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Simple Summary: The aim of the study is to identify radiomic features capable of predicting the
response to immunotherapy. Delta-radiomics can foresees the comparison between subsequent
CT scans and therefore allows to predict the changes that occurred during the treatment. In this
study, the individual lesions of patients with advanced non-small cell lung cancer treated with
immunotherapy were analyzed. The study aims to discover the features that predict the response to
immune checkpoint inhibitors.

Abstract: Delta-radiomics is a branch of radiomics in which features are confronted after time or after
introducing an external factor (such as treatment with chemotherapy or radiotherapy) to extrapolate
prognostic data or to monitor a certain condition. Immune checkpoint inhibitors (ICIs) are currently
revolutionizing the treatment of non-small cell lung cancer (NSCLC); however, there are still many
issues in defining the response to therapy. Contrast-enhanced CT scans of 33 NSCLC patients treated
with ICIs were analyzed; altogether, 43 lung lesions were considered. The radiomic features of the
lung lesions were extracted from CT scans at baseline and at first reassessment, and their variation
(delta, ∆) was calculated by means of the absolute difference and relative reduction. This variation
was related to the final response of each lesion to evaluate the predictive ability of the variation itself.
Twenty-seven delta features have been identified that are able to discriminate radiologic response to
ICIs with statistically significant accuracy. Furthermore, the variation of nine features significantly
correlates with pseudo-progression.

Keywords: radiomics; NSCLC; delta-radiomics; immunotherapy; antiPD1; immune checkpoint
inhibitor; predictive value
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1. Introduction

In radiomics, digital images are considered as minable data from which high-throughput
features could be extracted [1]. Radiomics can describe radiological images beyond the
perception of the human eye, and it has been hypothesized that this approach might
individuate and quantify macroscopic radiological phenotypes that are the result of certain
cellular or tissue characteristics [2]. These data are exceedingly difficult to handle, and
they are usually processed with very complex mathematical methods, such as Machine
Learning (ML), to create predictive models able to answer specific questions. However, an
effective correlation of the radiomic features with their biological counterparts has not been
proven [2]: hence, extrapolations on feature meanings remain speculative, which means
we are creating elaborate predictive models using data that are not completely understood.
As many attempts have been made to select the most reliable and less redundant features
using methods such as LASSO, PCA [3], or test-retest [4], the effort to comprehend radiomic
features remains an unaddressed challenge.

Delta-radiomics is a subspecialty of radiomics that studies the variations of the ra-
diomic features in time [5] or after the introduction of an external agent either pharmaco-
logic (chemotherapy, immunotherapy) or physical (radiotherapy) to produce biomarkers
able to describe or predict a specific clinical situation (i.e., response, early recurrence). Delta-
radiomics does not depict a static situation, but its evolution; confronting delta-radiomic
features means comparing different starting situations that present similar changes. To date,
radiomics has been used to predict definite biological (i.e., mutational status) or clinical (i.e.,
response to therapy, overall survival) conditions but has been rarely employed to perform
a longitudinal assessment of disease evolution [6–8].

Since their introduction in research and clinical practice, immune checkpoint inhibitors
(ICIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC), by increas-
ing patients’ survival both locally advanced and in the metastatic stage. However, while
during chemotherapy, response criteria are purely dimensional (increase/decrease/stability)
and the correlation between response and dimensions is linear, this relationship is not
always as straightforward when ICIs are employed. Indeed, during treatment with im-
munotherapy, malignant lesions can show a large spectrum of heterogenous responses
that vary in terms of form, timing, and duration; this heterogeneity in response forced
the medical community to elaborate new and most suitable criteria to depict the changes
determined by the immune response unleashed during immunotherapy such as iRECIST
and irRECIST [9,10]. In some cases, the tumor significantly enlarges before shrinking,
a response known as pseudo-progression (pPD); this occurrence is typically associated
with the enrollment and activation of tumor-infiltrating lymphocytes. The unmet clinical
need to describe the tumor response has even pushed research to perfect new radioactive
biomarkers [11]. However, in Computed Tomography (CT), even the newest response
criteria do not describe the interactions between tumor and immune system and are still
dependent on linear dimensions. Radiomic features are derived from complex mathemati-
cal equations and, in some cases, are designed to be sensible to definite characteristics of an
image; to date, few studies tried to reverse-engineering radiomic features to understand
the characteristics of radiological images and biological processes. The aims of our study
are: (a) to individuate radiomic features that might be used as surrogate biomarkers of
response to immunotherapy in NSCLC (b) to employ delta-feature trends to describe the
response to ICIs in NSCLC.

