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Simple Summary: Here, we discuss the invasiveness of cancer cells in relation to APRO family
proteins on the basis of understanding the function of matrix metalloproteinases (MMPs) and/or exo-
somes. Although APRO family proteins could regulate cancer invasiveness, alternative consequences
might occur due to the distinctive effects of MMPs and/or exosomes containing certain microRNAs.
Such knowledge could be of use to bring about novel strategies for cancer therapy.

Abstract: The APRO family members may be involved in the regulation of cell growth, migration,
and/or invasion. Although an APRO protein could suppress the invasiveness of several cancer
cells, it has been reported that overexpression of the same APRO protein could also promote the
invasiveness and/or metastasis of the same cancer cells. In general, the invasiveness of cancer cells
might be associated with the function of matrix metalloproteinases (MMPs) as well as with the
function of certain exosomes. However, it has been shown that exosomes involving particular APRO
proteins, MMPs, and/or microRNA could contribute to the regulation of invasiveness. Here, we
discuss contradictory reports on invasiveness in relation to APRO family proteins on the basis of
understanding the function of MMPs and/or various exosomes. A better understanding of those
mechanisms could be of use to bring about innovative strategies for cancer treatment.

Keywords: APRO protein; microRNA; matrix metalloproteinase; tissue inhibitors of metalloproteinase;
exosome

1. Introduction

The APRO family is composed of at least six distinct members in vertebrates, namely,
Tob1, Tob2, BTG1, BTG2/TIS21/PC3, ANA/Tob5/BTG3, and PC3b [1]. The main char-
acteristic of this family is the presence of a highly conserved, 110-amino-acid N-terminal
region, designated as the APRO homology domain [1], which holds two highly homol-
ogous regions, designated Box-A and Box-B [1,2]. Box-A has been suggested to play an
antiproliferative role [2]. All the APRO family members may be involved in the regulation
of cell proliferation, and actually, have the potential to regulate tumor cell growth [1,3].
Tob1 was isolated as a protein associating with the ErbB2 receptor protein [3]. Subsequently,
Tob2 was isolated on the basis of its similarity to Tob1 [4]. Other family members had been
identified using several different strategies [5]. A significant association has been identified
between the expression level of Tob1 and clinicopathological characteristics, including
the depth of invasion and/or the lymph node metastasis stage [6]. The downregulated
expression of Tob1 has been found in malignant gastric cancer, suggesting that the low
expression of Tob1 may be an independent indicator of poor prognosis in gastric cancers [7].
Similarly, the downregulation of Tob1 may be associated with the shorter survival of gastric
cancer patients [8]. Consistently, Tob1 overexpression could not only increase the expres-
sion of PTEN, but also regulate the downstream effectors in the PI3K/PTEN signaling
pathway, leading to the suppression of cancer cell proliferation [9]. In addition, significant
prognostic effects of the whole APRO family have been found in lung adenocarcinoma

Cancers 2022, 14, 4931. https://doi.org/10.3390/cancers14194931 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14194931
https://doi.org/10.3390/cancers14194931
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4274-5345
https://doi.org/10.3390/cancers14194931
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14194931?type=check_update&version=2


Cancers 2022, 14, 4931 2 of 12

and ovarian, colorectal, and brain cancers, but not in squamous-cell lung carcinoma [10].
Thus, accumulating evidence has shown that APRO family proteins may function as a
tumor suppressor.

