
Citation: Whisenant, T.C.; Nigam,

S.K. Organic Anion Transporters

(OAT) and Other SLC22 Transporters

in Progression of Renal Cell

Carcinoma. Cancers 2022, 14, 4772.

https://doi.org/10.3390/

cancers14194772

Academic Editor: Farrukh Aqil

Received: 12 August 2022

Accepted: 26 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Organic Anion Transporters (OAT) and Other SLC22
Transporters in Progression of Renal Cell Carcinoma
Thomas C. Whisenant 1 and Sanjay K. Nigam 2,3,*

1 Center for Computational Biology and Bioinformatics, University of California,
San Diego, CA 92093-0693, USA

2 Department of Pediatrics, University of California, San Diego, CA 92093-0693, USA
3 Department of Medicine, University of California, San Diego, CA 92093-0693, USA
* Correspondence: snigam@health.ucsd.edu

Simple Summary: Kidney cancer diagnoses make up over 2% of newly identified cancers each year.
SoLute Carrier 22 (SLC22) genes are expressed in normal functioning kidneys and are responsible
for transport of myriad metabolites, xenobiotics, antioxidants and other small molecules, but their
role in kidney cancer is not well understood. We assessed the relationship between the expression of
SLC22 genes and survival in patients with kidney cancer and found expression patterns of multiple
SLC22 genes to be associated with overall survival as well as with disease progression. We sought to
interpret this data in the context of physiological information from previous studies by us and others.
Furthermore, network analysis indicated the importance of SLC22 genes and identified additional
genes that might be therapeutic targets.

Abstract: (1) Background: Many transporters of the SLC22 family (e.g., OAT1, OAT3, OCT2, URAT1,
and OCTN2) are highly expressed in the kidney. They transport drugs, metabolites, signaling
molecules, antioxidants, nutrients, and gut microbiome products. According to the Remote Sensing
and Signaling Theory, SLC22 transporters play a critical role in small molecule communication
between organelles, cells and organs as well as between the body and the gut microbiome. This
raises the question about the potential role of SLC22 transporters in cancer biology and treatment.
(2) Results: In two renal cell carcinoma RNA-seq datasets found in TCGA, KIRC and KIRP, there
were multiple differentially expressed (DE) SLC22 transporter genes compared to normal kidney.
These included SLC22A6, SLC22A7, SLC22A8, SLC22A12, and SLC22A13. The patients with disease
had an association between overall survival and expression for most of these DE genes. In KIRC,
the stratification of patient data by pathological tumor characteristics revealed the importance of
SLC22A2, SLC22A6, and SLC22A12 in disease progression. Interaction networks combining the
SLC22 with ADME genes supported the centrality of SLC22 transporters and other transporters
(ABCG2, SLC47A1) in disease progression. (3) Implications: The fact that many of these genes
are uric acid transporters is interesting because altered uric acid levels have been associated with
kidney cancer. Moreover, these genes play key roles in processing metabolites and chemotherapeutic
compounds, thus making them potential therapeutic targets. Finally, our analyses raise the possibility
that current approaches may undertreat certain kidney cancer patients with low SLC22 expression
and only localized disease while possibly overtreating more advanced disease in patients with higher
SLC22 expression. Clinical studies are needed to investigate these possibilities.

Keywords: kidney cancer; remote sensing and signaling; SLC22; KIRC; KIRP; SLC22A1; SLC22A15;
SLC22A18; SLC22A23; SLC22A24; SLC22A5; SLC22A4; the Cancer Genome Atlas

1. Introduction

SoLute Carrier (SLC) genes are translated into membrane bound proteins critical to
the transport of small molecules, including a wide range of xenobiotics and metabolites,
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in and out of organs [1]. For example, the gut-liver-kidney axis is critical for homeostasis
as well as drug absorption, distribution, metabolism, and excretion (ADME) [2–4]. There
are currently 66 human subfamilies of the SLC family, encompassing over 450 uniquely
defined genes. These include multi-specific, oligo-specific and monospecific transporters
of solutes, among which are many endogenous small organic molecules of considerable
importance in physiology and pathophysiological states [5].