2. Materials and Methods
2.1. Eligible Patients and Radiologic Lesions

In this study, we included consecutive patients with cyto-histological diagnosis of
advanced NSCLC, who were treated in first or second line with an anti PD-1 ICI (nivolumab
or pembrolizumab). We included only patients for whom a baseline CT scan and the first
response assessment were available in our archive. Both CT scans had to be performed with
contrast medium. In this study, we considered only lung lesions, and the same lesion had
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to be present both at baseline and first re-evaluation (complete responses were excluded).
The Consort diagram summarizes how we selected the radiological exams. Sixty-two
patients were enrolled in the study; from these, 24 patients were excluded due to lack
of reevaluation CT (early death, complete response of target lesion, absence of contrast
medium in reevaluation CT). In addition, for five patients, there were problems during the
process of reformatting of the slices. Therefore only 33 patients were considered, for a total
of 43 target lesions (Figure 1). For the evaluation of the response, each lesion was considered
separately. The response was assessed using the RECIST 1.1 cut-off criteria: greater than
30% decrease for partial response (PR), greater than 20% increase for progressive disease
(PD), while stable disease (SD) was defined when previous conditions were not met. The
complete response was not taken into consideration given the absence of the reassessment
of the lesion.
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Figure 1. Consort diagram for selection of patients and lesions.

Lesions that met the criteria for pPD were re-checked [12]. Although the planned ra-
diomic analysis included the exclusive assessment of the baseline and the first re-evaluation
CT scans, in order to generate a predictive model of response, we evaluated the response in
the subsequent CT scans performed throughout the patient’s therapy. Finally, we assigned
the best response available in subsequent patient evaluation (an SD at the first re-evaluation
that became a PR after other re-evaluations were considered a PR). For the same reason, in
case of disease progression, a SD at the first re-evaluation was considered a PD (Figure 2).

2.2. CT Protocol and Images Reformatting

All the patients underwent contrast-enhanced CT scans using the standardized proto-
col of our institution. CT acquisition was performed on two 16-rows and a 64-rows scanner
(LightSpeed and Optima, Ge Healthcare, Chicago, IL, USA) after contrast media injection
(80–120 mL, Iopamiro 370, Bracco) during the venous phase. The acquisition parameters
were the following: tube voltage 120 kV, slice thickness 1.25 mm, FOV 35–50 cm, matrix
512 × 512. Tube current automatic modulation was employed. DICOM images were
transferred on a dedicated workstation (AW Server 4.6, GE Healthcare, Chicago, IL, USA)
and reformatted on the axial plane at 3.0 mm of slice thickness.

2.3. Segmentation and Radiomic Analysis

Reformatted images were transferred to an offline workstation. Segmentation was
performed using 3D Slicer 4.10.1 [13]. A radiologist with six years of experience in ra-
diomics, blinded to clinical and chronological data, delineated a Volume-of-Interest (VOI)
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around each lesion using a semi-automated method and a slice-per-slice approach. Hyper-
dense structures, such as bone or metal objects, were excluded from the segmentation; if
present, the air was included within the VOI, even in case of cavitation at the consequent
CT, but major lobar branches were excluded. Radiomic features were calculated with the
Pyradiomics extension [14]. Ninety-three features were calculated for each lesion before
(baseline) and after immunotherapy (first assessment). Radiomic features were extracted
using the following methods: first-order statistics (n = 18), Gray-Level Co-Occurrence Ma-
trix (n = 24), Gray-Level Run Length Matrix (n = 16), Gray-Level Size Zone Matrix (n = 16),
Neighbouring Gray Tone Difference Matrix (n = 5) and Gray-Level Dependence Matrix
(n = 14). The mathematical definitions of the adopted features are available for consultation
on Pyradiomics’ website (https://pyradiomics.readthedocs.io/en/latest/features.html
accessed on 18 November 2021.).
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Figure 2. The best response known during subsequent assessment was adopted to define the actual
response and understand the potential predictive role of delta-radiomics.

2.4. Delta-Radiomic Features Computation

Radiomic features were extracted from the baseline CT scan and from the CT scan of
the first re-evaluation. Delta-radiomic features were calculated employing two different
approaches: Absolute Difference (AD) and Relative Variation (RV).

