosis (if present).

2.3. Automatic PDAC Detection Framework

This study uses a segmentation-oriented approach for automatic PDAC detection
and localization, where each voxel in the image is assigned either a tumor or non-tumor
label. The models in the proposed pipeline were developed using the state-of-the-art,
self-configuring framework for medical segmentation, nnUnet [22]. All models employed
a 3D U-Net [23] as the base architecture and were trained for 250,000 training steps with
five-fold cross-validation.

Regions of interest (ROIs) around the pancreas were manually extracted for both
the PDAC and non-PDAC cohorts. An anatomy segmentation network was trained to
segment the pancreas and the other anatomical structures (refer to the previous section),
using the extracted ROIs from the scans in the PDAC cohort. This network was used
to automatically annotate the ROIs from the non-PDAC cohort, which were then com-
bined with the manually annotated PDAC cohort to train three different nnUnet models
for PDAC detection and localization, namely: (1) segmenting only the tumor (nnUnet_T);
(2) segmenting the tumor and pancreas (nnUnet_TP); and (3) segmenting the tumor, pan-
creas, and the multiple surrounding anatomical structures (nnUnet_MS). These networks
were trained with two different initializations and identical five-fold cross-validation splits,
creating ten models for each configuration. The cross-entropy loss function was used for
the PDAC detection networks as it has been shown to be more suitable for segmentation-
oriented detection tasks than the soft DICE + cross-entropy loss function, which is selected
by default in the nnUnet framework [24,25]. Additionally, the full CE-CT scans from the
PDAC cohort were downsampled to a resolution of 256 × 256 and were used to train a
low-resolution pancreas segmentation network, which was then employed to automatically
extract the pancreas ROI from unseen images during inference.

At the inference time, images were downsampled, and the low-resolution pancreas
segmentation network was used to obtain a coarse segmentation of the pancreas. This
coarse mask was upsampled back to the original image resolution and dilated with a spher-
ical kernel to close any existing gaps. Finally, a fixed margin was applied to automatically
extract the ROI, which was the input to the previously described PDAC detection models.

This extraction margin was defined based on the cross-validation results obtained
with the PDAC cohort, so that no relevant information was lost while cropping the ROI.
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Each of the PDAC detection models (nnUnet_T, nnUnet_TP, and nnUnet_MS) outputs
a voxel-level tumor likelihood map, which indicates the regions of the image where the
network predicts a PDAC lesion and the respective prediction confidence. In the case of the
nnUnet_TP and nnUnet_MS networks, a segmentation of the pancreas is also produced. This
segmentation was used in post-processing to reduce false positives outside the pancreas by
masking the tumor confidence maps so that only the PDAC predictions in the pancreas
region were maintained.

After post-processing, candidate PDAC lesions were extracted iteratively from the
tumor likelihood map by selecting the voxel with a maximum predicted likelihood and
including all connected voxels (in 3D) with at least 40% of this peak likelihood value. Then,
the candidate lesion was removed from the model prediction, and the process was repeated
until no candidates remained or a maximum of five lesions were extracted. The final output
of the framework was a tumor likelihood defined as the maximum value of the tumor
likelihood map.

A schematic representation of the inference pipeline from the original image input to
the final tumor likelihood prediction is shown in Figure 1.
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Figure 1. Schematic overview of the proposed automatic PDAC detection framework. The first
step in the pipeline is to automatically extract the ROI from the full input CE-CT scan, using the
low-resolution pancreas segmentation network. This ROI is then fed to each of the PDAC detection
networks: nnUnet_T, nnUnet_TP, and nnUnet_MS. The final tumor likelihood output is derived from
the networks’ tumor detection likelihood maps, which in the case of the nnUnet_TP and nnUnet_MS
models, are post-processed using the automatically generated pancreas segmentation.