One SLC family that has received a great deal of attention is SLC22 [6,7]. This family,
first identified in 1997 with three members (SLC22A6 or NKT or OAT1, SLC22A7 NLT or
OAT2, and SLC22A1 or OCT1), now consists of over 30 members and is perhaps best known
for its multi-specific “drug” transporters (e.g., organic cation transporters and organic anion
transporters) [8]. SLC22 transporters have, in recent years been shown to play an essential
role in endogenous metabolic processes [9–12]. This includes the regulation of a variety
of important small molecules such as vitamins, uric acid, gut microbe-derived products,
antioxidants, nutrients [13–15].

Originally, the SLC22 family was divided into three clades: organic cation transporters
(OCTs) and organic anion transporters (OATs), and organic zwitterion/cation transporters
(OCTNs) and additionally divided into subclades based on phylogenetic analysis [16].
More recently, these groupings have been further refined based on structural and genomic
homology, metabolite interactions, and network characteristics based on substrate speci-
ficity, revealing 8 distinct subgroups [17]. While the role of SLC22 transporters in metabolic
disease and chronic kidney disease is now apparent [18], the role of SLC22 transporters
in other pathophysiological contexts is just beginning to be explored. In contrast to ABC
transporters (e.g., p-glycoprotein, ABCG2 or BCRP, and members of the MRP or ABCC
family), which transport drugs and have been studied in the context of cancer and tumor
resistance, much less is known about the role of SLC22 “drug” transporters (and other
SLC22 family members) in cancer.

Previous work showing a link between increased SLC gene expression and cancer has
focused on the upregulation of glucose, amino acid, and lactate transporters, presumably in
order to meet the increased nutrient and waste removal demands of cancer cells [19]. More
recently, certain SLC22 family genes have been implicated as possible tumor suppressors, as
in the cases of SLC22A7 in Hepatocellular Carcinoma [20] and SLC22A1 in Cholangiocellu-
lar Carcinoma [21]. Another suggested role for SLC22 is in facilitating uptake of anticancer
drugs. For example, an observed connection between increased SLC22A1, SLC22A2, and
SLC22A3 expression and positive response to chemotherapy in colon cancer patients is
thought to be due to the role of these genes specifically transporting oxaliplatin into cancer
cells [22–24].

Globally, renal cancer represented 2.2% of new cancer cases in 2020, totaling over
431,000 instances [19]. Major risk factors include smoking and obesity [25] and there is a
higher prevalence in men that has been attributed to differential rates of smoking between
men and women. That said, there are higher obesity rates in women diagnosed with renal
cancer [26]. Interestingly in women, the mortality rate is lower than the rate of diagnosis,
which has led to the suggestion of a an “obesity paradox” which presumes a survival
advantage in obese individuals diagnosed with renal cancer compared to non-obese peo-
ple [27]. Other risk factors include hypertension, chronic kidney disease/end stage renal
disease, environmental exposure to carcinogenic chemicals, as well as inheritance of genetic
alterations (insertions, deletions, mutations) that predispose individuals to development of
kidney cancer [28].

There are 3 major forms of renal cell cancer, representing 90% of all cases. These are:
clear cell Renal Cell Carcinoma (ccRCC, 75%), papillary cell (PRCC, 10%), and chromophobe
(ChRCC, 5%). ccRCC is twice as prevalent in men compared to women, and PRCC is more
than 3:1 as prevalent in men; in contrast, ChRCC is somewhat more common in women
who have ~55% of all cases of this form [29]. Since 1977, 5-year overall survival rates have
improved considerably. There is significant stratification by stage at diagnosis, with only
12% 5-year survival for individuals with metastatic (Stage IV) disease [30].
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Here, we used datasets available from The Cancer Genome Analysis (TCGA) project
to explore the role of SLC22 transporters in clear cell renal carcinoma (KIRC) and papillary
cell Renal Cell Carcinoma (KIRP). The analysis revealed an association between overall
survival and expression of many SLC22 genes between tumor and normal tissue. Patient
data was stratified according to tumor stage, tumor size and progression, lymph node
involvement, and presence of metastasis, providing insight into the potential role of particu-
lar SLC22 transporters and their interactions with other genes, metabolites, and xenobiotics
in disease progression.

