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Paulina Zofia Goryńska 1 , Kamila Chmara 1, Bogumiła Kupcewicz 2 , Krzysztof Goryński 1,†, Karol Jaroch 1 ,
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Simple Summary: The diagnostic protocol for gliomas is based on histological examination and the
determination of genetic biomarkers. However, examining molecular biomarkers in cancer tissue
is usually labor-intensive and time-consuming when a homogenization step is involved. Therefore,
this diagnostic approach has not been fully explored to date. The present study seeks to validate
the applicability of solid-phase microextraction (SPME), or chemical biopsy, as a new approach for
fast and simple sampling and sample-preparation in the surgery room prior to the application of
metabolomic analysis to identify biomarkers. To this end, the metabolomic profiles of brain tumors
were compared with genetic biomarkers and the results of histological analysis in order to identify
changes of molecular metabolites of statistical significance. The findings of this study indicate that
the proposed approach provides complementary information to current diagnostic methods and has
the potential to be a valuable on-site analytical tool in future applications.

Abstract: Glioblastoma multiforme is one of the most malignant neoplasms among humans in their
third and fourth decades of life, which is evidenced by short patient survival times and rapid tumor-
cell proliferation after radiation and chemotherapy. At present, the diagnosis of gliomas and decisions
related to therapeutic strategies are based on genetic testing and histological analysis of the tumor,
with molecular biomarkers still being sought to complement the diagnostic panel. This work aims to
enable the metabolomic characterization of cancer tissue and the discovery of potential biomarkers
via high-resolution mass spectrometry coupled to liquid chromatography and a solvent-free sampling
protocol that uses a microprobe to extract metabolites directly from intact tumors. The metabolomic
analyses were performed independently from genetic and histological testing and at a later time.
Despite the small cohort analyzed in this study, the results indicated that the proposed method is
able to identify metabolites associated with different malignancy grades of glioma, as well as IDH
and 1p19q codeletion mutations. A comparison of the constellation of identified metabolites and the
results of standard tests indicated the validity of using the characterization of one comprehensive
tumor phenotype as a reflection of all diagnostically meaningful information. Due to its simplicity,
the proposed analytical approach was verified as being compatible with a surgical environment and
applicable for large-scale studies.
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1. Introduction

Gliomas account for a significant portion of primary brain tumors, and they possess
an analogous histological structure to normal glial cells (i.e., ependymal, astrocytes, and
oligodendrocytes). There is a wide spectrum of malignancy in each group of gliomas.
Among the astrocytic group, glioblastoma multiforme is the most common malignant brain
tumor in humans and is characterized by short survival times due to its metabolic activity
and poor response to therapy. The transformation of a tumor from benign to malignant is
accelerated by genetic mutations that stimulate uncontrollable cell proliferation, transform
cell death programs, and alter cellular metabolism [1,2]. One of the most crucial aspects of
identifying an innovative therapeutic target or potential biomarkers is the discovery of a
tumor’s metabolic pathways [3,4]. Based on numerous studies of glioma cell lines, it was
proven that low levels of glucose oxidation in the mitochondrial citric acid cycle (CAC)
contribute to high rates of glycolysis and glutaminolysis in glioblastoma multiformes [5].
Currently, a typical medical intervention for malignant brain tumors will consist of tu-
mor resection (to the greatest degree possible) followed by temozolomide therapy with
radiation [6]. The first step in this process is critical, as the degree of the excision is the
most significant factor in determining the patient’s survival rate. Indeed, findings have
shown that patients who underwent total resection responded better to temozolomide
therapy compared to those who only received a partial resection [7]. Despite the range of
therapeutic procedures that can be deployed against malignant gliomas, their prognosis re-
mains unsatisfactory. The WHO guidelines for brain tumor classification published in 2016
affirm the indispensable role of genetic profiling in diagnosing and medicating gliomas.
The latest update from 2021 is related to the analysis of many molecular profiles [8]. In
particular, the statuses of isocitrate dehydrogenase 1 mutation (IDH1) and 1p19q codeletion
are two crucial indicators in determining the genetic profiles of gliomas [9]. The IDH1
mutant is associated with better prognoses for patient survival than the IDH1 wild-type
that is common to anaplastic astrocytoma and glioblastoma. As such, the determination
of the tumor’s genetic profile provides more predictive power compared to histological
diagnoses of high-grade astrocytomas [10,11]. However, in order to define a tumor’s phe-
notype according to the latest WHO recommendation, it is necessary to perform a series
of time-consuming tests. One of the most common classification methods used to analyze
tumors after surgery or biopsy consists of microscopic examination (i.e., histopathology)
followed by analysis of isocitrate dehydrogenase 1 mutation status (IDH1) and the presence
of 1p19q codeletion. However, this technique is not able to provide comprehensive insight
into the tumor’s entire biochemistry, which would enable molecular-level processes to be
distinguished from one another.

The ability to detect small molecules characteristic for gliomas during surgery or
biopsy would allow cancer phenotypes to be determined more quickly in individual
patients, which would effectively reduce analytical time and allow therapy to commence
immediately after tumor resection. The study of small molecules, known as metabolomics,
provides valuable information about the system under study, as it reflects all changes
occurring at the genome, transcriptome, and proteome level, as well as the environmental
factors that influence the system at these levels. Metabolomics is frequently employed to
identify potential biomarkers or reveal the underlying mechanisms of a disease’s pathology
using biofluids, cells, or tissue as a sample matrix. Therefore, metabolomics can be a
valuable tool for personalized medicine, as well as in screening for risk factors among
specific populations [12].

