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Simple Summary: Polycythemia vera (PV) is a malignant neoplastic disease. Abnormal cell metabolism
is a new feature of malignant proliferation of tumor cells. Our study described the global metabolic
profile of PV patients, analyzed their relationship with cell proliferation, screened prognosis-related
metabolic biomarkers. Notably, fatty acid metabolism, glucose metabolism, sphingolipid metabolism,
and amino acid metabolism were significantly altered in PV. In addition, Cer(d18:2/22:6-2OH(7S,
17S)) and SM(d18:0/PGF1α) were closely associated with JAK2 mutations, which may contribute
to the proliferation of peripheral blood cells in PV patients. The elevated levels of four potential
biomarkers may provide a reference for poor prognosis in PV patients.

Abstract: Polycythemia vera (PV) is a malignant clonal hematological disease of hematopoietic stem
cells characterized by the proliferation of peripheral blood cells, and JAK2 mutation is one of the
main causes of PV peripheral blood cell proliferation. Abnormal cell metabolism is a new feature of
malignant proliferation of tumor cells, but the role of metabolism in the pathogenesis and prognosis
of PV remains unclear. We analyzed metabolic differences of peripheral blood sera between 32 PV
patients and 20 healthy controls (HCs) by liquid chromatography–mass spectrometry (LC–MS) to
investigate their relationship with cell proliferation and to screen for prognosis-related metabolic
biomarkers. Compared to HC, 33 endogenous metabolites were significantly changed in PV and
were involved in fatty acid metabolism, glucose metabolism, sphingolipid metabolism, and amino
acid metabolism pathways. Among them, seven metabolites were closely associated with JAK2
mutations, 2 of which may contribute to the proliferation of peripheral blood cells in PV patients.
A set of potential prognostic metabolic biomarkers containing four metabolites was identified by a
receiver operating characteristic (ROC) curve according to the risk stratification of the PV patients
and their combined AUC value of 0.952, with a sensitivity of 90.905% and specificity of 90.909% at the
optimal cutoff point. Metabonomics is an important tool for the study of the pathogenesis of PV and
the relationship between JAK2 gene mutation. Furthermore, the potential biomarkers of this study
may provide a reference for the prognosis of PV.

Keywords: polycythemia vera; cell proliferation; prognosis; metabolic biomarkers; metabolomics

1. Introduction

Polycythemia vera (PV) is a malignant clonal myeloproliferative neoplasm (MPN) of
hematopoietic stem cells characterized by polycythemia with varying degrees of myeloid
granulocyte and megakaryocyte proliferation [1]. The incidence rate of PV in the US Surveil-
lance, Epidemiology, and End Results database is 1.09/100,000, the median age of onset is
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approximately 65 years old [2], and the median survival time is approximately 15 years.
PV has a hidden onset and slow progression, often accompanied by hepatosplenomegaly,
thrombosis, and bleeding tendency, and some patients may transform into myelofibrosis
(MF) and acute myeloid leukemia (AML) in late stages. In 2005, Baxter et al. [3] first found
that the rate of JAK2 gene mutations in BCR/ABL negative MPN was up to more than 50%,
and the rate of JAK2 mutations in PV patients was greater than 90%, which was strongly as-
sociated with the occurrence and development of MPN. In PV, mutations in the driver gene
JAK2 can lead to sustained activation of JAK-STAT and its downstream pathways, which
participate in regulating the proliferation and differentiation of hematopoietic cells [4].

Abnormal cell metabolism is a new feature of the malignant proliferation of tumor
cells discovered in recent years, it participates in almost all physiological processes of tumor
cells including proliferation, metastasis, and apoptosis [5]. With the maturation of research
mechanisms, some shared metabolic features of tumors have been gradually recognized.
Enhanced glycolysis allows tumor cells to adapt to the anaerobic microenvironment [6],
and abnormal lipid metabolism provides energy and material basis for tumor cells [7]
and includes enhanced fatty acid oxidation, disturbed sphingolipid metabolism, increased
amino acid utilization, and a suppressed tricarboxylic acid cycle [8–10].

PV, as one of the BCR/ABL-negative MPNs, is a malignant neoplastic disease, and
JAK2 mutation is one of the exact factors in its pathogenesis. In recent years, some scholars
have reported abnormal metabolism in MPN. Rao et al. [11] found in a JAK2 mutant MPN
mouse model that enhanced JAK2 mutation disrupted the metabolic homeostasis of MPN
cells, resulting in systemic metabolic changes in vivo, including elevated levels of glycolysis,
oxidative phosphorylation, adipose tissue atrophy, and early death. Zhan et al. [12] found
increased glutamine metabolism and upregulation of glutaminase in both JAK2V617F
mutant cells and clonally derived erythroid progenitor cells from JAK2V617F-positive MPN
patients, as well as increased glutaminase levels with disease progression. Preliminary
studies on the metabolic characteristics of MPN patients have been conducted using
metabolomics. Forte et al. [13] observed disturbances in the metabolism of the endogenous
cannabinoid system in MPN patients using liquid chromatography-mass spectrometry
(LC-MS) and found that arachidonoyl ethanolamide levels in MPN patients were positively
correlated with platelet counts.