2. Materials and Methods
2.1. Statistical Analysis

All analyses, unless otherwise described, were performed in the R statistical computing
environment (v3.5.1) along with the standard functions from the bioconductor packages
for biostatistics functions. The packages used for specific analyses are described below.

2.2. TCGA RNA-Seq Analysis

Comparison of specific tumor type and matched normal tissue gene expression data
for SLC22 gene was performed with the GEPIA online graphical user interface, (http:
//gepia2.cancer-pku.cn, accessed on 19 May 2021, [31]). This tool was used to produce
gene specific expression boxplots for KIRC and KIRP tumor along with TCGA and GTEX
normal kidney sample data. Within the boxplots, significant differences between the tumor
and normal samples were determined as absolute log fold change (LogFC) greater than 1
and q-values less than 0.01 based on pre-loaded limma analyses.

KIRC and KIRP normalized RSEM estimate count data and associated metadata were
obtained from the TCGA portal (http://portal.gdc.cancer.gov, accessed on 22 May 2021).
The subset of expressed genes in each cancer were defined as having greater than 75 counts
in at least 50% of the tumor samples. Differential expression (DE) analysis along with
normalization and generation of log-transformed counts per million (LogCPM) were per-
formed with the R packages limma [32], and specific application of the limma-voom
algorithm [33]. Limma models included metadata factors age, gender, and reported race as
determined in the survival analysis for each gene. A threshold of 0.05 for the Benjamini-
Hochberg adjusted p-value was used to determine the significantly different genes [34]. All
expression plots were created with the R package ggpubr (v 0.2.5).

2.3. Survival Analysis

Initial overall survival analysis results were obtained with the OncoLnc online graph-
ical user interface (www.oncolnc.org, accessed on 3 May 2021, [35]). This tool generates,
for each expressed gene in each cancer type, a Cox proportional hazards model for overall
survival fitted using the gene expression values and three metadata variables: AJCC Patho-
logic Stage, gender, and age. The output for each variable in the model is a Cox coefficient
and an associated p-value that can be used to determine if the relationship between overall
duration of patient survival and the variable are significant. Negative Cox coefficients
correspond to variables where higher values (and higher expression for genes) correlate
with longer survival; and conversely for positive Cox coefficients. Genes were identified
as significantly associated with a cancer type if the adjusted p-value was less than 0.05.
For the significant genes, the OncoLnc tools generates Kaplan–Meier survival analysis
curves based on the sets of patients with the highest (top tercile) and lowest (bottom tercile)
expression of the gene. Logrank test p-values reporting the significance of the difference
between the groups are also reported with the plot.

Additional survival analysis performed with functions from the R package Survminer
(0.4.6). Using the available data from TCGA, the primary endpoint used for this analysis
was overall duration of patient survival measured in days post-diagnosis of disease. The
Cox proportional hazards models used in these analyses included the age and gender from
the “base” model in the OncoLnc analysis and additional metadata variable combinations

http://gepia2.cancer-pku.cn
http://gepia2.cancer-pku.cn
http://portal.gdc.cancer.gov
www.oncolnc.org
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(Table S1) using the clinical metadata from the TCGA portal (Table S2). AJCC Pathologic
Stage was not used in all models as AJCC Pathologic Stage depends upon some of the
variables we were investigating (i.e., tumor size and progression, presence of metastasis).
The threshold for significance of the p-values associated with the analysis of each Cox
proportional hazards model was determined by dividing 0.05 by the total number of
tested models in each cancer (0.05/221 = 2.2 × 10−4). For each significant SLC22 gene, the
model with the lowest p-value was chosen and reported along with the associated Cox
coefficient and Hazard Ratio (Table 1). The directionality and magnitude of these values,
while consistent with the OncoLnc results, are often greater, suggesting that the added
variables increase the variance assignable to known factors and better isolate the impact of
the expression of each SLC22 gene on overall survival.

Table 1. SLC22 gene optimal Cox Proportional Hazards model results.