Sample preparation is the most crucial step in metabolomics analysis, especially when
working with biological samples. Tissue processing is more complex, and therefore time
consuming and labor intensive, than working with biofluids. Under traditional sample-
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preparation protocols, sample collection is immediately followed by metabolism quenching,
weighting, homogenization, (multi-)solvent extraction, evaporation, and reconstitution.
Given this extensive process, traditional sample-preparation methods are simply unsuit-
able for on-site sampling. Nowadays, there are numerous alternative diagnostic methods
providing the opportunity to minimize the time required for the results of histopathologi-
cal/genetic examination and assessing the boundary between a healthy and tumor tissue
during surgery. Many research groups are working on solutions in this area. So called
“intelligent knife” or “iKnife” developed by Prof. Takats’ group is a modification of surgical
scalpel routinely used in clinical practice. It enables surgeon to monitor in real time whether
the cut tissue is characterized as malignant, healthy or borderline based on the analysis of
the smoke that’s produced when heat cuts tissue. The technique was already tested for the
analysis of breast, ovarian, and cervical cancer [13–16]. Another technique widely tested
for its suitability to the intra-surgical assessment of given tissue is desorption electrospray
ionisation (DESI) coupled to mass spectrometry. It allows for molecular characterization
of the tissue and recognition of tumor margin [17,18]. DESI is not applicable for in vivo
use, so analysis is preceded by the removal of a piece of tissue with standard surgical tools,
e.g., combination of surgical forceps and CUSA (cavitron ultrasonic surgical aspirator). The
approach offers even three-dimensional images, but the overall time of the analysis (from
sampling to final image) cannot be considered as rapid testing. However, developments in
DESI systems clearly show a trend towards faster analysis [19]. Recently, a DESI-MS system
as well as extraction nanoelectrospray ionization were successfully tested for intraoperative
identification of IDH mutation status by measuring ion intensities of 2-hydroxyglutarate
(2-HG) from tumor cores [20–23]. There are also laser-based techniques, such as Spider
Mass or PIRL-MS, tested for their potential in the diagnosis of ovarian, skin cancer, sar-
coma, and medulloblastoma among others [24–26]. One of the least invasive intraoperative
methods is MasSpec Pen, which utilizes a drop of water for fast 1 s extraction (mixing with
tissue fluid followed by its aspiration to mass spectrometer). So far, the MasSpec Pen has
been used to analyze breast, thyroid, ovary, lung, and carcinoma cancer [27]. In the current
work, we propose the use of solid-phase microextraction (SPME), or chemical biopsy, for
the on-site sampling of human brain tumors in order to enable metabolomic phenotyp-
ing and the identification of discriminating metabolites among these tumors. The main
advantages of SPME are: (1) its simple sampling protocol, which does not require tissue
weighting or the use of solvents for analyte extraction, and (2) its lack of physical tissue
consumption, which enables all types of biological material to be used for routine analysis
(e.g., histological or genetic testing). The SPME device used in this research consists of a
microprobe coated with a specially designed biocompatible extraction phase that absorbs
the small molecules but prevents the adhesion of macromolecules or cells. The on-site
portion of the protocol consists of inserting the SPME probe into the resected tumor for a
set time period, followed by rinsing with water for a few seconds, and finally storing it in a
vial for transportation. The current work is a proof-of-concept study that demonstrates the
proposed strategy’s ability to identify a representative range of metabolites characterizing
brain tumor phenotypes. As such, it possesses tremendous potential for use in large-scale
screening studies and rapid on-site personalized analysis.

2. Materials and Methods
2.1. Chemicals and Materials

All solvents used for analysis (i.e., acetonitrile, methanol, water, formic acid, and
ammonium acetate) were LC-MS grade and purchased from Sigma Aldrich (Poznań,
Poland). The chromatographic experiments were performed using a Discovery HS F5
(100 x 2.1 mm, 3 µm) column, which was an in-kind gift from MilliporeSigma/Supelco
(Bellefonte, PA, USA), and an HILIC column (Luna HILIC 100 mm × 2.0 mm, 3 µm), which
was purchased from Phenomenex (Shimpol, Poland).
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2.2. Patients

All experiments were approved by the Bioethics Committees at the Collegium Medicum
in Bydgoszcz, Nicolaus Copernicus University in Torun (KB 628/2015), and informed con-
sent was obtained from all patients prior to participation. The patients underwent tumor
resection at the 10th Military Research Hospital in Bydgoszcz, Poland, between December
2016 and February 2017. In total, 38 brain tumor samples were collected (Table 1). The
inclusion criteria were as follows: age > 18, patients with glioma or meningioma, good
quality of life (Karnofsky Performace Status Scale > 70). Exclusion criteria: age < 18, inabil-
ity or unwillingness to participate in the study or to sign the informed consent form, tumor
size less than 1 cm in diameter, high internal burden increasing the risk of surgery. Each
sample underwent histological analysis, where it was categorized as either astrocytoma,
glioblastoma, ependymoma, or oligodendroglioma, followed by additional genetic testing
(Table 1).

Table 1. Characteristics of patients participated in the study.