In the AD case, the variation of each radiomic feature V (i.e., the delta-radiomic feature
∆VAD) was calculated as

∆VAD = VT0 − VT1, (1)

where VT0 represents the value of the feature at baseline CT scan, and VT1 is the value of
the same feature at the first assessment CT (after immunotherapy).

In the RV method, the variation was also normalized with respect to VT1, i.e., comput-
ing the delta feature ∆VRV as

∆VRV =
VT0 − VT1

VT1
. (2)

https://pyradiomics.readthedocs.io/en/latest/features.html
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2.5. Statistical Analysis

Delta features of the three classes of response (PD, PR and SD) were compared using
ANOVA or Kruskal–Wallis tests [15,16]. Median and standard deviation of each delta
feature were calculated. The statistical significance level was set at p = 0.05. Statistical
analysis was performed using GraphPad Prism version 7.00 for Windows (GraphPad
Software, La Jolla, CA, USA, www.graphpad.com accessed on 18 November 2021.) Due to
the limited dataset, no machine learning or other type of artificial intelligence approach was
adopted. Furthermore, the most important prognostic variables for NSCLC were evaluated
by univariate analysis. Statistical significance between survival curves (Kaplan–Meier) was
assessed using the Log-Rank Test and the Cox model. The variables considered for these
analyses were histology (adenocarcinoma vs. squamous), Performance status according
to Eastern Cooperative Oncology Group (ECOG < 2 or ECOG ≥ 2), and age (<65 years
and >65 years). The PD-L1 value was not considered because all the patients receiving ICI
in the first line had a tumor with PD-L1 expression ≥50%; conversely, PD-L1 expression
value was not consistently available for the patients treated in the second line, apart from
the two patients for whom it was available and higher than 50%. Therefore, this analysis
was impossible to perform.

2.6. Radiomic–Radiological Correlation

At the end of data analysis, radiologist reviewed all the cases included in the study and
unblinded data in order to establish a radiomic-radiological correlation between the features
that are different in the three response classes (PD, PR and SD) and that can distinguish PD
and pPD. In particular, the most extreme variations were taken into consideration in order
to have the greatest probability of recognizing a variation visible to the human eye. Starting
from these examples, it was possible to trace a certain variation to a known descriptive
radiological pattern and from there, hypotheses were formulated about the meaning of
these variations even when these are not visible to the human eye, but only traceable as a
variation of the features.

3. Results
3.1. Patients

Globally, 33 patients were included in our study. Among these patients, 28 were male;
median age was 67 years (range: 43–88). Seventeen patients received Nivolumab, while
16 received Pembrolizumab; 16 patients were evaluated during their first-line treatment,
while 18 patients were treated as second-line. Globally, 10/33 patients were considered to
have an ECOG performance status (PS) of 0, while 21 had ECOG PS 1, and only two patients
had a ECOG PS of 2. The median Progression-Free Survival (PFS) was 6.5 months (3.8 for
nivolumab group and 7.1 for pembrolizumab group), while the median Overall Survival
(OS) was 13.7 months (9.3 for nivolumab group and 15 months for pembrolizumab group).

Forty-three pulmonary lesions were included in the analysis. The average time be-
tween the CT exams was 70.26 days, while the mean follow-up time was 11.5 months.

3.2. Features That Distinguish Response Classes

Twenty-seven delta features resulted in significantly different results in the three
classes calculated by RV methods (Table 1). Considering the absolute difference (AD),
10 features were different in the three classes (Table S1); furthermore, these 10 features
were present among the 27 features identified with RV. Therefore, RV seems to offer the
best descriptive and intuitive method to calculate delta features. Most of the features
individuated with the RV method measure an increase/decrease in VOI heterogeneity. On
the other hand, some features (GLRLM and GLSZM) are more composite and designed to
be more sensitive to specific aspects of the VOI. The results for each class are presented in
the following paragraphs.

www.graphpad.com
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Table 1. Delta-radiomic features were calculated with the RV method that resulted statistically
different in the three response classes. The results are presented as median values for each class
and p-values.