Symbol EG ID Cancer Type Optimal Model * KIRC Cox Coef. Hazard Ratio

SLC22A2 6582 KIRC Base + race + treatment type −0.433 0.649
SLC22A4 6583 KIRC Base + race + treatment type −0.332 0.717
SLC22A5 6584 KIRC Base + stage −0.354 0.702
SLC22A6 9356 KIRC Base + race + treatment type −0.413 0.661
SLC22A7 10864 KIRC Base + race + prior malignancy −0.319 0.727
SLC22A8 9376 KIRC Base + race + treatment type −0.465 0.628
SLC22A11 55867 KIRC Base + race + treatment type −0.384 0.681
SLC22A12 116085 KIRC Base + race + treatment type −0.389 0.678
SLC22A24 283238 KIRC Base + race + treatment type −0.442 0.643
SLC22A2 6582 KIRP Base + prior malignancy −0.911 0.631
SLC22A13 9390 KIRP Base + race + lymph node involvement −0.668 0.513
SLC22A18 5002 KIRP Base + race + tumor size/prog −0.644 0.525
SLC22A24 283238 KIRP Base + race + stage −0.757 0.469

* Base model: SLC22 gene expression + age + gender.

These models were further analyzed in order to test whether the inclusion of the
metadata variables violated the assumption of proportionality. This is determined by im-
plementing a chi-square test comparing the full (all variables) proportional hazards model
with the null model using no variables. Models with p-values less than 0.01 generated
by this test indicate a violation of the proportionality assumption and were not further
investigated (Table S3).

Each significant model was analyzed with the gene expression variable removed.
A Hazard Ratio table for a Cox proportional hazards model incorporating age, gender,
reported race, and treatment type in KIRC produces a significant p-value for the age variable
(Figure S1A). This variable was part of every model tested (including the OncoLnc models)
and thus no further analysis was performed. For the model associated with SLC22A7 in
KIRC (Figure S1B), age was also significant while the two KIRP models had no variables
that were significant (Figure S1C,D). These data show that, with the exception of age in
KIRC, none of the metadata variables used in the combinations shown can stratify patients
by their duration of overall survival. These graphical summaries were generated with
survminer’s ggforest function (v0.4.6).

2.4. Network Analysis

Interactions between DE genes for each comparison were identified using the STRING
database of protein–protein interactions. The STRING medium confidence (Combined
Score > 0.4) interactome is an assembly of physical and functional interactions, biological
knowledge, and various computational metrics that include data mining and homology
modeling that are used as input to generate a “Combined Score” [36]. These interactions
were visualized within Cytoscape (v3.8.0) [37] with singletons removed. Networks were
annotated with data from the log fold change from the DE analysis and genes in the top
~15% based on degree were noted.
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3. Results
3.1. Decreased Expression of SLC22 Transporters in Kidney Cancers and Association with
Poorer Outcomes

Of the human SLC22 transporters of organic cations, anions, and zwitterions, there are
17 expressed at detectable levels in KIRC and KIRP based on the publicly available RNA-
Seq data from The Cancer Genome Atlas (TCGA, http://portal.gdc.cancer.gov, accessed
on 24 March 2021). Using the GEPIA2 tool (http://gepia2.cancer-pku.cn, accessed on
19 May 2021, [31]), we analyzed expression differences in a large cohort of primary tumors
and normal kidney tissue and identified 6 genes significantly DE in both KIRC and KIRP
(Figure 1A). Five of those are found in comparisons of both tumor types: SLC22A6/OAT1
(Figure 1B), SLC22A7/OAT2 (Figure 1C), SLC22A8/OAT3 (Figure 1D), SLC22A12/URAT1
(Figure 1E), SLC22A13/ORCTL3 (Figure 1F). For each of these DE genes, expression was
decreased in the primary tumor sample groups, and the difference was significant based
on limma differential gene expression analysis (adjusted p-value < 0.01) [32].

The categorizations of family and clade are shown for each of the SLC22 genes ex-
pressed in the kidney (Table 2). In the updated grouping, OATs are considered to be
organic anion transporters, OCTs are considered organic cation transporters, and OCTNs
are considered zwitterionic transporters. However, the associations implied by these gen-
eral groupings are not absolute, especially for the groupings designated “-related” [17].
Interestingly, of the DE genes between tumor and normal kidney tissue (in bold), SLC22A6,
SLC22A7, and SLC22A8 are OAT1, OAT2, and OAT3. These are genes that function in the
kidney to mediate transfer of a wide variety of organic anion molecules (including endoge-
nous and xenobiotic molecules) from the blood to the proximal tubule via the basolateral
membrane [14]. SLC22A12 (URAT1) and SLC22A13 are found on the apical membrane of
the kidney and transport urate, amongst other substrates [38,39].