Tumor Characteristics Number of Patients

Total number of patients 38
Sex

Male 15
Female 23

Tumor subtypes and grades (total number) 38
Meningiomas 18

Meningioma grade I 15
Atypical meningioma grade II 2

Anaplastic meningioma grade III 1
Diffuse astrocytic and oligodendroglial tumors 19

Diffuse astrocytoma, IDH mutant 7
Anaplastic astrocytoma, IDH mutant 2

Glioblastoma, IDH wildtype 9
Ependymal tumors 1

Anaplastic ependymoma 1
Other astrocytic tumors 1
Pilocytic Astrocytoma 1

Oligoastrocytoma 1p/19q-codeted 6
Glioblastoma 1p/19q-codeleted 1

2.3. Sample Preparation

The metabolomic analysis were performed independently from genetic and histolog-
ical testing and at later time. All procedures and experimental conditions were adopted
from Gorynska et al. [28]. The SPME probe was 4 cm long and consisted of a nickel-titanium
alloy support coated with 7 mm of mixed-mode extraction phase (i.e., C18 and benzoic
acid). As illustrated in Figure 1, the SPME protocol comprised four main steps: coating
pre-conditioning, extraction, rinsing and desorption. The fiber coating was preconditioned
statically in a 1.5 mL methanol:water (1:1, v:v) mixture for 1 h, while the extraction step
was performed at the hospital directly following the tumor resection. Just before sampling,
the fiber was immersed in water for 5 s to remove any remaining methanol, which could
lead to protein precipitation on the coating. Sampling was performed by inserting the
probe into the brain tumor for 30 min immediately following resection. After sampling
had been completed, the fiber was extracted and rinsed in 1.5 mL of water for 3 s with no
agitation, then immediately placed in a closed vial and transported back to the laboratory
in a Styrofoam box filled with frozen ice packs. Once back at the laboratory, the vials
containing the probes were stored in a freezer at −30 ◦C until analysis. On the day of
analysis, the probes were removed from the freezer and desorbed for 120 min at 25 ◦C in
0.3 mL of acetonitrile:water (4:1, v:v) with agitation at 1200 rpm on a BenchMixer™ Mul-
tiTube Vortexer (Benchmark Scientific, Edison, Sayreville, NJ, USA). To eliminate signals
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from compounds other than those derived from the tumor, blank extracts (i.e., controls) of
the solvents and environment were used, with the detected signals being excluded from
analysis in the data processing step.
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2.4. LC-MS/MS Analysis

Instrumental analysis was performed using an ultra-high-performance liquid chro-
matography system (UltiMate 3000, Thermo Fisher Scientific, Bremen, Germany) coupled to
a high-resolution mass spectrometer (Q Exactive Focus Orbitrap, Thermo Fisher Scientific,
Bremen, Germany). The analytes were separated using a reversed-phase pentafluorophenyl
(PFP) column (Discovery HS F5 100 × 2.1 mm, 3 µm, Supelco, Bellefonte, PA, USA) and a
hydrophilic interaction chromatography column (Luna HILIC 100 mm × 2.0 mm, 3 µm,
Phenomenex, Torrance, CA, USA). The gradients for both methods were adopted from [29].
All chromatographic conditions and MS parameters have been detailed in a previous
work [30].

To control the instrument’s performance during the analysis, quality control (QC)
samples were run every 8–10 injections. The QC samples were prepared by mixing 10µL
aliquots of each sample included in the analysis and injecting the samples randomly.
The instrument was calibrated using external calibration (Pierce™ LTQ ESI Positive Ion
Calibration Solution and Pierce™ Negative Ion Calibration Solution, Thermo Scientific,
San Jose, CA, USA), with calibration being performed every 48 h. This resulted in a mass
accuracy of <2 ppm.

2.5. Data Processing and Statistical Analysis

Data processing was conducted using the Compound Discoverer 2.1 software package
with the following filtering parameters: a lower RT limit of 1 for analysis using the PFP
and HILIC columns; upper RT limits of 34 and 18 for analysis with the PFP and HILIC
columns, respectively; a minimum QC coverage of 50%; a maximum QC area RSD of 30%;
a minimum peak intensity of 1,000,000; a minimum precursor mass of 100 Da; a maximum
precursor mass of 5000 Da; an S/N of 3; a minimum collision energy of 0; a maximum
collision energy of 1000; an S/N Threshold (gap filling) of 1.5; an RT tolerance of 0.1 min; a
maximum RT shift of 2 min; a mass tolerance of 5 ppm; and an intensity tolerance of 30%.
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The detected discriminant metabolites were identified based on fragmentation-pattern
matching using mzCloud software.

Two approaches were applied to obtain compounds or a panel of compounds responsi-
ble for discriminating between groups of patients with specific histological or genetic types
of tumor. The first approach employed L1-penalization for variable selection and the or-
thogonal partial least squares discriminant analysis (OPLS-DA) algorithm. All calculations
were conducted using PLS Toolbox (Eigenvector Research Inc., Manson, WA, USA) and
MatLab 2020b software (MathWorks, Natick, MA, USA). LASSO was applied to identify the
relevant in-dependent variables that significantly affect the classification/discrimination.
The variable coefficients (loadings) of the PLS components represent a measure of how
much a variable contributes to the discrimination of the different sample groups. Model
dimensionality, defined as the number of PLS factors (latent variables-LV), was estimated
as a compromise between cross-validation error, number of misclassifications (NMC), and
area under the receiver operating characteristic (AUROC).