Relative Variation

Radiomic Features Response

Class Name PR SD PD p-Value

Median 0.07389 0.04288 −0.2143 0.0072

Energy 0.7002 −0.02225 −0.3811 0.0071

TotalEnergy 0.8288 −0.1987 −0.4173 0.0038
firstorder

90Percentile 0.1130 0.0006320 −0.07377 0.02

DependenceNonUniformity 0.6793 −0.08826 −0.2910 0.0034

GrayLevelNonUniformity 0.7474 −0.1150 −0.2443 0.0109gldm

SmallDependenceEmphasis −0.2645 0.1324 0.1725 0.0165

glcm

Contrast −0.2338 0.07732 0.3687 0.0166

DifferenceEntropy −0.08534 0.01756 0.04661 0.0242

DifferenceVariance −0.2241 0.04970 0.3384 0.006

DifferenceAverage −0.1293 0.04207 0.07722 0.0284

glrlm

RunVariance 0.1638 −0.05781 −0.1424 0.0419

GrayLevelNonUniformity 0.8304 −0.09103 −0.2589 0.0107

LongRunEmphasis 0.1187 −0.05526 −0.08364 0.0185

RunLengthNonUniformity 0.5123 −0.1132 −0.3272 0.0036

ShortRunEmphasis −0.03467 0.01885 0.01652 0.0199

RunPercentage −0.04131 0.02180 0.02883 0.0329

RunLengthNonUniformityNormalized −0.06849 0.04196 0.03199 0.0414

ZoneVariance 1.531 −0.2942 −0.5456 0.01

GrayLevelNonUniformity 0.1498 −0.02237 −0.2220 0.0147

LargeAreaEmphasis 1.530 −0.3100 −0.5455 0.011

ZonePercentage −0.3220 0.1571 0.2031 0.0188

LargeAreaLowGrayLevelEmphasis 2.474 −0.1821 −0.6068 0.016

glszm

LargeAreaHighGrayLevelEmphasis 2.114 −0.1915 −0.2531 0.0295

Coarseness −0.4023 0.06068 0.2851 0.0062

Strength −0.4111 0.3760 0.6139 0.0259ngtdm

Busyness 0.8051 −0.1563 −0.3590 0.0205

3.2.1. First-Order Features and Heterogeneity-Based Features

Most first-order, GLDM, GLCM and NGTDM features (“Energy”, “Total Energy”,
“Contrast”, “GrayLevelNonUniformity”, “Coarseness”, “Strength” and “Busyness”) de-
scribe, in different ways, an increase or decrease of heterogeneity within the VOIs. All these
features are concordant in describing an increasing homogeneity in PR and an increasing het-
erogeneity in PD of the voxels included in the VOIs. In PD, the feature Coarseness (p = 0.0062)
and Busyness (p = 0.0205) describe a situation in which the VOI becomes more heterogenous
and presents a higher spatial rate of change, meaning that variations are more abrupted.

The feature “Median” well discriminates PD from SD and presents negative values
in PD patients and mildly positive values in SD patients, representing respectively an
increasing and a slight decrease in the median attenuation value.

3.2.2. Gray-Level Run Length Matrix Features

Gray-Level Run Length Matrix (GLRLM) features are designed to individuate and
quantify consecutive pixels that have the same gray-level value within the VOI (Run-
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length or RL). “Run Length Non-Uniformity” (RLNU) is a feature created to quantify the
homogeneity of RL in an image; an image with identical RL presents a very small value of
RLNU. RLNU was significantly different in the three cohorts (p = 0.0036) but, after review,
we understand that this difference is more evident in tumors near the pleural surface and
that our observation could be determined by the involvement of pleurae and scissures
(that, acting as a temporary barrier to tumoral invasion, create a prominent interface)
or the presence of very prominent spicules; therefore, RLNU increasing/decreasing is
determined by an augmented/reduced involvement of pleural surfaces or an enlargement
of the spicules. The fact that GLRLM features are influenced by anatomical landmarks
such as pleural surfaces highlights the possibility that, particularly in the lung, where
tumors and lung parenchyma present a very different attenuation and create pronounced
interfaces, these features are more sensitive to high-contrast areas, where the difference
in attenuation creates homogenous, low density, linear interfaces. RLNU is significantly
different in PD and PR patients: in PD the value is negative, meaning that the level of
non-uniformity in the run-lengths increases, a phenomenon that could be explained by the
increase, for example, of the spicules around the boundaries of the tumor that create an
interface composed by multiple heterogeneous parts; conversely, in tumors that manifested
PR the value of RLNU is reduced, which means that the boundaries of the tumor might
have become less marked, more rounded, and linear, indicating a less infiltrative pattern.