Table 2. SLC22 gene annotation and OncoLnc survival analysis results.

Sym Alias EG ID Subclade * Updated
Grouping ** Specificity KIRC Cox

Coef.
KIRC BH-adj

p-val
KIRP Cox

Coef.
KIRP BH-adj

p-val

SLC22A1 OCT1 6580 OCT OCT Multi- 0.2069 & 0.02783 0.0921 0.69794
SLC22A2 OCT2 6582 OCT OCT Multi- −0.3411 +& 0.00033 −0.9214 6.94 × 10−5

SLC22A3 OCT3 6581 OCT OCT Oligo- 0.0074 0.94686 −0.3733 0.08201
SLC22A4 OCTN1 6583 OCTN OCTN-related Oligo- −0.3159 0.00029 −0.3289 0.16737
SLC22A5 OCTN2 6584 OCTN OCTN-related Oligo- −0.2901 # 0.00281 −0.4169 0.07343
SLC22A6 OAT1 9356 OAT OATS1 Multi- −0.3473 + 0.00015 −0.0640 0.82770
SLC22A7 OAT2 10864 OAT OATS2 Oligo- −0.2599 0.00814 −0.3251 0.15414
SLC22A8 OAT3 9376 OAT OATS1 Multi- −0.3883 9.46 × 10−5 NA NA
SLC22A11 OAT4 55867 OAT OATS3 Oligo- −0.3384 0.00049 −0.3131 0.12484
SLC22A12 URAT1 116085 OAT OATS3 Mono- −0.3211 ˆ 0.00135 −0.3657 0.07921
SLC22A13 ORCTL3 9390 OAT-like OAT-like Mono- −0.2307 0.02281 −0.4095 0.04680
SLC22A14 ORCTL4 9389 OAT-like OAT-like N/A 0.2288 0.01846 −0.2331 0.32010
SLC22A15 FLIPT1 55356 OCTN-related OCTN-related Mono- 0.1598 0.08677 0.2117 0.33305
SLC22A17 BOCT 51310 OAT-related OAT-related Mono- 0.0689 0.54035 −0.2479 0.23082
SLC22A18 ORCTL2 5002 OAT-related OAT-related N/A −0.0784 0.47059 −0.4283 0.04613
SLC22A23 N/A 63027 OAT-related OAT-related Oligo- −0.0992 0.35122 0.4132 0.05213
SLC22A24 N/A 283238 OAT OATS4 Oligo- −0.3146 0.00200 −0.5923 0.00669

* Defined in Zhu et al., 2015 [16]; ** Defined in Engelhart et al., 2020 [17]; and & shown previously in Ciarim-
boli et al., 2020 [40]; + Shown previously in Hu et al., 2020 [41]; # Shown previously in Edemir et al., 2020 [42]; ˆ
Shown previously in Xu et al., 2021 [43].

To further investigate the observation that SLC22 gene expression changes upon pre-
sentation of primary tumors in the kidney, we looked at overall survival times for patients
suffering from KIRC and KIRP in the context of SLC22 gene expression (Table S2, Column J).
In the kidney, SLC22 transporters are considered excellent markers of differentiation [44–46].
Thus, the hypothesis was that decreases in SLC22 gene expression correlate with (and pos-
sibly contribute to) reduced duration of overall survival following initial diagnosis in these
tumor types. We used our list of expressed SLC22 genes as input into the OncoLnc tool [35],
which searches for significant correlations between gene expression and overall survival in
12 different cancer RNA-Seq datasets available from the TCGA Project. The outputs are
Cox coefficients, raw, and adjusted p-values for all expressed SLC22 genes in the KIRC and

http://portal.gdc.cancer.gov
http://gepia2.cancer-pku.cn
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KIRP datasets (Table 1). Negative Cox coefficients correspond to variables where higher
values (and higher expression for genes) correlate with longer survival and conversely for
positive Cox coefficients. A majority of the SLC22 genes (12 of 17) demonstrate a significant
association (B-H adjusted p-value < 0.05) with overall survival in KIRC while only 4 genes
[SLC22A2, SLC22A13, SLC22A18, and SLC22A24] are significantly associated in KIRP.
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(A) Heatmaps generated by RNA-Seq data collected from the GEPIA tool showing all expressed SLC22