The second method entailed the use of ANOVA and Tukey’s post hoc test, p-value
adjustment via the Benjamini–Hochberg method to minimize the false-discovery rate, and
group comparisons using ratio and fold-change values to select compounds demonstrating
major statistical significance in relation to the divisions between analyzed groups. De-
scriptive statistics accounted for the minimum, maximum, median, first quartile (Q1),
third quartile (Q3), mean, and standard deviation (SD) for the peak areas. As described
above, pre-processing and data acquisition were performed using Compound Discoverer
2.1 software, while Matlab was used for statistical data analysis.

3. Results
3.1. Sampling Procedure and Analysis

The proposed method was employed to sample all resected tumors, with no difficulties
being observed in relation to tissue penetration with the microprobe. After desorption,
the extracts were subjected to instrumental analysis. A comparison of the data obtained
from all combinations of chromatographic separations and ionization modes revealed that
the use of the reversed-phase column and positive ionization enabled the detection of the
highest number of small molecules (Figure 2, Tables S1 and S2), and thus the most efficient
differentiation between analyzed groups.
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Figure 2. Ion map of extracted metabolites defined by molecular weight and m/z, and Chemspider-
identified compounds from the PFP and HILIC column in positive and negative ionization mode
followed by LC–MS analysis.

3.2. Metabolomic Changes in Tissue Samples of Gliomas Compared to Meningiomas

The first step of the analysis aimed to determine whether the proposed strategy is
able to distinguish between two tumors of completely different histological origin, as well
as their degree of malignancy. For this purpose, gliomas and meningiomas (MEN) were
chosen. In addition, the glioma group consisted of high- and low-grade-malignancy (HGG
and LGG, respectively) tumors. As noted earlier, gliomas are highly malignant tumors
that arise from glia cells; in contrast, meningiomas are benign tumors that form from
meninges. Therefore, the separation between these groups needs to be significant, despite
intra-group variability. This study employed two statistical methods of variable selection:
one consisting of filter techniques that act on the intrinsic properties of the data itself,
while ignoring the subsequently used classification or prediction algorithm (ANOVA);
and another consisting of embedded techniques, wherein variable selection is built into
the prediction algorithm (LASSO) [31]. Both approaches yielded satisfactory results, with
the LASSO method successfully identifying a set of compounds that drive the separation
between the selected groups of tumors (Figure 3A,B). Validation details relating to the
models are presented in Tables S3 and S4. Among others, statistically significant changes
of 17 molecules and several endogenous compounds previously reported in the literature
(i.e., lysine, aspartic acid, creatine, and citrulline) were identified (Table S5).

ANOVA tests were able to identify 43 metabolites, several of which having been pre-
viously described in the literature (e.g., cystathionine, aspartic acid, arginine, and lysine);
these results indicated that the ANOVA-based approach had high statistical significance
in differentiation meningiomas (MEN) and gliomas (LGG and HGG) (Table S6). Whereas
patients with glioma tumors exhibited significantly increased levels of cystathionine
(p-value = 0.0065), patients with meningiomas had higher levels of other amino acids,
such as aspartic acid, lysine, and arginine. The tracking values of statistical significance
included: p-values calculated based on T-test; corrected p-values considering the false
discovery rate as determined by Benjamini–Hochberg test; and the ratio of the area of
a given peak in the glioma sample group to the corresponding peak area in the menin-
gioma group. The identities of the compounds detected in both analyses were confirmed
based on the comparison of the fragmentation patterns in the experimental spectra and
MzCloud database.
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3.3. Metabolomic Differences of Glioma Samples of Various Histological Types

In the next step, the analysis examined only on the glioma samples, with satisfactory
results being obtained for the differentiation of the LGG and HGG groups (Figure 4A–D).
The results obtained with LASSO indicated that separation was driven by statistically
significant changes of 16 molecules, with L-2-aminoadipic acid exhibiting the highest
HGG/LGG ratio (>15) (Table S7). Other confirmed metabolites present at lower levels in
low malignancy gliomas included aminolevulinic acid and threonine, while creatinine was
present in higher levels in LGG compared to HGG. Tentatively identified lipid metabolites
indicated the potential involvement of vitamin D3 derivatives and carnitines in cancer
malignancy processes. However, it must be emphasized that none of the aforementioned
compounds were found to be statistically significant following the application of FDR
correction. This could be a result of the small size of the groups included in the studies and
high inter-group variability and it will be verified in future extended investigations.
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A comparative analysis of HGG and LGG patients using ANOVA indicated the pres-
ence of 13 compounds with high statistical significance (Figure 5A,B, Table S8). Ultimately,
propionylcarnitine proved to be the best indicator for comparing these two tumor groups
based on the [HGG]/[LGG] ratio (14.36) and a p-value of < 0.001. However, the corrected
p-value did not meet the significance criteria for this or any of the other metabolites initially
identified as discriminant features, namely phenylalanine, proline, tyrosine, uric acid, and
2-aminoadipic acid (the latter was also selected by LASSO).
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A group of 19 glioma samples was used to conduct a comparative study of mutated
and wild-type IDH. Genetic testing was performed in accordance with the 2016 World
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Health Organization Classification of Tumors of the Central Nervous System. The charac-
teristics of the tumors collected for this analysis are summarized in Table 1.