3.2.3. Gray-Level Size Zone Matrix

If we consider the features “Large Area High Gray-Level Emphasis” (LAHGLE
Figures 3 and 4) (which is designed to describe the preponderance within the VOI of coa-
lesced regions with high-intensity pixel), we can appreciate how this feature can distinguish
PR, SD and PD; in PR the delta-values of LAHGLE are positive, meaning that the feature
that describes high-intensity regions have shrunk while in PD and SD such delta-values
are negative, representing an increasing number and dimension of high-intensity regions.
Assuming that in a lung lesions dataset, the densest pixels are those with contrast media,
we can associate high-density areas with regions that present vivid uptake. By contrast, the
feature “Large Area Low Gray-Level Emphasis” (LALGLE) describes the preponderance of
large areas with low-density pixels; in PD and SD, LALGLE ∆ decreases, which means that
these are enlarged, and shrinks while in PR (Figures 3–5).

3.3. Features That Distinguish PD and Pseudo-Progression

RV identified nine features that can distinguish pseudo-progression from progressive
disease (Table 2). In particular, it is important to note that the features able to distinguish the
progressive disease from pseudoprogression are different from those able to distinguish the
responder from a lesion that will progress. Only two features have a statistically different
delta both between PD and PR and between PD and pPD; these features are the “Run
LengthNon Uniformity” and the “Gray-Level Non Uniformity”. This observation defines
pPD as a completely different phenotype compared to actual PD. The values of Short
Run Low Gray-Level Emphasis (SRLGLE) presented very different values in PD and pPD
(p = 0.0007); SRLGLE is a feature that measures the joint distribution of shorter run lengths
with lower gray-level values, with a higher value indicating a greater concentration of
low gray-level values in the VOI. In PD, the value of SRLGLE increases, indicating the
emergence of the small low-attenuated interface along the boundaries of the tumor such as
spliculae; in pPD the value of SRLGLE decreases, meaning that the small interface reduced
and globally, the margins of the tumor are less irregular and more rounded (Figure 6).
Finally, in pPD the value of “Low Gray-Level Zone Emphasis” (LGLZE), a feature that
quantifies the presence of lower gray-level values and size zones on a global level in the
tumor, reduces significantly (Figure 5).
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Figure 3. Three examples of response to immunotherapy. (a,b) PR: the tumor shrunk from T0 to T1
and areas that presented high enhancement (blue dotted circle) disappeared. (c,d) SD: 63-year-old
male patient presenting a pulmonary tumor that penetrates the thoracic wall and erodes a rib with
extensive bone reabsorption. The first re-evaluation showed an increased mass (53 × 35 mm vs.
50 × 25 mm) consistent with PD. However, during therapy, the lesion gradually reduced and became
stable. Delta-radiomics individuated an extreme negative variation of LAHGLE (−0.999770105) that
could be represented by the emergence of areas with vivid contrast media uptake (red dotted circles)
within the lesion. (e,f) PD: this pulmonary lesion was slightly enlarged at the first follow-up but
radiomic revealed an increase in LALGLE (−0.173288587). The lesion kept growing in the following
months, a finding consistent with PD. This case represents a good example of how radiomics could
intercept changes in the radiological images that are almost invisible to the human eye and predict the
evolution of each lesion. The slight increase of LALGLE could be referred to as the slight enlargement
of the central hypodense area (yellow dotted circle). In this case, the CT window was stressed for
demonstrative purposes.



Cancers 2022, 14, 350 9 of 15

Cancers 2022, 14, x FOR PEER REVIEW 9 of 16 
 

 

radiomic revealed an increase in LALGLE (−0.173288587). The lesion kept growing in the following 

months, a finding consistent with PD. This case represents a good example of how radiomics could 

intercept changes in the radiological images that are almost invisible to the human eye and predict 

the evolution of each lesion. The slight increase of LALGLE could be referred to as the slight 

enlargement of the central hypodense area (yellow dotted circle). In this case, the CT window was 

stressed for demonstrative purposes. 

 

Figure 4. A tumor in the right pulmonary hilum. (a) baseline CT-scan (b) first assessment CT-scan. 

During follow-up, the tumoral mass shrunk a variation consistent with PR. At the first re-evaluation 

the central hypodense area reduced (red dotted circles); this tumor presented a ∆-LALGLE of 

1.487953173, which consists of a reduction of 149% of the low attenuation area. 