However, it has been also reported that Tob1 expression may be upregulated during
the progression of colon cancer, which is significantly correlated with tumor size and a
prognostic indicator, such as survival rate in colon cancer [11]. In addition, Tob1 deficiency
appears to lead to the reduced tumorigenesis in DSS-treated cancer, suggesting that Tob1 is
an adverse prognostic factor [11]. Consistently, the downregulation of Tob1 is associated
with the shorter survival of gastric cancer patients [8,12]. The suppression of Tob1 could
enhance the metastasis in lung carcinoma cell line A549 cells [9,13]. To summarize the
above, although Tob1 could suppress the proliferation and/or carcinogenesis in a cell, Tob1
overexpression could also promote the invasiveness and/or metastasis of several cancers.
The invasiveness and metastasis of tumors are associated with matrix metalloproteinases
(MMPs) [14,15]. In addition, invasiveness, metastasis, and concomitant poor prognosis may
be also involved in the function of certain exosomes [16,17]. Here, we discuss contradictory
reports on the invasiveness of cancer cells in relation to the actions of Tob1, a member of
the APRO family, on the basis of understanding the function of MMPs and/or exosomes.
We wish we could combine MMPs and exosomes in the context of APRO regulation for
the invasiveness of cancer cells. A better understanding of these mechanisms might be
used to design more efficient cancer therapies [18]. Such knowledge could also be of use to
engineer novel strategies for cancer treatment.

2. Exosomes with APRO Proteins and/or Certain MicroRNAs May Contribute to
Cancer Invasion

Exosomes are a class of extracellular membrane vesicles with a circular lipid bilayer
ranging in diameter from about 30 to 150 nm [19], which are capable of mediating invasion
and/or metastasis by transferring their contents, including proteins, lipids, and nucleic
acids, to adjacent cells [20]. Exosomes are broadly distributed in blood cells, dendritic
cells, tumor cells, and other cells [21], which can be used for diagnosis and/or progno-
sis within cancer patients [22]. Molecular machineries of prevailing biogenesis, cargo
loading, and/or delivery of exosomes may be intricate and are still under investigation.
Exosomes secreted from gastric cancer cells overexpressing Tob1 could induce autophagy of
LC3-II accumulation in the gastric cancer cells [23], which may influence the proliferation,
migration, and invasion of cancer cells [24]. It has been shown that exosomes containing
the BTG1 protein are present in the pleural fluid obtained from patients suffering from
mesothelioma, lung cancer, breast cancer, and ovarian cancer [25]. The BTG1 protein has
been also identified in plasma exosomes. In addition, the plasma-exosome-derived BTG-1
levels have been related to tumor diameter, stage, tumor metastasis, the degree of tumor
differentiation, and abnormal CEA levels, in accordance with previous findings of BTG-1
expression in other cancers [25]. Furthermore, a low number of plasma exosomes with
low levels of BTG-1 have been observed in the poor differentiation group, suggesting that
plasma-exosome-derived BTG-1 might be a potential biomarker for a prognosis in patients
with non-small-cell lung cancer [25].

Noncoding RNAs in exosomes from a variety of cells have been shown to influence
metastasis via various mechanisms [26]. In particular, the microRNAs (miRNAs) com-
monly detected in exosomes are single-strand, non-encoding RNAs with the length of about
20 nucleotides, which are usually found in eukaryotic organisms [27]. The miRNAs can af-
fect the stability and/or translational efficacy of their target mRNAs, consequently resulting
in decreased protein translation [28]. More than 1000 miRNAs have been shown to regulate
a lot of biological processes including proliferation, migration, and/or differentiation in
cells [29]. Interestingly, miR590 in the exosome exerts its effects through targeting Tob1 [30].
miR32 might regulate the invasion of cancer stem cells, as it is upregulated in colorectal
cancer tissues compared to the adjacent normal tissues [31,32]. An exosome containing
miR-135a-5p could activate MMP-7 to promote liver metastasis in colorectal cancer [33]
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(Figure 1). Exosomal miR-4443 may also promote the metastasis of breast cancer cells
through downregulating tissue inhibitors of metalloproteinase 2 (TIMP2) and upregulating
several MMPs [34]. For enhanced migration, exosomal miR-21 may influence MMP-9 and
TIMP-2 through the PI3K/AKT signal pathway, but not MMP-2 and TIMP-1 [35]. TIMP3
might be targeted by macrophage-derived exosomal miR-21-5p [36]. MMP-2 expression
might negatively correlate with miR-29c expression in urinary exosomes [37]. These find-
ings are indicative of the potential of miRNAs and/or exosomes as therapeutic markers in
various cancers.
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Figure 1. Hypothetical schematic image of the relationship among the APRO proteins (APROs),
exosomes, immune cells, immune check point PD-L1 on stromal fibroblasts, and the cancer cells’
invasion/metastasis. Indicated molecules are examples. Arrowhead means stimulation, whereas
hammerhead represents inhibition. Note that some critical pathways such as inflammation activation
and/or cancer cell growth pathway have been omitted for clarity. Abbreviations: APROs—APRO
family proteins; miRNAs—microRNAs; MMPs—matrix metalloproteinases; PD-L1—programmed
cell-death ligand 1.