Cancers 2022, 14, 4772 7 of 21

genes in KIRC (left; num(Tumor) = 523; num(Normal) = 100) and KIRP (right; num(Tumor) = 286;
num(Normal) = 60) tumors or normal kidney based on average transcripts per million reads (TPM).
Tumor sample data is based on the TCGA cohort and normal kidney samples include matched tissue
from TCGA and the GTEX cohorts. Asterisks indicate differentially expressed (DE) genes between
tumor and normal with 5 out of 7 DE genes shared between the tumor comparisons. Expression
boxplots generated using the GEPIA2 tool compare the expression distribution (with individual
points representing patient samples) in primary KIRC and KIRP tumors and matched normal kidney
tissue and GTEX samples for SLC22A6 (B), SLC22A7 (C), SLC22A8 (D), SLC22A12 (E), SLC22A13
(F). For each of these genes in each comparison, the expression is significantly higher in normal
samples compared to tumor based on limma differential gene expression analysis. Points represent
log-transformed transcripts per million reads (TPM). *—limma adjusted p-value < 0.01.

Of the significantly DE genes between KIRC primary tumors and normal kidney
tissue, SLC22A6 (Figure 2A, [41]), A7 (Figure 2B), A8 (Figure 2C), A12 (Figure S2A, [43]),
and A13 (Figure 2D) also showed significant association with overall survival. Although
the first three genes are multi-specific (SLC22A6, SLC22A7 and SLC22A8) and the latter
two (SLC22A12 and SLC22A13) are relatively monospecific, it is worth noting that all
of them are strongly implicated in transport of the anti-oxidant, uric acid. This may
be of particular clinical-translational interest since, in a prospective analysis of the UK
Biobank, high serum uric acid (SUA) levels were associated with higher incidence of renal
cancer [47]. Other studies have also associated uric acid levels with renal cancer and
outcomes [48,49]. For each of these genes, the signs of the Cox coefficient were all the same
direction (negative). SLC22A13 was also significantly associated with overall survival in
KIRP and had a negative Cox coefficient (Figure S2B). Two other genes, SLC22A2 (OCT2,
Figure S2C,D) and SLC22A24 (Figure 2E and Figure S2E) were significant in both KIRC
and KIRP and had negative Cox coefficients. Consistent with our hypothesis, the negative
Cox coefficients for these genes indicate that higher gene expression is observed in samples
from patients with longer survival times. These results also extend the previously observed
trend of decreased expression in tumor samples by showing that SLC22 expression further
decreases in patients with poorer outcomes.

3.2. Variables Other Than OAT Family Expression Associated with Decreased Survival

Because these are transporters of endogenous metabolites and drugs—and, in the
case of SLC22A6, SLC22A8, SLC22A12, established drug targets—these observations are
of interest from both the viewpoint of cancer biology and therapeutics [50]. Therefore,
we further investigated the relationship between overall survival and gene expression.
To expand on the previous OncoLnc Cox proportional hazards model analysis using the
metadata variables age and gender, we included additional demographic and oncologic
variables available from the TCGA (Table S2). These variables were: reported race, type
of treatment (Radiation or Pharmaceutical), prior malignancy, tumor size and progression
(AJCC Pathologic T), lymph node involvement (AJCC Pathologic N), and presence of
metastasis (AJCC Pathologic M). After analyzing all variable combinations (Table S1), there
were 9 of 12 (SLC22A2, SLC22A4, SLC22A5, SLC22A6, SLC22A7, SLC22A8, SLC22A11,
SLC22A12, SLC22A24) (Figure S3A) and 4 of 4 (SLC22A2, SLC22A13, SLC22A18, SLC22A24)
(Figure S3B) SLC22 genes still significantly associated with overall survival in KIRC and
KIRP, respectively. From these results, we determined that the oncologic variables tested
were not part of highest performing proportional hazards models and a separate analysis
utilizing these variables in limma models for differential expression is required to determine
their relationship to SLC22 gene expression.
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Figure 2. Kaplan–Meier plots for selected SLC22 genes in KIRC. Plot of the results of Kaplan–Meier
survival analysis and logrank test showing the association of SLC22A6 (A), SLC22A7 (B), SLC22A8
(C), SLC22A13 (D), and SLC22A24 (E) expression and overall survival (in days) in KIRC. High
expression is defined as the top tercile (n = 172) of patient tumor values and low expression represents
the bottom tercile. The p-value of the logrank test is significant at less than 0.05.