A panel of 12 compounds differentiating cancer samples with confirmed or denied
IDH mutation was selected using the LASSO method. This panel of compounds included
creatinine, threonine, carnitine, and neurine (Table S9). Notably, it was not possible to
identify six of the detected compounds, as they were not present in any of the data bases.
Figure 6 shows OPLS-DA and PCA plots representing the separation of the investigated
groups, while a comparison of the masses selected by LASSO with the use of HILIC and
PFP columns is presented in Table S10. Furthermore, the validation parameters of mod-
els describing patients with codeletion 1p19q are presented in Table S11 and Figure S1.
Pathway analysis based on statistically significant changes of metabolic features was also
performed, with results indicating that the most important metabolic pathways for the
presence of the IDH mutation included phenylalanine, tyrosine, and tryptophan biosynthe-
sis; phenylalanine biosynthesis; arginine and proline metabolism; lysine degradation; and
alanine, aspartate, and glutamate metabolism (Figure 6C).
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While an ANOVA detected many metabolites with satisfactory [IDH]/[no-IDH] ratios
and p-values < 0.01 or 0.05 (Table S12), none of these metabolites’ p-values were statistically
significant after correction. Notably, two compounds were present in IDH mutants at
levels > 10 times higher than in the IDH wild-type: 2-aminoadipic acid (ratio: 17) and
propionylcarnitine (ratio: 11) (Figure 7A,B, respectively).
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3.5. Metabolomic Changes in Tissue Samples with and without 1p19q Codeletion

A comparison of patients with and without 1p19q codeletion was also performed.
Calculations using LASSO resulted in the identification of 13 compounds (Table S13) sepa-
rating the two cohorts (Figure 8A,B). In particular, two metabolic pathways were found
to have the greatest impact in determining the presence of 1p19q codeletion: nicotinate
and nicotinamide metabolism; cysteine and methionine metabolism (Figure 8C). Further-
more, six compounds, namely threonine, neurine, nicotinamide, oxidized glutathione,
and the vitamin D3 derivatives 7alpha-Hydroxy-3-oxo-4-cholestenoate and monoglyc-
eride, showed greater downregulation in mutants compared to the wild-type. Conversely,
up-regulation was observed for sn-glycero-3-Phosphoethanolamine and glycerylphospho-
rylethanolamine, as well as for one unidentified compound with a molecular weight of
163.1207. A comparison of masses of the compounds selected by LASSO using HILIC
and PFP columns is presented in Table S14, while the validation parameters of the models
describing patients with codeletion 1p19q are presented in Table S15 and Figure S2.
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An ANOVA indicated eight compounds (Table S16), but only one (cystathionine)
was identifiable based on its fragmentation spectra with p-value < 0.05 and a [no codele-
tion/codeletion] ratio of 0.223. The corrected p-value was 0.16 (Figure 9).
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4. Discussion

Routine procedures performed on resected brain tumors rarely include extensive bio-
chemical tissue analysis. However, in recent years, many molecular and genetic biomarkers
have been identified as noninvasive factors in the diagnosis of gliomas, including gluta-
mate [32], ATIA [33], cathepsin D [34], GADD45 [35], YKL40 [36], Ki67 [37], MIP-1 [38],
and CDKN2A [39]. In particular, isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) mu-
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tation [40,41] and 1p/19q codeletion [42] have been recognized as promising predictive
molecular markers, resulting in their inclusion in the 2016 World Health Organization
(WHO) classification of gliomas [9]. However, none of these biomarkers enable a compre-
hensive phenotype assessment that accounts for the tumor’s histological properties, as well
as associated genetic mutations.

Although previous metabolomics/lipidomics studies have sought to discover biomark-
ers in brain cancers, particularly gliomas, these studies primarily focused on phenotyping
particular mutants (e.g., IDH vs. wild-type) and did not cross-verify potential biomarkers
against these phenotypes (e.g., 1p19q codeletion or malignancy).

The main purpose of the initial analysis was to determine whether coupling the
proposed sample-preparation method with high-performance analytical instrumentation
would enable the differentiation of various histological types of brain tumors without
requiring standard sample pretreatment protocols (i.e., weighting and homogenizing),
which are typically performed in the laboratory, thus precluding on-site sampling, sample
preparation, and extraction. The main hypothesis of the current study is that SPME is a
simple sampling and extraction method that can be used for on-site brain tumor analysis.
If this hypothesis is confirmed, future research can test the viability of this approach as
an intraoperative tool for the diagnostic analysis of human brain tumors when coupled
to on-site instrumentation. For now, however, the SPME fibers were used to sample the
tumors in the hospital just after resection, with instrumental analysis being completed in a
laboratory at a later date.