 

Figure 5. Exemplification of the variations of LAHGLE and LALGLE after the introduction of 

immunotherapy. (a) At baseline a tumor presented with different zones of enhancement (white) and 

Figure 4. A tumor in the right pulmonary hilum. (a) baseline CT-scan (b) first assessment CT-scan.
During follow-up, the tumoral mass shrunk a variation consistent with PR. At the first re-evaluation
the central hypodense area reduced (red dotted circles); this tumor presented a ∆-LALGLE of
1.487953173, which consists of a reduction of 149% of the low attenuation area.
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Figure 5. Exemplification of the variations of LAHGLE and LALGLE after the introduction of
immunotherapy. (a) At baseline a tumor presented with different zones of enhancement (white)
and low attenuation (dark grey) within the tumor (light grey). (a1) In PR, the tumor shrinks and
the values of LAHGLE and LALGLE decrease, indicating a reduction in dimension of high and low
attenuation “large zones”. (a2) In pPD, the tumor enlarges and the values of LAHGLE increase but
LGLZE decrease, indicating a reduction of low attenuation zones on a global level (the background
and the low attenuation zones become lighter) and enlargement of high attenuation zones. In pPD
LALGLE is not different from PD, but the difference in LGLZE is consistent, meaning that large areas
are not exclusively affected, but the process that involves the reduction of low attenuation pixels
occurs on a global instead of a local level. (a3) In PD, the tumor enlarges and the values of LAHGLE
and LALGLE increase, indicating a growth of high and low attenuation “large zones”.
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Table 2. Delta-radiomic features were calculated with the RV method that resulted statistically differ-
ence in PD and pPD lesions. The results are presented as median values for each class and p-values.

Relative Variation

Radiomic Features Response

Class Name PD pPD p-Value

DependenceEntropy 0.001323 −0.05896 0.0072
gldm

LowGrayLevelEmphasis −0.03248 1.224 0.0036

Idmn −0.0008908 −0.01153 0.05
glcm

Idn 0.0002237 −0.02028 0.0357

ShortRunLowGrayLevelEmphasis −0.02426 1.454 0.0036

LowGrayLevelRunEmphasis −0.05360 1.352 0.0071glrlm

RunLengthNonUniformity −0.3272 −0.7698 0.0328

glszm
GrayLevelNonUniformity −0.2220 −0.7201 0.0346

LowGrayLevelZoneEmphasis 0.03821 2.818 0.0199
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Figure 6. Examples of changes in Short Run Low Gray-Level Emphasis. (a) A tumor in the left
upper lobe that undergone PD after immunotherapy (b). At the first re-evaluation, many spicules
are appreciable on the boundaries of the tumor (red arrows), indicating a more infiltrative patterns,
In this case, the value of SRLGLE presented a relative variation of −0.59617207. (c) A tumor in the
right lower lobe (yellow dotted circle) presented a discrete enlargement after immunotherapy (d), a
finding that might indicate PD; however, during follow-up the nodule shrunk, a behavior consistent
with pPD. In this case, ∆-SRLGLE was 1.189415458 due to a decisive decrease of SRLGLE. (e) The
changing of SRLGLE in PD and pPD is depicted in this scheme with exemplificative purposes: in PD
the spiculae on the boundaries of tumor increase significantly and contribute to creating new small,
low-density interfaces that increase the value of SRLGLE. In pPD, despite the volumetric enlargement
of the nodule, the boundaries become more rounded, reducing the presence of small interfaces.

3.4. Univariate Analysis of Prognostic Clinical Factors

The three aforementioned prognostic factors (histology, ECOG PS, and age) were
evaluated for all patients enrolled in the study. Regarding the histology, The HR in favor
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of the adenocarcinoma histology was 0.49 (CI95% 0.19–1.25, p = 0.06), not statistically
significant. Similarly, the ECOG PS, the trend was in favor of patients with better ECOG
PS with a HR of 0.46 (CI95% 0.22–0.97, p = 0.07), albeit statistical significance was not
reached. Finally, considering younger patients versus older patients, the trend was in
favor of younger patients with a non-significant HR of 0.86 (CI95% 0.42–1.77 p = 0.69)
(Supplementary Figures S1–S3).