3. MMPs and TIMPs Could Be Also Involved in Cancer Invasion and Metastasis

MMPs are key players in matrix remodeling. Their function has been principally
investigated in cancer biology; they are involved in different steps of cancer development,
from local expansion by the proliferation of cancer cells to tissue invasion and/or metas-
tasis through extracellular matrix degradation [38]. MMPs could promote cell migration
and tumor invasion through the proteolytic degradation of the extracellular basement.
MMPs are synthesized as pre-proMMPs, from which the signal peptide is removed during
translation to produce mature proMMPs. MMP expression can be also affected by several
hormones, growth factors, and/or cytokines [39]. A higher expression of MMPs has been
revealed as a potential marker of higher invasiveness and/or worse prognosis in patients
with various cancers. For example, ovarian hormones could affect the expression of sev-
eral MMPs, which might participate in endometrial tissue remodeling during menstrual
cycles [40]. Additionally, increases in estrogen and/or progesterone, as well as vascular en-
dothelial growth factor (VEGF), during pregnancy could promote the expression of several
MMPs, which might also facilitate the tissue invasion of cytotrophoblasts [41]. Exosomes
from vascular smooth muscle cells (VSMCs) may be burdened with the MMP-2 protein
and specific miRNAs for controlling cell adhesion and/or migration [42]. Furthermore,
macrophage-derived exosomes could trigger the expression of MMP-2 in the VSMCs via
JNK and p38 pathways [43]. Interestingly, the Box-A domain in the Tob1 protein may have
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protease activity, which activates the MMP-7 [44]. It has been discovered that MMPs exist
in exosomes from various cell types and/or some body fluids [45].

The activity of MMPs could be regulated by endogenous tissue inhibitors of matrix
metalloproteinases (TIMPs). In general, MMPs are regulated at multiple levels, includ-
ing in mRNA expression, the activation of the proenzyme to the active form, and the
counteracting actions of these TIMPs, which are specific for each MMP type. There are
four homologous members in the TIMP family with a similar structure [46], which could
also regulate remodeling and turnover of the extracellular matrix (ECM) during normal
and/or pathological conditions [47]. The N-terminal domain of each TIMP protein holds
the inhibitory activity for the wasting potential of the MMPs [48]. The role of TIMPs in the
ECM turnover could be defined as the potential inhibition of MMPs with various efficacies.
Increased MMP activity and/or decreased TIMP expression could lead to MMP/TIMP
imbalance, which might result in various pathological conditions including cancer invasion
and/or metastasis. For example, TIMP-1 has been shown to interact with several MMPs
and the matrix-degrading properties of the MMPs, which could play a fundamental role
in the spread of cancer [49]. In addition to the MMP-inhibitory function, TIMP-1 could
also stimulate cell growth [50], and it exhibits antiapoptotic activity [51]. It has been
reported that exosome-bound TIMP1 may be a circulating biomarker for a noninvasive
risk stratification in patients with colorectal liver metastases [52]. In addition, it may be
extremely possible to diagnose cancers by precisely analyzing the expression of TIMP-1 in
exosomes [53].