2.4. Analysis

Patient-level performance was evaluated using the receiver operating characteristic
(ROC) curve, while lesion-level performance was evaluated using the free-response receiver
operating characteristic (FROC) curve. The ROC analysis assesses the model’s confidence
whether a tumor is or is not present by plotting the true positive rate (sensitivity) against
the false positive rate (1-specificity) at different thresholds for the model output, defined
as the maximum value of the tumor likelihood map. The FROC analysis additionally
assesses whether the model identified the lesion in the correct location by plotting the
true positive rate against the average number of false positives per image at different
thresholds for each individual lesion prediction [26,27]. Each 3D candidate lesion extracted
from the tumor detection likelihood map was represented by the maximum confidence
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value within that lesion candidate for the subsequent FROC analysis. A candidate lesion
was considered a true positive if the DICE similarity coefficient with the ground truth
(calculated in 3D between the whole extracted candidate lesion volume and the tumor
ground truth volume) was at least 0.1. This threshold was set in line with well-established
previously published studies of the same nature considering other cancer diseases [10,28]
as it addresses the clinical need for object-level localization, while also taking into account
the non-overlapping nature of objects in 3D.

To compare the three different PDAC-detection configurations, the ten trained models
for each were applied individually to the test set. A permutation test with 100,000 iterations
was then used to assess statistically significant differences between the area under the
ROC curve (AUC-ROC) and partial area under the FROC curve (pAUC-FROC), which
was calculated in the interval of [0.001–5] false positives per patient. A confidence level of
97.5% was used to assess statistical significance (with Bonferroni correction for multiple
comparisons). The final performance for each configuration was obtained by ensembling
the predictions of the ten models.

3. Results

The clinical characteristics of the patients in the PDAC cohort are summarized in
Table 1. For the non-PDAC cohort, the mean age was 52.3 ± 21.4 (years), and there were
54 female and 69 male patients.

Table 1. Clinical characteristics of the patients in the PDAC cohort. Data are mean ± standard
deviation or median (interquartile range). The tumor stages are I—locally resectable; II—borderline
resectable; III—locally advanced; IV—metastasized.

Clinical Characteristics

Age (years) 69.2 ± 8.5
Gender (M/F) 67/52

Tumor Stage (I/II/III/IV) 22/21/47/29
Tumor size (cm) 2.8 (2.3–3.7)

The performances of the three different PDAC detection network configurations on the
internal five-fold cross-validation sets are shown in Table 2. At the patient level, nnUnet_MS
achieves the best performance, with an AUC-ROC of 0.991. Regarding lesion localization
performance, the three configurations achieve a similar pAUC-FROC, with nnUnet_MS
and nnUnet_TP performing slightly better than nnUnet_T.

Table 2. Mean and 95% confidence interval (95% CI) of the area under the ROC curve (AUC-ROC)
and partial area under the FROC curve (pAUC-FROC) for the internal five-fold cross-validation for
each configuration.

Configuration Mean AUC-ROC (95%CI) Mean pAUC-FROC (95%CI)

nnUnet_T 0.963 (0.914–1.0) 3.855 (3.156–4.553)
nnUnet_TP 0.986 (0.956–1.0) 3.999 (3.252–4.747)
nnUnet_MS 0.991 (0.970–1.0) 3.996 (3.027–4.965)

The mean ROC and FROC curves obtained on the external test set with each PDAC
detection network configuration are shown in Figure 2, with the respective 95% confi-
dence intervals. These curves were calculated using the 10 different trained models (two
initializations with five-fold cross-validation) for each configuration. nnUnet_MS and
nnUnet_TP both achieve an AUC-ROC around 0.89, which is significantly higher than
nnUnet_T (p = 0.007 and p = 0.009, respectively). At a lesion level, nnUnet_MS achieves a
significantly higher pAUC-FROC than both nnUnet_TP and nnUnet_T (p < 10−4).
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The median size of the tumors in the MSD dataset was 2.5 cm (IQR: 2.0–3.2). There
were 73 tumors < 2 cm in size in the MSD dataset. Figure 3 shows the patient and le-
sion level results for each configuration on this sub-set of smaller tumors. At a patient
level, the AUC-ROC decreases by about 0.05 for each configuration, when compared
to the results obtained on the whole dataset. nnUnet_MS and nnUnet_TP continued to
outperform the nnUnet_T, although the differences were not statistically significant at
a confidence level of 97.5% (p = 0.034 and p = 0.077, respectively). Regarding lesion-
level performance, the pAUC-FROC for nnUnet_MS is still significantly higher than for
nnUnet_TP and nnUnet_T (p < 10−4 and p = 4.8 × 10−4, respectively). The results obtained
by ensembling the 10 models for each configuration are shown in Table 3.
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Table 3. Ensemble results for the area under the ROC curve (AUC-ROC) and partial area under the
FROC curve (pAUC-FROC) from configuration on the whole test set and the subgroup of tumors
< 2 cm in size.