4. Discussion

The therapeutic revolution of immunotherapy in the treatment of NSCLC is widely
acknowledged [17]. The search for predictive biomarkers of response has gathered the
efforts of many researchers, without however leading to real advances in clinical practice
so far. Tissue assessment of PD-L1 remains the best response biomarker available to date,
despite its known limitations [18]. It has become increasingly clear that each tumor is not
homogeneous; indeed, tumor heterogeneity is spatial (intra-lesion and inter-lesion) and
temporal (as it can change over time) [19]. The tissue biopsy, on which we evaluate the
expression of a biomarker, is only a part of the whole and returns an immutable result over
time, which, therefore, does not respond to reality as well as an invasive diagnostic test
for the patient. Research of circulating biomarkers and radiomics are the most promising
ways to overcome these limitations. This work aimed to evaluate how the variation of the
features can predict the future behavior of each lesion of a patient. Despite the sample size
limits, that prevented the use of artificial intelligence algorithms, we were able to identify
features that can predict the response of a lesion during immunotherapy treatment. This
could be a successful approach, considering the consecutive and longitudinal evaluations of
a patient allowing to discover in advance when a lesion will stop responding or, conversely,
when it will become susceptible to response at any time during treatment. Radiomics is one
of the main topics of research in the radiological field but, still, reproducibility represents
the major issue that limits its translation in clinical practice. Compared to the number
of papers on radiomics published in the last decade, delta-radiomics’ possibilities had
been scarcely evaluated. Nonetheless, a study by Plautz et al., demonstrated that delta
features are stable in phantoms [20] and a recent study by Nardone et al. [21] proposed that
delta-radiomics can be used to improve multi-scanner and multi-center reproducibility.

Radiomic features calculated from the same tumor at different timepoints derive
from an object acquired in similar conditions (i.e., position within the body, proximity to
hyperdense structures and timing of arrival of the contrast media within the lesion); this
process might eliminate much of the variability of radiomics. We can reasonably assume
that in delta-radiomics, each patient is his/her own control throughout time, and changes
are therapy-induced or determined by disease progression. Furthermore, delta-radiomics
might open the path to deep insights within the response to immunotherapy. The analysis
of radiomic features one by one demonstrated that something changes within tumors after
the introduction of immunotherapy, and these observations are confirmed by the trend of
significant delta features that is mostly different in amplitude and direction in the three
classes. To our knowledge, only three studies established a relationship between delta
features and response to immunotherapy [7,22,23] and none tried to interpret radiomic
features and their variations. Our study demonstrated that 27 delta features presented a
similar trend and might be associated with a definite response to immunotherapy. Moreover,
we found nine features that might potentially distinguish pPD from actual PD.

Based on our findings, the features LAHGLE and LALGLE might describe disease
progression, in which large, poorly perfused areas and variable contrast-enhanced regions
enlarged at the same time. On the contrary, in responding lesions these areas, particularly
enhanced ones, shrink and are reduced or not appreciable at the reassessment CT scan. A
possible explanation of this fact is that progressing tumors could include larger, poorly
perfused areas of necrosis. We know how necrosis, and therefore a hypovascularized
microenvironment, constitutes by itself a tumor escape mechanism, with an increased
production of HIF1 [24,25], which directs the tumor microenvironment towards an im-
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munosuppressive phenotype. This condition might be described by the observed variations
of LAHGLE and LALGLE (that could correspond to an enlargement of focal necrosis areas),
which suggest how immunotherapy alone, in such cases, is not able to overcome this
specific tumor escape. Notably, pPD presents values of LAHGLE similar to PD, while
the value LGLZE reduces, indicating that, in spite of the persistence of low-density areas,
the global attenuation of the tumor increases. Figure 5 is a graphical representation of
these phenomena. This aspect, in accordance with the above, makes us hypothesize that
increased capillary permeability to the contrast medium, which tends to increase the pixel
density, is a positive predictive factor of response; on the other hand, the increased capillary
permeability is known to be one of the first steps in the inflammatory response.

From a radiomic point of view, the most elusive class is SD; indeed, this class is very
heterogenous and most of its values are halfway between the other classes. Nonetheless,
the median value can be decreased in two ways: by eliminating high-attenuated pixels
or by recruiting more hypodense pixels. The radiomic–radiologic review demonstrated
that in most cases, this phenomenon regards both processes, as stable lesions become more
homogenous, less enhanced and less attenuated compared to progressive ones.