With the recent development of metabolomics technology, an increasing number of
metabolism-related biomarkers have been used to evaluate the prognosis of malignant
tumors. Two plasma biomarkers, succinic acid, and gluconic acid have been identified
to effectively diagnose the progression and metastasis of pancreatic cancer, providing
a reference for clinicians to determine prognosis and treatment options [14]. Another
study revealed distinct metabolic phenotypes that distinguish low-grade from high-grade
colon cancer and demonstrated that metabolomic phenotyping is a potentially important
molecular pathology for the diagnosis and prognosis of solid tumors [15].

In this study, we investigated the metabolic profile of PV patients using untargeted
LC-MS and analyzed the metabolites associated with JAK2 mutations and their relationship
with blood cell counts, which can help us better understand the pathogenesis associated
with PV metabolism and explore its intrinsic connection with JAK2 mutations and cell
proliferation. In addition, metabolites associated with the prognosis of PV patients were
screened by risk stratification, which provides a reference for assessing patient prognosis.

2. Materials and Methods
2.1. Patient Inclusion and Sample Collection

This study was approved by the Ethics Committee of Xiyuan Hospital, China Academy
of Chinese Medical Sciences in accordance with the guidelines in the Declaration of Helsinki
(2019XLA024-3). All subjects signed a written informed consent form before the start of
this study. Between September 2020 and January 2022, 32 PV patients (24 cases in the
JAK2 mutation group, including 22 cases with JAK2 V617F mutation, two cases with JAK2
exon12 mutation, and eight cases in the JAK2 unmutated group) were recruited from
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Xiyuan Hospital of China Academy of Chinese Medical Sciences to participate in this
study according to a JAK2 mutated to unmutated ratio of 3:1, and 20 healthy volunteers
were recruited as the control group. Among the PV patients, there were 23 males (71.9%)
and nine females (28.1%), with a median age of 54.5 (21~77) years. All patients met the
World Health Organization (WHO) (2016) diagnostic criteria for PV [16]. Sex- and age-
matched control serum samples were collected from healthy volunteers without metabolic
diseases (mainly including diabetes mellitus, metabolic syndrome, and thyroid disease)
who were examined at our hospital, based on medical examination reports within one year.
Among the healthy volunteers, there were 11 males (55%) and nine females (45%), with a
median age of 49.5 (28~78) years. The clinical characteristics of PV patients are listed in
Supplementary Table S1.

After fasting overnight, venous blood was collected from patients and healthy volun-
teers between 8 and 9 a.m. and put into vacutainer tubes containing inert separating gel
and clot activator (Greiner Bio-One GmbH, Frickenhausen, Germany). After standing at
room temperature for 30 min, the collected samples were centrifuged for 20 min at 4 ◦C
and 1000 g, and the supernatant was collected and stored in aliquots at −80 ◦C.

2.2. Prognostic Risk Stratification

The prognostic point system proposed by Tefferi et al. [17] was used to classify PV
patients into low-risk (0 points), intermediate-risk (1 or 2 points), and high-risk groups
(≥3 points) according to age (5 points for ≥67 years and 2 points for 57–66 years),
WBC > 15 × 109/L (1 point) and venous thrombosis (1 point).

2.3. Detection Method of JAK2 Mutations

Mutation analysis of DNA from peripheral blood using next-generation sequencing
technology. Five ml of venous blood was drawn in the early morning under fasting
conditions, peripheral blood single nuclei cells were extracted and whole genomic DNA
specimens were prepared. The DNA quality control qualified samples were fragmented
for whole genome and exon library construction and quality control. The quality control
qualified samples were subjected to Illumina HiSeq2500 high-throughput sequencing. The
filtered data were compared to the human reference genome HG19 using Burrows-Wheeler
alignment and quality control of the corresponding indicators, and the output data were
counted. Single nucleotide variants (SNPs), small fragment insertion-deletion variants
(InDel), and mutation hotspots were detected using GATK to annotate and count variants
in genes such as JAK2. The tumor mutation burden (TMB) generally refers to the number of
somatic nonsynonymous mutations per megabase pair in a given genomic region. TMB was
calculated as follows: TMB = somatic/L, where somatic represents the number of somatic
variants detected with nonsynonymous mutations; L represents the effective coverage area
(located at the intersection of a 50 bp extension upstream and downstream of the full exon
capture interval region and a 2 bp extension upstream and downstream of the CDS region).

2.4. Materials and Reagents

Acetonitrile and methanol were Optima™ LC-MS grade and obtained from Fisher
Scientific (Fair Lawn, NJ, USA). Formic acid was purchased from J. T. Baker (Philipsburg,
The Netherlands).