3.3. Influence of OAT (and Other SLC22 Transporter) Expression on Tumor Stage and Individual
TNM Parameters in the Context of Overall Survival

The survival analysis tracks expression in the tumor with long term patient outcomes
and suggests previously unidentified roles of OATs and other SLC22 genes in cancer biol-
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ogy and clinical outcomes. Since there are accepted criteria for the staging of malignant
solid tumors for the purposes of estimating both disease progression, as well as the overall
duration of intervention-less survival, we hypothesized that there is a relationship between
the aforementioned SLC22 genes and the criteria for stage determination, specifically: tu-
mor size and progression (AJCC Pathologic T), lymph node involvement (AJCC Pathologic
N), and presence of distant metastasis (AJCC Pathologic M). To focus specifically on the
relationship between our genes of interest and these pathologic classifications, the TCGA
clinical metadata variables (age and gender) were added to the models used in DE compar-
isons. We determined there is no direct correlation between SLC22 gene expression and age
or gender in the TCGA renal cancer data. In addition, there is a precedent for using these
variables in linear models to obtain lists of differentially expressed genes [31]. Furthermore,
in two separate Cox proportional hazards models in KIRC that were independent of gene
expression, age was significantly associated with overall survival (Figure S1A,B). These
results suggest that any biological variation associated with age will be removed in the
limma models and increase our confidence in any significant DE SLC22 genes. Additionally,
based on the overall survival analysis data discussed above, reported race was included in
the limma models. For both KIRC and KIRP, comparisons were made across each of the
oncologic variables for the subset of SLC22 genes where sufficient samples had detectable
gene expression levels.

While multiple comparisons had no DE genes in the entire expressed gene list (i.e.,
Stage III vs. Stage IV), there were 6 DE SLC22 genes in the Tumor Size and Progression
comparison in KIRC [SLC22A2, SLC22A5, SLC22A6, SLC22A11, SLC22A12, SLC22A18]
(T3 v T4, Figure 3A, Table 3 and Table S4). The comparison of absence vs. presence of Metas-
tasis (M0 v M1, Figure 3B) revealed 4 DE SLC22 genes (SLC22A2, SLC22A6, SLC22A12,
SLC22A23). SLC22A2, SLC22A6, and SLC22A12 were DE in both these comparisons
(T3 v T4 and M0 v M1); moreover, SLC22A2 was also DE in the comparison of positive
versus negative lymph node involvement (N0 v N1, Figure 3C). Two other comparisons,
Stage I vs. II and Stage II vs. III, displayed significant differences in SLC22A17 expression
(Figure 3D).

Table 3. Summary of pathologic variable DE analysis in KIRP and KIRC.

Oncologic Variable Comparison KIRP-SLC22
(p adj. < 0.1)

KIRC-SLC22
(p adj. < 0.1)

Stage Stage I v Stage II 0 2
Stage II v Stage III 0 1
Stage III v Stage IV 0 0

T T1 v T2 0 0
T2 v T3 0 0
T3. v T4 0 6

M M0 v M1 0 4
N N0 v N1 5 2

PriMalig Yes v No 0 0
TxType Pharm v Rad 0 0

In KIRP, only positive versus negative lymph node involvement (N0 vs. N1) showed
any DE SLC22 genes which were SLC22A2, SLC22A18, SLC22A3, SLC22A11, and SLC22A5
(Figure S4). In comparing the lists of DE genes from KIRC and KIRP associated with
these oncologic staging criteria to those that were either DE between tumor versus normal
tissue or implicated in overall survival (highlighted in orange in Table S5), these results
support the conclusion that some SLC22 genes are important throughout development and
progression of kidney cancer.
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Figure 3. SLC22 gene expression by class for pathologic variables in KIRC. (A) Violin plot of
expression of SLC22 genes differentially expressed (DE) in KIRC between two successive sample
subsets of the variable Tumor Size and Progression (T3 and T4). Plots of expression of DE SLC22 genes
in the categories for the variable Presence of Metastasis, M0 and M1 (B); Lymph Node Involvement,
N0 and N1 (C); and Pathologic Stage, Stage I, Stage II, Stage III, Stage IV (D). Expression is measured
as the log of counts per million (Log(CPM)).