The present study aimed to determine whether metabolic phenotyping—and thus the
analysis of biomarkers in the future—can be performed on fresh, intact tumor tissue using a
simple on-site extraction method, and how the resultant data correlates with current reports
on gliomas. Therefore, before beginning an in-depth investigation of glioma phenotypes,
preliminary experiments were conducted to compare the metabolomes of gliomas and
meningiomas, which are brain tumors of different origin, in order to verify the proposed
sampling method’s suitability for the designed studies. The results of the supervised
and unsupervised models showed the proposed sampling method achieved satisfactory
separation of the studied groups and good validation, thus providing a proof-of-concept
that optimized SPME-LC-HRMS protocols can be applied for metabolomic studies of brain
tumors (Figure 3, Table S7). Although the identification of biomarkers differentiating menin-
giomas and gliomas is not meaningful from a diagnostics point of view, the discriminant
metabolites identified via multi- and univariate analyses were nevertheless compared. As
the two statistical approaches gave different results, both methods were used for further
analysis. The findings of the univariate analyses indicated that aspartic acid and lysine are
more down-regulated in gliomas compared to meningiomas, while the LASSO evaluations
revealed that several molecules are up-regulated in gliomas, including glycerylphospho-
rylcholine (p < 0.0005), creatine (p < 0.0005), and citruline (p < 0.005) (Table S9). Notably,
an ANOVA found that cystathionine had the highest [HGG+LGG/MEN] ratio (156.75)
(Table S14).

With the preliminary test completed, an analysis focusing exclusively on gliomas was
conducted. In this study, the obtained samples were profiled with respect to their genetic
and histological features, as this approach demonstrated that some metabolites could
appear in profiles reflecting two different features, e.g., a given mutation and malignancy
grade. This was the case for both aminolevulinic acid (Tables S10 and S11) and amionoadipic
acid (Tables S12 and S13). This approach was employed for both statistical methods used in
this analysis, namely multivariate analysis (i.e., PCA and LASSO-OPLS-DA) and univariate
analysis (i.e., ANOVA). Notably, the metabolites selected via LASSO to construct the
OPLS-DA model differed from those deemed to have statistical significance in the ANOVA
analysis. Contrary to ANOVA, the metabolites in the chemometric models may not be
significant individually, but their corporate constellation nevertheless enables a given
sample to be assigned to the appropriate group. In their review, Saccenti et al. compared
the usefulness of uni- and multivariate analyses in metabolomics studies and discussed the
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advantages and disadvantages of each approach [43]. Based on the examples they examined,
they concluded that the two types of methods are useful, as they provide various types of
information and complementary biomarkers; therefore, the coupling of these strategies was
highly advised. While the use of single biomarkers is more common in medical diagnostics,
there are other analytical strategies that provide rapid sample identification based on
molecular (spectral) matching with stored databases and built models (i.e., iKnife) [15].
This proves that the identification of individual compounds may not be critical, and that
samples can be successfully assigned based on a comparison of their entire profiles with
a given built model. The above-noted univariate and multivariate approaches were also
employed to identify compounds of statistical significance with respect to the differentiation
of the metabolic profiles of high- and low-grade gliomas, gliomas with and without IDH
mutations, and gliomas with and without 1p19q codeletion. Moreover, pathway analysis
was also conducted to identify metabolites related to metabolic networks, as this can
provide greater insight into changes that occur in the underlying biochemistry of patients
with gliomas. The pathway analysis was based on significantly important metabolic
features from all analyzed cohorts of patients with brain tumors, which were determined
using data from a PFP column in positive ionization mode (Figures 6C and 8C). The results
revealed that carnitine and L-2-aminoadipic acid were the compounds most associated with
lysine degradation, while creatine and proline were the two metabolites most associated
with arginine and proline metabolism (Figure 6C). The most important metabolic pathways
indicating the presence of 1p19q codeletion were nicotinate and nicotinamide metabolism
(associated with nicotinamide) and cysteine and methionine metabolism (related with
cystathionine) (Figure 8C).

The findings of an ANOVA test also revealed that cystathionine, which was previ-
ously mentioned as a discriminant for gliomas and meningiomas, was also up-regulated in
patients with codeletion of 1p19q (p < 0.05; [no-deletion/deletion] ratio: 0.22) (Table S15).
In addition, a comparison of patients with high-grade and low-grade gliomas via LASSO
(Table S10) and ANOVA (Table S12) identified 2-aminoadipic acid (2-AAD) (p < 0.05;
[HGG/LGG] ratio 15.89) as a highly significant metabolite differentiating the two groups
(p < 0.05; [HGG/LGG] ratio 11.33). Furthermore, up-regulated 2-AAD was also present in
patients without IDH mutation (p < 0.005; [no-IDH/IDH] ratio 16.97). Although 2-AAD is
present in the human brain [44] and cerebrospinal fluid (CSF) at low levels [45,46], findings
have shown that it is present at significantly higher levels in glioma patients [41]. Further-
more, 2-AAD has been proven to be a glio- and neurotoxin, with some studies showing
that it manifests its preferential toxicity towards astrocytes [47]. Notably, 2-AAD has been
identified as a potential biomarker of cancer [46], and it has recently been detected by
mass spectrometry in glioma tissues following surgery. These findings revealed an inverse
relationship between patient survival and the signal intensity of 2-AAD in glioblastoma
multiforme cells with stem-like properties, suggesting that 2-AAD may be able to play a
key role in the prognosis of GBM tumors [47].