2.5. Experimental Instruments

The experimental instruments used in this study included the following: Waters
ACQUITY UPLC liquid chromatography system, Q-TOF SYNAPT G2 HDMS mass spec-
trometer, and MassLynx v4.1 chromatographic workstation (Waters, Milford, MA, USA);
a high-speed refrigerated centrifuge (Eppendorf, Hamburg, Germany); Vortex Genius
3 vortex oscillator (IKA company, Staufen, Germany); and the Milli-Q Gradient A10 water
purification system (Millipore, Billerica, MA, USA).
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2.6. Serum Sample Preparation

The serum samples were thawed at room temperature before analysis. A volume of
200 µL acetonitrile was added to 50 µL serum and shaken vigorously. Then, the mixture
was stored at room temperature for 10 min and centrifuged at 16,090× g for 10 min at 4 ◦C.
The supernatant was analyzed by LC-MS.

2.7. LC-MS Analysis

Liquid chromatography was performed using an LC instrument (ACQUITY UPLC,
Waters, Milford, MA, USA) with a HILIC column (BEH, Amide, 1.7 µm, 2.1 × 100 mm,
Waters, Wexford, Ireland). For chromatography analysis, the mobile phase consisted of
water containing 0.1% formic acid (A) and acetonitrile containing 0.1% formic acid (B). A
gradient program was used as follows: 30% B; 0~10 min, 30–90% B; 10~11 min, 90 B%;
11~13 min, 90~30% B; stop 15 min. The column was operated at 40 ◦C, the injection volume
was 3 µL, and the flow rate was 0.3 mL/min.

Mass spectrometry was performed using a Waters Xevo G2-XS series Time of Flight
mass spectrometer equipped with an electrospray ionization (ESI) interface. High purity
nitrogen (N2) was used as the sheath and auxiliary gas, and high purity argon was used as
the collision gas. The ESI-MS spectra were respectively acquired in positive and negative
ion modes; positive ion mode, capillary voltage +3 KV; negative ion mode, capillary voltage
−2.5 kV. The mass scan was from m/z 50 to 1200, and the data were recorded in the centroid.
Meanwhile, the fragment information was collected, and the scanning time was 0.2 S. The
standard curve of the mass axis was established by using a sodium formate standard. In the
process of data acquisition, the lockspray correction system was used for real-time quality
correction of leucine enkephalin (LE, [M + H] + = 556.2771, [M−H] + = 554.2615).

2.8. Statistical Analysis

The original mass spectrometry data were transferred to Progenesis QI (Waters, UK)
software. Several steps, such as peak alignment, peak extraction, and peak identification,
were carried out to obtain the metabolite information table, including the mass charge ratio,
retention time, and ion area. The metabolites were identified by the biochemical database
HMDB (http://www.hmdb.ca/, accessed on 17 July 2022). The data were imported into
EZinfo 2.0, and the metabolites with a fold change (FC) value > 2 were screened out, with
t-test p < 0.05 as the limited condition for screening potential biomarkers. For multiple
linear regression analysis, the results were introduced into MetaboAnalyst 4.0 (http://www.
metaboanalyst.ca/MetaboAnalyst/, accessed on 20 July 2022), and partial least squares
discriminant analysis (PLS-DA) was used to identify the differences between groups. The
quality of the model was evaluated by the model parameters Q2 (predictability of the
model) and R2 (fit of the model). Metabolic pathway analysis was also performed by
MetaboAnalyst (https://www.metaboanalyst.ca/, accessed on 20 July 2022).

In addition, the Mann–Whitney U test was performed using SPSS 23 (IBM Corporation,
Armonk, NY, USA) to assess the statistical significance of the different groups. Spearman’s
correlation test was used to analyze the correlation of metabolites with clinical indicators,
and the results were visualized by heatmap using R 3.6.1. (Microsoft, Redmond, WSU,
USA) Binary logistic regression analysis and receiver operating characteristic (ROC) curve
analysis were performed to identify prognostic biomarkers.

3. Results
3.1. Analysis of the Metabolic Profiles of PV Patients and Healthy Controls

To assess whether there were significant changes in the metabolic profiles of PV
patients and healthy controls, we performed a multifactorial analysis of the metabolic
profiles of the two groups. Before analyzing the samples, qualitative control (QC) samples
were used to investigate the instrument precision, method precision, and sample stability.
In this study, a QC sample was created from equal volume subaliquots of all samples and
injected every ten samples to monitor the stability of the analysis in the run sequence.

http://www.hmdb.ca/
http://www.metaboanalyst.ca/MetaboAnalyst/
http://www.metaboanalyst.ca/MetaboAnalyst/
https://www.metaboanalyst.ca/
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The data collection of analytical samples can be conducted only when the methodology is
qualified. Ten chromatographic peaks were randomly selected, and the RSD values of peak
area and retention time were calculated. The results showed that the RSD of the peak area
and retention time of positive ion and negative ion chromatography were less than 20%
and 1.0%, respectively, which proved that the methodological experiment was qualified.
Figure 1 shows the score plots of the PLS-DA in positive and negative modes. For the data
collected in HILIC mode, the results of the PLS-DA showed that the PV groups could be
well distinguished from the healthy control (HC) group, indicating that more significant
metabolic changes occurred in the serum of PV patients. The quality of the model was
good, with variance explained R2 = 0. 965 and variance predicted Q2 = 0. 843. For the
PLS-DA of the negative mode (R2 = 0.955, Q2 = 0.801), clear separations between the PV
and healthy groups were also observed. Data from both the positive and negative modes
suggested that the serum metabolites of PV patients were significantly changed.
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for the PV and HC groups in positive mode. (B) PLS-DA score plots for the PV and HC groups in
negative mode.