Subgroup Configuration AUC-ROC pAUC-FROC

Whole Test Dataset
nnUnet_T 0.872 3.031

nnUnet_TP 0.914 3.397
nnUnet_MS 0.909 3.700

Tumors size < 2 cm
nnUnet_T 0.831 2.671

nnUnet_TP 0.867 3.289
nnUnet_MS 0.876 3.553
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Figure 4 shows an example of the network outputs of nnUnet_TP and nnUnet_MS for
an iso-attenuating lesion in the neck-body of the pancreas. This lesion is missed by both
nnUnet_T and nnUnet_TP, but is correctly identified by the nnUnet_MS model.
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Figure 4. Example of an iso-attenuating tumor from the external test set, which was missed by both
the nnUnet_T and nnUnet_TP, but could be correctly localized by nnUnet_MS. (A) Slice of the original
ROI input; (B) ground truth segmentation of tumor and pancreas; (C) output of nnUnet_TP, which
in this case is only the pancreas segmentation as the tumor is not detected; and (D) output of the
nnUnet_MS, which is the segmentation of the detected tumor and surrounding anatomy.

4. Discussion

In this study, the state-of-the-art, self-configuring framework for medical segmenta-
tion, nnUnet [22], was used to develop a fully automatic pipeline for the detection and
localization of PDAC tumors on CE-CT scans. Furthermore, the impact of integrating the
surrounding anatomy was assessed.

A significant challenge of applying deep learning to PDAC detection is that the
pancreas occupies only a small portion of abdominal CE-CT scans, with the lesions being
an even smaller target within that region. Training and testing the networks with full CE-CT
scans would be very resource-consuming and provide a lot of unnecessary information
regarding the surrounding organs, distracting the model’s attention from the pancreatic
lesion location. In this way, it is necessary to select a small volume of interest around
the pancreas, but having expert professionals manually annotate the pancreas before
running each image through the network requires extra time and resources, which would
significantly diminish the model’s clinical usefulness. To address this issue, the first
step in our PDAC detection framework is to automatically extract a smaller volume of
interest from the full input CE-CT scan by obtaining a coarse pancreas segmentation with a
low-resolution nnUnet. To the best of our knowledge, this is the first study to develop a
deep-learning-based fully automatic PDAC detection framework and to externally validate
it on a publicly available test set.

Previous studies have employed deep CNNs for automatic PDAC detection on CT
scans [12–17], but only two studies validated their models on an external test set [15,16],
with one using the publicly available pancreas dataset. Liu and Wu et al. [15] developed a
2D, patch-based deep learning model using the VGG architecture to distinguish pancreatic
cancer tissue from non-cancerous pancreatic tissue. This approach required prior expert
delineation of the pancreas, which was then processed by the network in patches that were
classified as cancerous or non-cancerous. At a patient level, the presence of a tumor was
then determined based on the proportion of patches that the model classified as cancerous.
The authors tested this model on the external test set and achieved an AUC-ROC of
0.750 (95%CI (0.749–0.752)) for the patch-based classifier, and 0.920 (95%CI (0.891–0.948))
for the patient-based classifier [15]. On the sub-group of tumors < 2 cm in size, the model
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achieved a sensitivity of 0.631 (0.502 to 0.747). More recently, Si et al. [16] developed an
end-to-end diagnosis pipeline for pancreatic malignancies, achieving an AUC-ROC of 0.871
in an external test set, but validation on the publicly available dataset was not performed.

Our proposed automatic PDAC detection framework achieved a maximum ROC-AUC
of 0.914 for the whole external test set and 0.876 for the subgroup of tumors < 2 cm in size.
This performance is comparable to the current state-of-the-art for this test dataset [15], but
with the advantage of being obtained automatically from the input image, with no user
interaction required. Another advantage of our framework is that the lesion location is also
identified and so the classification outcomes are immediately interpretable as they directly
arise from the network’s segmentation of the tumor. Moreover, the achieved results set a
new baseline performance for fully automatic PDAC detection, noticeably improving on
the previous best AUC-ROC of 0.871 reported by Si et al. [16].