4. Activated MMPs and/or Certain MicroRNAs in Exosomes Could Contribute to the
Enhanced Migration, Invasion, and/or Metastasis of Cancer Cells

In general, various MMPs are upregulated in various cancers and inflamed regions.
Cancer progression could be a complex process, during which numerous cells, including
malignant cells, inflammatory cells, and/or surrounding stromal cells, might communicate
with each other in the microenvironment. MMPs may be involved in the remodeling of the
extracellular matrix in the microenvironment to allow dissemination and/or metastasis
of cancer cells [54]. Among them, MMP-2 and MMP-9 are the most distinctive MMPs
characterized by a strong proteolytic activity in the extracellular matrix [55], which could
be overexpressed in tumor cells and may be linked to risky metastasis and/or poor prog-
nosis [56] (Figure 1). Exosomes could also regulate the migration of lung cancer cells into
the rich vasculature by promoting MMP-2 expression [57]. In addition, exosomes could
activate MMP-2 to enhance the invasiveness required for the first step in the metastasis
of cancer cells [58]. Furthermore, it has been shown that exosomes derived from renal
cancer cells may contribute to renal cancer development, progression, and/or invasion
via the increased expression of MMP-9 [59]. Additionally, exosomes with MMP-13 could
enhance migration and/or invasiveness to promote the aggressiveness of nasopharyngeal
carcinoma cells [60]. High levels of MMP-1 in exosomes could potentiate the metasta-
sis in triple-negative breast cancer [61]. Exosomes from cancer stem cells could enhance
the proliferative, migratory, and/or invasive abilities of fibroblasts, accompanied by the
upregulated expression of MMP-2 and MMP-9 [62].

Exosomes could promote the proliferation, migration, invasion, and angiogenesis of
HUVECs, in which the increased mRNA and protein levels of VEGF and/or MMP-9 are
detected [63]. Melanoma-derived exosomes may also provide an invasive capability with
the higher expressions of MMP-2 and/or MMP-9, in which miR-21 is at least partially
responsible for the effect [64]. Exosomes with miR-205-5p could promote angiogenesis
and metastasis by enhancing the expression of MMP-2 and/or MMP-9 [65]. Exosomal
miR-106b could enhance the invasive ability of lung cancer cells and increase MMP-2
and MMP-9 expression [66]. Exosomal miR-4435 could affect the migration and/or inva-
sion of colorectal cancer cells [67]. Interestingly, exosomes with CRN2, which is an actin
filament-binding protein involved in the regulation of cell migration and invasion, could
promote perivascular invasion of glioblastoma cells by increasing the catalytic activity
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of MMP-14 [68]. Similarly, exosomal CXCR4 could promote hepatocarcinoma cell migra-
tion, invasion, and/or lymphangiogenesis by enhancing the secretions of MMP-2 and
MMP-9 [69].

MMPs might be crucial for ECM remodeling under the pathological conditions of
cancers. MMPs are of crucial importance for the invasiveness of cancer cells. For a good
invasion performance, cancer cells must adjust the activation rate of MMPs corresponding
to the solidity of the surrounding ECM. Accordingly, their expression may correlate with
metastatic potential and to a significant prognostic marker.