Subsequently, we identified endogenous metabolites between PV patients and healthy
controls. According to the variable importance in projection (VIP) score and FC anal-
ysis of the PLS-DA model, combined with Student’s t-test, the differential metabolites
satisfying VIP > 1, FC > 2, and p < 0.05 were screened. A total of 33 endogenous metabo-
lites were initially identified as potential biomarkers for PV diagnosis under positive and
negative ion modes, which were imported into the database for searching and confirma-
tion. These potential biomarkers were eventually identified as fatty acids, acylcarnitine,
sphingolipids, amino acids, etc., and the identification results are shown in Table 1. The
screened biomarkers were subjected to hierarchical clustering analysis to obtain a heatmap
(Supplementary Figure S1), which showed that the PV and HC groups could be distin-
guished and clustered well within the group, indicating that the screened biomarkers were
more reliable.

In order to clarify the abnormal metabolic pathways in PV, we performed an enrich-
ment analysis of the metabolic pathways of the above biomarkers. The screened potential
biomarkers were imported into MetaboAnalyst 5.0 for metabolic pathway analysis. It
is generally accepted that changes occurring at key locations in the network have a se-
rious impact on the occurrence of events, and pathways with impact values >0.1 are
considered potential target metabolic pathways. The results showed that there were nine
important metabolic pathways associated with PV, namely: D-glutamine and D-glutamate
metabolism, sphingolipid metabolism, pyruvate metabolism, alanine, aspartate and gluta-
mate metabolism, arginine and proline metabolism, tryptophan metabolism, lysine degra-
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dation, arginine biosynthesis and glycolysis/gluconeogenesis (Figure 2). These can be
mainly attributed to fatty acid metabolism, glucose metabolism, sphingolipid metabolism,
and amino acid metabolism.

Table 1. Potential biomarkers for PV patients.

No. Metabolite a Mass Retention
Time/Min Tendency b Ion Mode Pathway

1 Arachidic acid 312.3028 0.9840 Up Positive Fatty acid metabolism
2 Dodecanoic acid 200.1776 1.4151 Up Positive Fatty acid metabolism
3 Myristic acid 228.2089 1.3200 Up Positive Fatty acid metabolism
4 Palmitic acid 256.2402 1.4951 Up Positive Fatty acid metabolism
5 Octadec-13-enoylcarnitine 425.3505 0.9802 Up Positive Fatty acid oxidation
6 Dodec-9-enedioylcarnitine 371.2308 1.3390 Up Positive Fatty acid oxidation
7 Dodecanoylcarnitine 344.2795 1.3580 Up Positive Fatty acid oxidation
8 Hexacosanoyl carnitine 539.4914 0.9802 Up Positive Fatty acid oxidation
9 Octanoylcarnitine 288.2175 1.4684 Up Positive Fatty acid oxidation

10 Glucose 180.0634 5.0102 Up Negative Glycolysis/Gluconeogenesis
11 Lactic acid 90.0317 4.2093 Up Negative Glycolysis/Gluconeogenesis
12 Pyruvic acid 88.0160 3.4841 Down Negative Glycolysis/Gluconeogenesis
13 Melibiose 342.1162 9.6866 Up Positive Galactose metabolism

14 Xylose 150.0528 3.0263 Up Negative Pentose and glucuronate
interconversions

15 Cer(d18:1/24:1) 647.6216 0.8812 Up Positive Sphingolipid metabolism
16 Cer(d18:2/6 keto-PGF1α) 649.4918 0.8051 Up Positive Sphingolipid metabolism
17 CerP(d18:1/16:0) 617.4784 4.1358 Up Positive Sphingolipid metabolism
18 Phytosphingosine 317.2930 0.9840 Up Positive Sphingolipid metabolism
19 SM(d18:0/12:0) 650.5363 4.7082 Up Positive Sphingolipid metabolism
20 SM(d18:0/22:0) 788.6771 4.4175 Down Positive Sphingolipid metabolism
21 SM(d18:0/PGF1α) 804.5993 0.9878 Up Positive Sphingolipid metabolism
22 Sphingosine 299.2824 1.3542 Up Positive Sphingolipid metabolism
23 Cer(d18:2/22:6-2OH(7S, 17S)) 639.4863 4.1180 Up Negative Sphingolipid metabolism
24 SM(d20:1/PGE2) 826.5836 2.8587 Up Negative Sphingolipid metabolism
25 SM(d20:1/PGF2α) 828.5993 2.6873 Up Negative Sphingolipid metabolism
26 Glutamic acid 147.0532 2.5652 Up Negative Glutamate metabolism
27 1-Pyrroline-5-carboxylic acid 113.0477 3.2366 Up Negative Glutamate Metabolism
28 Lactoylglutathione 379.1049 1.1106 Down Positive Pyruvate metabolism
29 Aminoadipic acid 161.0688 0.8012 Up Positive Lysine biosynthesis
30 Homo-L-arginine 188.1273 10.8460 Down Positive Arginine metabolism
31 Tryptophan 204.0899 1.6445 Up Positive Tryptophan metabolism
32 Cytidine 243.0855 3.2290 Up Negative Pyrimidine metabolism
33 Bilirubin 584.2635 0.8703 Up Negative Porphyrin metabolism