Similarly, propionylcarnitine levels were found to be highly significant in differenti-
ating between patients with high- and low-grade grade gliomas (p < 0.001; [HGG/LGG]
ratio: 14, 36) (Table S12) as well as between those with and without IDH mutations (p < 0.01;
[no-IDH/IDH] ratio 11.05) (Table S13). These results are in agreement with previous reports
showing that patients with the IDH 1 mutation are less able to produce α-ketoglutarate
(α-KG, oxoglutaric acid) and NADPH, thus inhibiting fatty acid oxidation [48]. Mutations
in IDH1 and IDH2 result in the conversion of 2-oxoglutarate to D-2-hydroxyglutarate.
Consequently, high levels of D-2-hydroxyglutarate (D-2-HG) inhibit γ-butyrobetaine 1
hydroxylase, which is the last enzymatic step in carnitine biosynthesis [49]. Carnitine
facilitates the transportation of fatty acids into the mitochondria, where its acyl deriva-
tives are formed via an esterification process during the β-oxidation of fatty acids. The
amount of carnitine derivatives, including propionylcarnitine, is lower in IDH1 and IDH2
mutants [50,51], which can contribute to increased fatty acid synthesis, decreased oxida-
tion of certain fatty acids, and accelerated proliferation of cancer cells and tumor growth.
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Significantly, the proposed protocol was unable to detect α-ketoglutarate, 2-oxoglutarate,
and D-2-hydroxyglutarate, which indicates the need for further optimization to ensure
that it is able to detect these and other undetected diagnostically important compounds
in future analyses. Nonetheless, the proposed protocol was able to identify the alanine,
aspartate, glutamine pathway, which includes 2-oxoglutarate, as one of the most important
metabolic pathways influencing the occurrence of IDH mutations. Therefore, while the
proposed method did not directly indicate the presence of 2-oxoglutarate, it was able to
identify gamma-aminobutyric acid, which is one of the elements in the above-described
pathway (Figure 6C). Moreover, recent work in which SPME-LC-MS was applied to pro-
file carnitine and 22 acylcarnitines in gliomas as a part of global lipidomic phenotyping
found characteristic relations between short- and long-chain carnitine esters and tumor
malignancy and mutations [52]. This finding also indicates that the application of various
SPME protocols can enable the acquisition of a wide range of metabolites with different
physical-chemical properties, and that the use of this method for future targeted analyses
simply relies on the proper optimization of the coating chemistry and desorption mixture.

As mentioned above, IDH mutations, which are specific to astrocytomas and oligo-
dendrogliomas, are characterized by the accumulation of 2-hydroxyglutarate in tumor
cells [53,54], while 1p/19q codeletion is observed only on the oligodendroglial histologic
subtype and is highly associated with cystathionine levels due to the higher expression of
cystathionine-b-synthase (CBS) [55]. It has been proven that higher expression of CBS is
associated with better prognoses in IDH-mutated 1p/19q-codeleted gliomas [56]. In the
present study, the univariate analysis indicated that the concentration of cystathionine was
almost five times higher in codeleted gliomas compared to the wild-type. This is consistent
with Branzoli et al.’s findings, which showed the selective accumulation of cystathionine in
codeleted gliomas in brain tissue samples in vivo, and selective vulnerability of codeleted
gliomas to serine and glutathione depletion [57].

Global metabolomics provides a unique opportunity to characterize the entire phe-
notype of a given tissue. However, most analyses of gliomas focus on a specific variable
as a diagnostic reference (i.e., histological type or the presence of IDH mutation) or on
identifying potential biomarker(s). As a result, these studies do not account for other
variables that are components of the sample’s phenotype. In the current study, the genetic
tests conducted in the hospital laboratory were performed in sets targeting a few different
mutations, independently of the tumor’s histological type. For instance, codeletion 1p19q,
which is characteristic of oligodendrogliomas, was also determined in samples collected
from patients with astrocytomas. The results showed that certain features, presented as
significant metabolites, are dominant in the characteristics of gliomas and appear as differ-
entiators of both IDH/no-IDH, deletion/no-deletion, and low-/high-grade-malignancy
(e.g., threonine) mutants. This result is due to the coexistence of various analyzed features
of gliomas in the same sample (i.e., different mutations and specific histological type). Tak-
ing the above into account—as well as the fact that, in current clinical practice, therapeutic
strategy is based on the analysis of all accessible biomarkers (i.e., histological and genetic)—
the best approach for future metabolomics research aiming to identify molecular diagnostic
biomarkers of gliomas would be to characterize phenotypes containing information about
all clinically important features, rather than focusing on biomarkers corresponding to
individual mutations. The characterization of these phenotypes could prove invaluable
to doctors, as it could allow them to develop and propose more personalized treatment
strategy for patients. However, the cohorts used in such studies must be sufficiently large
to provide statistically significant and reliable results.

The main limitation of this study was the small cohort that was used. Despite this
limitation, we were able to verify SPME’s potential as a simple on-site sampling and extrac-
tion method for use in metabolomics workflows, which was the primary goal of this work.
The short sampling/extraction times enabled by SPME eliminate sample preparation as a
bottleneck in tumor tissue analytical protocols aimed at the extraction of a representative
set of metabolites instead of the widest possible coverage of analytes. Another significant
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limitation of this work was the inability to identify some compounds considered essential
from the point of view of glioma biochemistry point (e.g., 2-KG) or neoplasms in gen-
eral (e.g., NADPH/NADH, GSH/GSSG). As mentioned before, this limitation should be
addressed in future work by optimizing the protocol for target compounds.