To the best of our knowledge, this is the first study to assess the impact of multiple
surrounding anatomical structures in the performance of deep learning models for PDAC
detection. Pancreatic lesions often present low contrast and poorly defined margins on
CE-CT scans, with 5.4–14% of tumors being completely iso-attenuating and impossible to
differentiate from normal pancreatic tissue [29]. These iso-attenuating tumors are identified
only by the presence of secondary imaging findings (such as the dilation of the pancreatic
duct) and are more prevalent in early disease stages [7,29]. In clinical practice, surrounding
structures such as the pancreatic duct, the common bile duct, the surrounding veins (pro-
tomesenteric and splenic veins), and arteries (celiac trunk, superior mesenteric, common
hepatic, and splenic arteries) are essential for PDAC diagnosis and local staging [7,29].
However, so far, deep-learning models have focused only on the tumor and noncancer-
ous pancreas parenchyma, not taking the diagnostic information provided by all of the
surrounding anatomy into account.

In this framework, the anatomy information was incorporated in the nnUnet_MS
model, which was trained to segment not only the tumor and pancreas parenchyma, but
also several other relevant anatomical structures. The rationale behind this approach was
that by learning to differentiate between the different types of tissue present in the pancreas
volume of interest, the network could learn underlying relationships between the structures
and consequently better localize the lesions. This network was compared to nnUnet_T, which
was trained to segment only the tumor, and nnUnet_TP, trained to segment the tumor and
pancreas parenchyma, in order to assess the impact of adding surrounding anatomy.

The results on the external test set show that, at a patient level, there is a clear benefit in
adding the pancreas parenchyma when compared to training with only the tumor segmen-
tation, as both nnUnet_TP and nnUnet_MS achieved a significantly higher AUC-ROC than
nnUnet_T. There were however no differences in the performances of the nnUnet_TP and
nnUnet_MS networks. Contrastingly, at a lesion-level, there was a clear separation between
the three FROC curves both on the whole test set and on the subgroup of tumors < 2 cm in
size (Figures 2 and 3), with nnUnet_MS achieving significantly higher pAUC-FROC than the
two other configurations. This shows that the addition of surrounding anatomy improves
the model’s ability to localize PDAC lesions. Figure 4 illustrates the advantage of anatomy
integration in the case of an iso-dense lesion that is obstructing the pancreatic duct, causing
its dilation. Both the nnUnet_T and nnUnet_TP models fail to identify this lesion, as there
are no visible differences between the tumor and healthy pancreas parenchyma. However,
nnUnet_MS can accurately detect its location in the pancreatic neck-body following the
termination of the dilated duct. By providing supervised training to segment the duct and
other surrounding structures, the neural model can better focus on the remaining regions in
the pancreas parenchyma, which may explain its ability to detect faint tumors. Furthermore,
the multi-structure segmentation provided by nnUnet_MS presents useful information to
the radiologist that can assist the interpretation of the network output regarding the tumor.

Despite the promising results, there are two main limitations to this study. First, the
models were trained with a relatively low number of patients and only included tumors in
the pancreatic head, which could be holding back the performance on external cohorts with
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heterogeneous imaging data. We are currently working on extending the training dataset to
incorporate more patients, including tumors in the body and tail of the pancreas, in order
to mitigate this issue. Second, training the anatomy segmentation network requires manual
labeling of the different structures, which is resource-intensive. To address this problem,
we only manually labeled the images from the PDAC-cohort and used self-learning to
automatically segment the non-PDAC cohort, which could be introducing errors in training.
Like the previous issue, the solution to this problem is to increase the size of the training
dataset so that the model can learn better representations of the anatomy and consequently
perform higher quality automatic annotations.

5. Conclusions

This study proposes a fully automatic, deep-learning-based framework that can iden-
tify whether a patient suffers from PDAC or not, and localize the tumor in CE-CT scans. The
proposed models achieve a maximum AUC of 0.914 in the whole external test set and 0.876
for the subgroup of tumors < 2 cm in size, indicating that state-of-the-art deep learning
models are able to identify small PDAC lesions and could be useful at assisting radiologists
in early PDAC diagnosis. Moreover, we show that adding surrounding anatomy informa-
tion significantly increases model performance regarding lesion localization. Despite these
promising results, additional validation with better curated external, multi-center datasets
is still required before these models can be implemented in clinical practice.
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