a Metabolites were identified using available library databases and standard samples. b Tendency in the PV group
compared to the HC group.
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Cancers 2022, 14, 4913 7 of 15

3.2. Effect of JAK2-Associated Metabolic Abnormalities on Cell Proliferation in PV Patients

Mutations in JAK2 can activate JAK-STAT and its downstream pathway to cause blood
cell proliferation. To clarify the relationship between JAK2 and peripheral blood cell counts,
we analyzed the blood cell counts of JAK2-mutated and unmutated patients. Platelet
count (PLT) and hematocrit (HCT) levels were significantly higher in JAK2-mutated PV
patients than in JAK2-unmutated PV patients (p = 0.006; p = 0.044; Figure 3A,B). Further
analysis of the correlation between blood cell counts and JAK2 mutational burden revealed
a significant positive correlation between JAK2 mutational burden and white blood cell
count (WBC) and PLT levels (r = 0.62, p = 0.001; r = 0.55, p = 0.007; Figure 3C,D). We
found a significant positive correlation between JAK2 mutational burden and WBC levels,
however, there was no difference in WBC levels observed between the JAK2 mutated and
unmutated groups. Therefore, we further divided PV patients with JAK2 mutation into
high burden group (mutational burden ≥ 50%, n = 16) and low burden group (mutational
burden < 50%, n = 8), and the comparison revealed that WBC levels were significantly
higher in the JAK2 high burden group than in the low burden group and the unmutated
group (p = 0.01; p = 0.014; Figure 3E).

Cancers 2022, 14, 4913 8 of 16 
 

 

 
Figure 3. Correlation of JAK2 mutations and mutational burden with blood cell counts. Levels of 
PLT (A) and HCT (B) in JAK2-mutated patients compared with non-JAK2-mutated patients. (E) 
WBC levels in JAK2 high mutational burden, low burden, and unmutated groups. Mean value ± 
standard error of the mean (SEM). Mann–Whitney U test, * p < 0.05, ** p < 0.01, ns: no significance 
(p > 0.05). Scatter plot of the correlation between WBC (C) and PLT (D) levels and JAK2 mutational 
burden. Spearman’s correlation test. 

To screen for endogenous metabolites associated with JAK2, PV patients were di-
vided into a JAK2-mutated group (n = 24) and a JAK2-unmutated group (n = 8) according 
to their JAK2 mutation status, and the PLS-DA model was used to represent the changes 
in metabolic profiles of patients in the JAK2-mutated and JAK2-unmutated groups. Good 
separation between the two groups of samples was observed in the PLS-DA score plot in 
both positive and negative ion modes (Figure 4A,B), and the model had good fitness and 
predictive power (R2 = 0.954, Q2 = 0.633 in positive ion mode; R2 = 0.996, Q2 = 0.612 in 
negative ion mode), indicating a significant difference in the metabolic profiles of patients 
in the JAK2-mutated and unmutated groups. Further analysis of 33 endogenous metabo-
lites identified seven metabolites that differed significantly between the JAK2 mutated 
and unmutated groups. The levels of Cer(d18:2/22:6-2OH(7S, 17S)), SM(d18:0/PGF1α), 
CerP(d18:1/16:0), glutamic acid, lactic acid, melibiose and xylose were significantly higher 
in the JAK2-mutated group than in the JAK2-unmutated group (p = 0.001, p < 0.001, P = 
0.011, p = 0.017, p = 0.021, p = 0.022 and p = 0.019, respectively; Figure 4C). 

Figure 3. Correlation of JAK2 mutations and mutational burden with blood cell counts. Levels of PLT
(A) and HCT (B) in JAK2-mutated patients compared with non-JAK2-mutated patients. (E) WBC
levels in JAK2 high mutational burden, low burden, and unmutated groups. Mean value ± standard
error of the mean (SEM). Mann–Whitney U test, * p < 0.05, ** p < 0.01, ns: no significance (p > 0.05).
Scatter plot of the correlation between WBC (C) and PLT (D) levels and JAK2 mutational burden.
Spearman’s correlation test.