5. Activated MMPs Could Also Regulate the Responses of Immune Cells
against Cancers

Cancers must evade antitumor immune responses to continue to grow. In fact, cancer
cells can often escape from immune surveillance, which has been shown to be associated
with various types of immune cells including Tregs and Th17 cells [70] (Figure 1). Therefore,
immune responses against cancer have been revealed as a crucial issue in the treatment
of cancer. Most tumor cells express antigens that can mediate recognition by host CD8+
T cells. Interestingly, high levels of MMP-9 detected in laryngeal cancer could play a
critical role in the development of Treg cells, which have an ability to suppress the tumor-
specific CD8+ T cells [71]. In addition, the increased production of MMP-7 might trigger
an increase in the suppressive function of Treg cells [72]. Additionally, the expression of
MMP-9 might be correlated with the markers of Th1 cells and/or T-cell exhaustion [73].
Furthermore, upregulated expressions of MMP-2 and MMP-9 may promote the migration
and/or invasiveness of esophageal adenocarcinoma via the action of IL-17A, which is a
proinflammatory cytokine secreted from Th17 cells [74]. Likewise, the MMP inhibitor may
regulate the expression of TGF-β, thus reducing the number of Tregs [75]. Amazingly,
the expression of MMP-7 caused by H. pylori infection could contribute to poor responses
of the adaptive immune system characterized by insufficient Th1 and/or Th17 cells and
the inappropriate activation of Treg cells [76,77]. Human chorionic gonadotropin (hCG),
a hormone essential for pregnancy, is also ectopically expressed by a variety of cancers
and is associated with a poor prognosis, which could induce the synthesis of MMP-2
and/or MMP-9, thereby increasing invasiveness in an MMP-dependent manner. The
hCG could also upmodulate the secretion of TGFβ and IL-10, thereby inhibiting T-cell
proliferation [78].

Consistently, the inhibition of MMP-2/MMP-9 may improve the efficacy of PD-1 or
CTLA4 blockade therapy in the treatment of aggressive metastatic cancers [79]. The PD-1
or CTLA4 checkpoint blockade are dramatic therapies for several cancers that enhance
antitumor immune activity. Immune checkpoints are diligently related to tumor immune
escape, which may be related to the poor prognosis of some tumors in the survival analy-
sis [80]. The PD-1 ligand is regulated through proteolytic cleavage by endogenous MMPs
from stromal fibrocytes (Figure 1). For example, increased MMP-10 expression in CD90+
fibroblasts may contribute to mucosal tolerance via the suppression of Th1 cells through the
cell surface membrane-bound PD-L1, which could suppress Th1 and/or Th17 responses
from activated CD4+ T cells [81]. In this case, supplementation of the MMP inhibitors
could restore the suppression of Th1/Th17 cells. PD-L1 could be also cleaved by MMP-13,
whereas PD-L2 is sensitive to broader MMP activities. Accordingly, MMPs might play a
significant role in the immune checkpoint responses in cancer therapy. In fact, the MMP-
dependent cleavage of PD-1 ligands on fibroblasts may limit their immunosuppressive
capacity [82]. Interestingly, a combined treatment with the MMP inhibitor and anti-CTLA-4
antibody could delay tumor growth and reduce the metastases compared with anti-CTLA-4
treatment alone in lung and liver cancers [83]. Similarly, MMP-9 inhibition with an anti-
MMP-9 monoclonal antibody could promote antitumor immunity through the disruption
of biochemical barriers to the T-cell trafficking of tumors [84].
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6. Discussion and Perspectives

There are contradictory reports on the invasiveness of cancer cells in the exploitation
of the BTG1 protein, the other member of the APRO family, as well as those of Tob1 as
shown in the introduction. A body of evidence indicates that BTG1 expression is negatively
correlated with tumor invasion, lymph node metastasis, the clinical stage, and/or a low
survival rate in patients with various cancers. For example, the low expression of BTG1
might be involved in the progression of pancreatic ductal adenocarcinoma, suggesting
that BTG1 might be a poor prognostic marker of the survival rate in cancer [85]. BTG1
expression has been shown at lower levels in colorectal cancer than in the control, due to
the hypermethylation of the BTG1 promoter [86]. In addition, the low expression of BTG1
has been reported to be associated with aggressive features and/or a worse prognosis of
thyroid cancer [87], esophageal cancer [88], and squamous cell skin carcinoma [89]. The
cumulative survival rate of BTG1-positive patients with colon cancer is significantly higher
than that of BTG1-negative patients [90]. However, it has also been reported that BTG1
expression is positively linked to aggressive features of colorectal cancer, including depth of
invasion and/or lymph node metastasis [91]. In addition, colorectal metastatic cancer cells
in the lymph nodes has shown more BTG1 expression than that in the primary cancer site,
suggesting that the overexpression of BTG1 might promote the invasion and/or metastasis
of the colorectal cancer [91,92]. Similarly, the BTG1-overexpressing endothelial cells have
exhibited increased cell migration [93]. Taken together, BTG1’s high expression might be
involved in the poor progression of several cancers, and might be considered as a marker
indicating that BTG1 promotes migration, invasion, and/or metastasis. Consequently, we
should be cautious to employ APRO proteins for the target of cancer therapy.