The studies presented herein aimed to prove the applicability of SPME to profile brain
tumors with respect to its diagnostic potential. However, the overall analysis time for
the presented untargeted analysis does not meet expectations for intra-surgical protocol.
Therefore, it needs to be emphasized that there are ongoing parallel studies complementing
the investigations on device/protocol modifications and instrumental analysis following
on-site sampling to provide the medical practitioners with ready-to-use solution for rapid
determination of target biomarkers. In recent work, a device which on one hand enables to
shorten the extraction process to 4 min and to perform extraction from two brain locations
simultaneously on the other was presented [58]. This strategy is intended to be used
eventually for the analysis of brain tumors and healthy brain tissue in the given patient at
the same time. Moreover, an approach using regular SPME probe without implementing
any modification to the device itself was used for the assessment of kidney graft quality
during transplantation with only 10 min extraction time [59] and for the determination of
the concentration of doxorubicin in pig and human lungs in vivo along with untargeted
metabolomic profiling of the lung tissue with a 20 min extraction time [60]. The examples
above show that modifications to the protocol related to the time of extraction are possible
and have already been tested on different applications. With regard to instrumental
analysis, there are many options for the direct coupling of the SPME probe with analytical
instrumentation, particularly mass spectrometers [61]. A strategy which seems to be
specifically suitable for this purpose is the microfluidic open interface, presented lately for
the fast monitoring of drugs [62–64].

5. Conclusions

This study provides evidence supporting solid-phase microextraction’s viability as
a fast and simple tool for extracting representative metabolites from intact tumor tissue
directly in the operating room. However, this method could be improved for future
applications by modifying the protocol to complement the range of detected metabolites
with other compounds of diagnostic relevance. A comparison of the obtained metabolic
phenotyping with routinely used tests indicated that a large-scale study might enable the
description of phenotypes containing information about genetic and histological factors in
addition to other features of diagnostic value.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers14020312/s1, Figure S1: PLS-DA scores plots presenting differences between groups
of patients with and without IDH mutations. Patients with IDH mutations—blue circles; patients
without IDH mutations—green squares. Analyses were performed on an HILIC column in negative
ionization mode (Model 5), an HILIC column in positive ionization mode (Model 6), and a PFP
column in negative ionization mode (Model 7). Figure S2: PLS-DA score plots showing differences
between groups of patients with and without codeletion 1p19q. Patients with codeletion—blue
circles; patients without codeletion—green squares. Analyses were performed on an HILIC column
in negative ionization mode (Model 8); an HILIC column in positive ionization mode (Model 9);
and a PFP column in negative ionization mode (Model 10). Table S1: Comparison of the num-
ber of features, annotated compounds, and identified metabolites in patients with brain tumors
using PFP and HILIC columns in positive and negative ionization modes. Table S2: Compounds
identified in patients with brain tumors using Chem Spider database. Data for PFP column, ESI+.
Table S3: Statistical performance of PLS-DA model for meningioma and glioma. Data for PFP col-
umn in positive ionization mode. Table S4: Statistical performance of OPLS-DA model for patients
with/without IDH, with/without codeletion 1p19q, and high- and low-grade gliomas. Data for
PFP column in ESI+. OPLS-DA models. Table S5: Panel of compounds representing differences
between gliomas and meningiomas selected by LASSO using a PFP column in positive ionization
mode. Table S6: Compounds differentiating gliomas and meningiomas based on ANOVA using PFP
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column in positive ionization mode. Table S7: Panel of compounds representing differences between
high-grade- (stage III and IV) and low-grade-malignancy gliomas (stage I and II) selected by LASSO
using a PFP column in positive ionization mode. Table S8: Compounds differentiating high-grade-
and low-grade-malignancy gliomas based on ANOVA using a PFP column in positive ionization
mode. Table S9: Panel of compounds representing differences between patient with and without
isocitrate dehydrogenase mutations selected by LASSO using a PFP column in positive ionization
mode. Table S10: Comparison of masses selected by lasso in the analysis of patients with/without
IDH using different columns and ionization modes. Table S11: Statistical performance of PLS-DA
model for patients with and without IDH mutation. Data for PFP column acquired in ESI- mode; data
for HILIC column acquired in ESI+ and ESI- modes. Table S12: Compounds differentiating patients
with and without isocitrate dehydrogenase mutations based on ANOVA using a PFP column in
positive ionization mode. Table S13: Panel of compounds representing differences between patients
with and without 1p19q codeletion selected via the LASSO method using a PFP column in positive
ionization mode. Table S14: Comparison of masses selected via LASSO for the analysis of patients
with/without codeletion using different columns and ionization modes. Table S15: Statistical perfor-
mance of PLS-DA for patients with and without 1p19q codeletion. Data for PFP column acquired
in ESI- mode; data for HILIC column acquired in ESI+ and ESI- mode. Table S16: Compounds
differentiating patients with and without 1p19q codeletion selected via ANOVA using a PFP column
in positive ionization mode.
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28. Goryńska, P.Z.; Chmara, K.; Goryński, K.; Paczkowski, D.; Harat, M.; Bojko, B. A New Strategy for Brain Tumour Metabolomic
Analysis. Med. Res. J. 2018, 3, 15–22. [CrossRef]

29. Vuckovic, D.; Pawliszyn, J. Systematic Evaluation of Solid-Phase Microextraction Coatings for Untargeted Metabolomic Profiling
of Biological Fluids by Liquid Chromatography−Mass Spectrometry. Anal. Chem. 2011, 83, 1944–1954. [CrossRef]
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