To screen for endogenous metabolites associated with JAK2, PV patients were divided
into a JAK2-mutated group (n = 24) and a JAK2-unmutated group (n = 8) according to
their JAK2 mutation status, and the PLS-DA model was used to represent the changes in
metabolic profiles of patients in the JAK2-mutated and JAK2-unmutated groups. Good
separation between the two groups of samples was observed in the PLS-DA score plot in
both positive and negative ion modes (Figure 4A,B), and the model had good fitness and
predictive power (R2 = 0.954, Q2 = 0.633 in positive ion mode; R2 = 0.996, Q2 = 0.612 in
negative ion mode), indicating a significant difference in the metabolic profiles of patients
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in the JAK2-mutated and unmutated groups. Further analysis of 33 endogenous metabo-
lites identified seven metabolites that differed significantly between the JAK2 mutated
and unmutated groups. The levels of Cer(d18:2/22:6-2OH(7S, 17S)), SM(d18:0/PGF1α),
CerP(d18:1/16:0), glutamic acid, lactic acid, melibiose and xylose were significantly higher
in the JAK2-mutated group than in the JAK2-unmutated group (p = 0.001, p < 0.001,
p = 0.011, p = 0.017, p = 0.021, p = 0.022 and p = 0.019, respectively; Figure 4C).
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patients. Mean value ± SEM. Mann–Whitney U test, * p < 0.05, ** p < 0.01.

To clarify the relationship between metabolic abnormalities and the JAK2 mutational
burden, we further analyzed the relationship between the above seven endogenous metabo-
lites and the JAK2 mutational burden. We observed a positive correlation between two
endogenous metabolites and the JAK2 mutational burden: Cer(d18:2/22:6-2OH(7S, 17S))
(r = 0.817; p < 0.001; Figure 5A) and SM(d18:0/PGF1α) (r = 0.463; p = 0.021; Figure 5B).
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Our study above found that peripheral blood cells were significantly elevated in
JAK2-mutated PV patients compared to JAK2-unmutated PV patients and positively
correlated with JAK2 mutational burden. Moreover, Cer(d18:2/22:6-2OH(7S, 17S)) and
SM(d18:0/PGF1α) levels differed between JAK2-mutated and unmutated patients and
were positively correlated with JAK2 mutational burden. Thus, we evaluated the relation-
ship between these two endogenous metabolites and blood cell counts. Here, we found
that Cer(d18:2/22:6-2OH(7S, 17S)) levels were positively correlated with WBC (r = 0.650,
p < 0.001; Figure 6A ), and SM(d18:0/PGF1α) levels were positively correlated with WBC
and PLT (r = 0.444, p = 0.011 and r = 0.623; p < 0.001, respectively; Figure 6B,C). In addi-
tion, we analyzed the correlation between 33 endogenous metabolites and WBC, HGB,
PLT, and HCT at diagnosis in patients with PV, and the correlation heatmap is shown in
Supplementary Figure S2.
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Cancers 2022, 14, 4913 10 of 15

3.3. Potential Metabolic Biomarkers Relevant to the Prognosis of PV Patients

According to the prognostic point system proposed by Tefferi et al. [17], PV patients
can be divided into low-risk group (n = 11) and intermediate/high-risk group (n = 21).
Further analysis of 33 endogenous metabolites showed that compared to the low-risk
group, the levels of Cer(d18:2/22:6-2OH(7S, 17S)), SM(d18:0/PGF1α), CerP(d18:1/16:0),
octadec-13-enoylcarnitine, glutamic acid, lactic acid, melibiose and 1-pyrroline-5-carboxylic
acid in the intermediate/high-risk group were significantly elevated (p = 0.001, p = 0.001,
p = 0.006, p = 0.013, p = 0.025, p = 0.016, p = 0.014 and p = 0.016, respectively; Figure 7A).
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low-risk patients. Mean value ± SEM. Mann–Whitney U test, * p < 0.05, ** p < 0.01. (B) ROC curve
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We next tested the diagnostic potential of eight biomarkers by ROC curve analysis.
Eight biomarkers had AUC values ranging from 0.745 to 0.87 and all showed moderate
efficiency (AUC = 0.70–0.90). In addition, we used binary logistic regression to analyze the
combined biomarkers and then determine the ROC curve. A set of potential biomarkers
containing four endogenous metabolites with an AUC > 0.77 was found to provide an AUC
of 0.952 (Figure 7B), with a sensitivity of 90.905% and specificity of 90.909% at the optimal
cutoff point. Therefore, elevated levels of Cer(d18:2/22:6-2OH(7S, 17S)), SM(d18:0/PGF1α),
CerP(d18:1/16:0), and octadec-13-enoylcarnitine could be used as potential metabolic
biomarkers of poor prognosis in patients with PV.