Considering the methods of calculating the radiomic delta, another interesting aspect
is that, between the two employed methods (AD, RV), the one that performed better is RV.
This occurrence is not surprising; indeed, being a ratio, RV eliminates the variability of the
features among the different lesions.

Radiomics presents undeniable reproducibility issues that are determined mostly by
different acquisition parameters but also on the characteristics of the patient such as gender,
weight and, more specifically, by the location of the tumor (i.e., tumors near bone, metal
or air are more prone to beam hardening artifacts (Figure 7)). However, if we consider
only the relative variations, most of these variables are eliminated, providing reliable delta-
radiomic features. Moreover, RV values have a negative or positive value that indicates the
variation’s trend, providing an intuitive and easily understandable biomarker.

We also evaluated the weight of the most important prognostic and predictive variables
in NSCLC: age, histology, ECOG PS, and PD-L1 expression. For the last variable, it was
not possible to perform a univariate analysis and this certainly falls within the limits of
this work. Indeed, all the patients for whom the value was available had PD-L1 expression
≥50%, while the value was not available for most patients treated in the second line. For
the other three variables, the limited sample size meant that none of them demonstrated
statistical significance; this observation suggests that radiomic features might be better able
to discriminate responding patients from non-responding patients compared to clinical
features. Furthermore, the clinical characteristics are patient-dependent and not lesion-
dependent; therefore, they are less informative if we seek the prediction of response lesion
by the lesion.

Apart from the aforementioned lack of PD-L1 expression data, our study presents
other limitations. In the first place, the cohort of patients was small due to the retrospective
nature of the data and the need to comply with very strict inclusion criteria that would
allow the radiomic analysis. This fact limits at the same time the strength of our results
and the possibility to apply machine learning, AI-based, or other complex classification
techniques. Moreover, the evolution of NSCLC treatment has witnessed the arrival of
chemo-immunotherapy combinations, which are currently the best treatment available
for a large proportion of patients; in our study, this combination was not considered for
the sole purpose of having a simpler cohort to analyze. Another aspect that should not be
underestimated is that the cohort includes both patients treated in the first line or in the
second line. Finally, the effectiveness of our results should be tested on independent test
sets to proper evaluate the reproducibility and generalizability of our findings.
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Figure 7. Hypothetical schematic representation of the variability in CT acquisition and delta-
radiomic computations. (a) Baseline CT (T0) in a patient with two pulmonary lesions. Several factors
might influence CT acquisition, depending on the type of scanner (number and dimensions of the
detectors), the acquisition parameters employed (tube current and voltage) and the characteristics
of the patient (age, gender and body mass index) from which depends, to some extent, the contrast
medium kinetic and distribution. Even the position within the body of the pulmonary lesion might
affect the radiomic analysis, as the values of the pixels depending on the attenuation of x-rays. Lesion
2 (yellow circle) lies between two high-attenuated bony structures (*), the spine and the scapula;
lesion 1 (red circle), on the other hand, lies nearer to the skin and distant from the ribs or sternum. An
x-ray beam will interact with these two lesions differently, resulting in different values of radiomic
features. (b) At the first re-evaluation (T1), the two lesions responded to immunotherapy. In this
case, each lesion will be acquired in conditions very similar to T0. (c) During delta-radiomic features
computation, variations due to CT acquisition are eliminated using the RV method, which can
extrapolate a similar change in different situations. We can appreciate how the two lesions, despite
their differences in values and AD-calculated delta features, presented comparable changes.

5. Conclusions

In conclusion, delta-radiomic features might potentially provide reliable biomarkers
of response in NSCLCs treated with immunotherapy. One of the most intriguing aspects
is that, conversely to response criteria such as RECIST, delta-radiomics provides complex
quantitative parameters that could better stratify patients and provide new information
about intra-tumoral changes. Radiomic analysis requires no adjunctive exams, can operate
using data from standard-of-care CT images and, therefore, is a cost-effective technique.
Delta-radiomic features have the potential to overcome the limitations of iRECIST in
immunotherapy and, possibly, quantify the response to treatment and eventually predict
the course of therapy. The information provided by delta-radiomics might be employed to
identify lesions that are not responding or that will no longer respond to immunotherapy
in the short term, and that might be managed with a different approach (i.e., radiotherapy,
local ablative therapy), leading to tailored treatments and actual precision medicine.
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median values for each class and p-values.
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