How is this situation explained? Our answer is as follows: It has been shown that
the ubiquitin–proteasome system could mediate the degradation of many proliferative
and antiproliferative gene products. Therefore, this system might play an important role
in the degradation of APRO proteins, as well as unusual key proteins [94]. In fact, the
degradation of BTG2 is inhibited by lactacystin, a proteasome-specific inhibitor [95]. This
ubiquitin–proteasome system could be affected by the alteration of cellular homeostasis
that is cell-type dependent [96], which may be one of the reasons (reason 1). A balance
between the expression of MMPs and that of TIMPs could control cancer cell migration,
invasion, and/or metastasis. Both the synthesis and degradation of these proteins are
important for determining how they work. As shown here, the balance of these proteins
might be cell-type or cancer-type dependent, which might be the other reason (reason 2).
In opposition to the invasion-facilitating exosomes, as shown in Section 2 and 3, some
exosomes could slow down angiogenesis, migration, invasion, and/or metastasis [97–99],
which might be also cell-type or cancer-type dependent (reason 3). APRO family proteins
might be a key modulator of microRNAs [100]. Even though APRO members could inhibit
cell proliferation, migration, and/or invasion, the other conditions such as the expression
levels of MMPs or TIMPs, presence of exosomes, and/or functions of proteins/microRNAs
in exosomes could further modify the effect of APRO proteins, probably for those reasons
(Figure 2). However, the pathophysiological significance of APRO family proteins in cancer
remains unknown. Evolving evidence suggests that PIWI-interacting RNAs (piRNAs)
may be important epigenetic regulators of gene expression in human cancers [101], which
may also significantly contribute to cancer pathogenesis [102]. BTG1 has been shown as
a direct target of piR-1245, suggesting an inverse correlation between BTG1 expression
and piR-1245 in colorectal cancer [101]. BTG1 has also been shown as a direct target of
miR-330-3p, which could increase the expression of MMP-9 [103]. The rational connection
to APRO proteins and MMP proteins could be elucidated through the intensive upcoming
research in terms of cancer therapeutics.
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Figure 2. Although APRO family proteins (APROs) could individually inhibit the progression,
invasion, and/or metastasis of cancer cells, the other conditions such as the expression levels of
MMPs or TIMPs, the presence of some exosomes, and/or the function of microRNAs (miRNAs) or
specific proteins in the exosomes could further alter the effect of APRO proteins, either of promotion
or inhibition, on the invasiveness of cancer cells. Indicated molecules are examples. Arrowhead
means stimulation, whereas hammerhead represents inhibition. Note that some critical pathways
have been omitted for clarity. Abbreviations: APROs—APRO family proteins; miRNAs—microRNAs;
MMPs—matrix metalloproteinases; TIMPs—tissue inhibitors of metalloproteinases.

7. Conclusions

Although APRO family proteins could regulate the invasiveness of cancer cells, al-
ternative consequences might occur due to the special effects of MMPs and/or exosomes
containing certain microRNAs.
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Abbreviations

APROs antiproliferative proteins
ECM extracellular matrix
hCG human chorionic gonadotropin
miRNAs microRNAs
MMPs matrix metalloproteinases
PTEN phosphatase and tensin homolog
TIMP tissue inhibitors of metalloproteinase
VEGF vascular endothelial growth factor
VSMCs vascular smooth muscle cells
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