4. Discussion

PV is a hematological malignancy that occurs with an excessive clonal proliferation
of myeloid cells in hematopoietic stem or progenitor cells [1]. Abnormal cell metabolism
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is one of the ten metabolic characteristics of tumors. As a hematological malignancy, the
role of metabolism in PV is also worthy of attention. In recent years, preliminary studies
on metabolic abnormalities in MPN have been conducted, and abnormalities in glucose
metabolism, glutamine metabolism, and lipid metabolism have been identified in MPN,
which may be involved in the pathogenesis and progression of MPN [11–13]. Here, through
the global metabolomic analysis of the PV and HC groups, we found significant metabolic
disturbances in PV patients. Thirty-three potential biomarkers were further screened,
most of which were fatty acids, acylcarnitines, sphingolipids, and amino acids, mainly
involved in fatty acid metabolism, glucose metabolism, sphingolipid metabolism, and
amino acid metabolism.

Among these endogenous metabolites, the levels of five acylcarnitines and four fatty
acids were significantly higher in the PV group than in the HC group. The results indicated
that fatty acid metabolism and the carnitine shuttle system were disrupted in the PV group.
Fatty acids are activated by forming fatty acyl-CoAs, which are subsequently imported
into the mitochondrial matrix via the carnitine shuttle system for beta-oxidation [18,19].
The disruption of carnitine metabolism leads to mitochondrial dysfunction, which may
play a role in the energy metabolism of PV. Furthermore, four fatty acids were increased
in the PV groups, which indicated the systemic disruption of fatty acid beta-oxidation.
The active enzymes involved in the mitochondrial intermediary supplier pathway may be
disrupted, which may cause the abnormal metabolism of carnitines and fatty acids, and
the accumulation of acylcarnitine further leads to the accumulation of fatty acids [20]. In
conclusion, there are systemic changes in energy metabolism in PV patients, including
glucose metabolism and fatty acid metabolism.

Glucose metabolic reprogramming is the most representative metabolic phenotype
in tumors, and the Warburg effect (aerobic glycolysis) is the most significant phenotype
in which glucose metabolic reprogramming occurs in tumors [6]. Tumor cells produce
large amounts of lactic acid through the aerobic glycolysis pathway, causing lactic acid
accumulation while acquiring energy and a microenvironment conducive to their abnormal
growth, proliferation, and metastasis [21]. Meanwhile, glycolysis is closely related to
pyruvic acid metabolism. During glycolysis, after glucose is converted to pyruvic acid, it
no longer enters the TCA cycle but synthesizes lactic acid in the cytoplasmic matrix and is
induced by PDHK1 to increase the rate of conversion of pyruvic acid to lactic acid, thus
promoting tumor development [22]. Previously, enhanced glycolysis was observed in MPN
and has been shown to be associated with JAK2 mutations [11,23,24]. Our study found
disturbances in glycolytic and pyruvate metabolic pathways in the serum of PV patients,
including elevated levels of glucose, glutamic acid, and lactic acid and decreased levels of
pyruvic acid and lactoylglutathione, which may be related to the enhanced conversion of
pyruvic acid to lactic acid. These metabolic disturbances, consistent with the findings of
Rao and Li [11,23], suggest active glycolysis in PV, indicating that PV pathogenesis may be
related to abnormal energy metabolism.

Sphingolipids are the major components of cell membranes, and the major bioac-
tive sphingolipids include ceramide, sphingosine, sphingomyelin, and sphingosine 1-
phosphate [25]. Sphingolipid metabolism is involved in biological processes such as apop-
tosis, autophagy, necroptosis, the inflammatory microenvironment, endoplasmic reticulum
stress, and cell cycle arrest in cancer cells [26]. In this study, compared with controls, we
found that many sphingolipids, including sphingosine, phytosphingosine, ceramides, and
sphingomyelin, showed obvious changes in the PV group. Ceramide plays an important
role in the metabolism of sphingolipids, which can be formed by the hydrolysis of sphin-
gomyelin by sphingolinases. Ceramide can activate several important pathways for the
induction of apoptosis, which is closely related to the occurrence and development of tumor
disease [27]. The sphingolipid metabolism of PV has not been reported, but abnormal
sphingolipid metabolism has been observed in other myeloid malignancies. Similarly,
upregulation of sphingomyelin, sphingosine, and ceramide has been observed in MDS or
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AML [28,29], suggesting that impaired sphingolipid metabolism may play a role in MDS
and AML.

Amino acids are the basic component of proteins and are important raw materials
for cellular anabolism, with essential functions in redox homeostasis, energy regulation,
biosynthetic support and maintenance of endostasis, and amino acid metabolism plays an
important role in maintaining the growth and proliferation of tumors [30]. In this study,
compared with HC, some amino acids were disrupted in PV, including glutamic acid,
tryptophan, and aminoadipic acid, which are mainly involved in the metabolic pathways of
glutamine and glutamate metabolism, arginine biosynthesis, and tryptophan metabolism.
Wang et al. [31] similarly observed metabolic disturbances of multiple amino acid metabolic
pathways, glutamine and glutamate metabolism, and tryptophan metabolism in AML.
Tumor cells regulate glutamate metabolism to provide precursor materials for their rapid
growth and proliferation [32]. It has been shown that the glutamate/cystine antiporter
SLC7A11 can enhance the glucose dependence of renal cancer cell lines and mesothelioma
cell lines by exporting glutamate [33], and tryptophan metabolism confer enhanced prolif-
eration and metastasis of cancer cells by regulating immune cell function [34]. Therefore,
changes in glutamate and tryptophan may be potential biomarkers for PV.

JAK2 is one of the driving genes of PV, and the mutation rate in PV can be as high as
80–90% [35,36]. The latest guidelines now include JAK2 mutations as one of the main diag-
nostic criteria for PV [16]. JAK2 mutation can lead to sustained activation of the JAK-STAT
pathway and its downstream pathways, regulating the proliferation and differentiation of
hematopoietic cells [37]. In this study, we found that the levels of Cer(d18:2/22:6-2OH(7S,
17S)) and SM(d18:0/PGF1α) in the JAK2-mutated PV patients all increased significantly and
showed a significant correlation with the JAK2 mutational burden and peripheral blood cell
counts, suggesting that these two metabolites may promote the proliferation of peripheral
blood cells in PV patients under the regulation of the JAK-STAT pathway. The regulatory
roles between ceramide and sphingomyelin and the JAK-STAT pathway have been reported
in the literature, providing a basis for this speculation; however, the specific regulatory
mechanisms between them and the JAK-STAT pathway have not been well defined. It has
been reported that ceramide can induce the activation of the JAK-STAT pathway in human
hepatocellular carcinoma HepG2 cells, microglia and human fibroblasts [38–40]. It has
also been demonstrated in B16 melanoma cells that the JAK-STAT pathway regulates ce-
ramide levels [41]. Additionally, Komuro et al. [42] found that alterations in sphingomyelin
affected epidermal STAT3 phosphorylation in dermatitis mice and that sphingomyelin
slowed cell proliferation by inhibiting STAT3. In summary, Cer(d18:2/22:6-2OH(7S, 17S))
and SM(d18:0/PGF1α) may be involved in the proliferation of peripheral blood cells in PV
patients through interaction with the JAK-STAT pathway. Moreover, these two metabolites
are sphingolipids, suggesting that sphingolipid metabolism may be associated with PV
cell proliferation.

With the recent development of metabolomics technologies, an increasing number
of metabolic biomarkers have been used to assess the prognosis of malignant tumors.
Lo Presti et al. [43] developed an OPLS-DA model with two subgroups of favorable and
unfavorable risk in AML patients and found higher levels of aspartate and glutathione
in the bone marrow of AML patients in the unfavorable group than in AML patients in
the favorable prognosis group, which was validated in subsequent follow-ups. In this
study, Cer(d18:2/22:6-2OH(7S, 17S)), SM(d18:0/PGF1α), CerP(d18:1/16:0) and octadec-
13-enoylcarnitine were selected as biomarkers of poor prognosis in PV patients by risk
stratification and ROC curves. We also found that Cer(d18:2/22:6-2OH(7S, 17S)) and
SM(d18:0/PGF1α) were positively correlated with both JAK2 mutational burden and WBC
levels. One study reported that >50% of the JAK2 mutational burden is associated with
fibrotic transformation [44,45], and leukocytosis is a risk factor for leukemic transformation
and survival in PV patients [17,46]. This reinforces that they are risk factors for PV prog-
nosis, suggesting that their effect on PV prognosis may be achieved through interaction
with JAK2 mutational burden and stimulation of leukocyte proliferation, raising the risk of
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fibrosis or leukemic transformation. However, the prognostic biomarkers screened in this
study remain to be further validated in the follow-up of patient survival.

However, there are still some limitations to this study. Firstly, organism metabolism is
influenced by several factors, such as environment, genetics, and intestinal flora, which
may affect the concentration of metabolites, and secondly, this study was subjected to a
small sample size. Therefore, cellular or animal-level experiments and large-scale cohort
studies are still needed for further validation.

5. Conclusions

Our study described the global metabolic profile of PV patients, analyzed the metabo-
lites associated with JAK2 mutations and their relationship with blood cell counts, and
screened metabolites associated with the prognosis of PV patients by risk stratification,
providing new insights into the pathogenesis of PV and a reference for assessing patient
prognosis. Notably, fatty acid metabolism, glucose metabolism, sphingolipid metabolism,
and amino acid metabolism were significantly altered in PV. In addition, Cer(d18:2/22:6-
2OH(7S, 17S)) and SM(d18:0/PGF1α) were closely associated with JAK2 mutations, which
may contribute to the proliferation of peripheral blood cells in PV patients. The elevated levels
of four potential biomarkers may provide a reference for poor prognosis in PV patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194913/s1, Figure S1: Hierarchical clustering heatmap
of potential biomarkers for PV patients; Figure S2: Heatmap of correlation between differential
metabolites in PV patients and WBC, HGB, PLT and HCT at diagnosis; Table S1: Clinical characteris-
tics of the PV patients.
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