3.4. Biological Support and Network Interpretation of the Role of SLC22 Genes in KIRC and KIRP
Disease Progression (in the Context of the Remote Sensing and Signaling Theory)

SLC22-interacting genes are known to play a role in absorption, distribution, metabolism,
and excretion of endogenous small molecules as well as drugs and toxins. For example,
an interaction network of 690 ADME-related and other genes revealed SLC22 genes to
be central within the network structure [12]. It was shown that there exists a highly con-
nected network of ADME and other genes that is co-expressed across the gut, liver, and
kidney tissues that likely plays a role in system level metabolism of xenobiotics (includ-
ing chemotherapy drugs) and endogenous small molecules and metabolites. According
to the Remote Sensing and Signaling Theory, such a network is critical for inter-organ
(e.g., gut-liver-kidney) and inter-organismal (e.g., gut microbe-host) communication via
endogenous small molecules [1,6,15]. More generally, the Remote Sensing and Signal-
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ing Theory addresses the roles of multi-, oligo- and monospecific transporters in small
molecule communication across organelles, cells, organs, organ systems, and organisms.
The SLC22 transporter family is particularly noteworthy in that it consists of multi-, oligo,-
and monospecific transporters with established in vivo and in vitro roles in the regulation
of metabolites, signaling molecules, antioxidants, nutrients, and gut microbe products. It is
possible that an accumulation of perturbations in genes of the SLC22 transporter family
and/or other genes in the larger Remote Sensing and Signaling network, driven by the
gene expression changes associated with KIRC and KIRP disease progression, contributes
to reduced overall survival for these patients.

Similarly, SLC22 interactions with other compounds including metabolites, signaling
molecules, antioxidants, nutrients and chemotherapeutic drugs are likely to contribute to
overall patient survival. Given the reduced expression observed for many SLC22 genes,
the downstream effect might be a shift in the SLC22 transporter-mediated uptake of these
small molecules into tumor cells as the disease progresses across the multiple pathologic
stages. Identification of the relevant interacting compounds for each SLC22 gene requires a
multifaceted approach. Based on our work and others, we have compiled the compounds
that have been associated with the SLC22 transporters discussed here (Table S5). The data
comes from in vitro transport assays, in vivo knockout mouse metabolomics, and GWAS
studies. The asterisks indicate that metabolite data for SLC22A6 and SLC22A8 comes
from papers published by the senior author’s group [4,10,16,51–58]. The non-drug data
is partly adapted from supplementary information in Engelhart et al., 2020 [17] with the
addition of some other published data from the senior author’s group [59,60]. The data on
the association of these transporters with endogenous metabolites, signaling molecules,
nutrients, and antioxidants may shed mechanistic light on tumor growth, invasion and/or
metastasis. The chemotherapeutic drug data was found in the UCSF-FDA Transportal [61]
where there is information on SLC22A2, SLC22A5, SLC22A6, and SLC22A8 interactions
with chemotherapeutic drugs. Loss of these uptake transporters with disease progression
could conceivably play a role in tumor resistance to certain chemotherapeutics.

Of the 690 ADME-related and other genes in the aforementioned network, 430 were
expressed in KIRC, and 511 were expressed in KIRP. For these expressed network genes,
we performed the same comparisons for differential expression across the T, N, and M
categories described above for the SLC22 genes (Table S6). The DE genes were combined
with the DE SLC22 genes to generate networks and calculate network metrics using the
STRING interaction database [36]. The two largest networks were generated using the DE
genes from the tumor size/progression class, T3 v T4 (156 nodes, Figure 4A), and presence
of metastasis, M0 v M1 (158 nodes, Figure S5A), comparisons. Analysis of each network
was performed to generate a series of metrics including degree, betweenness centrality, and
closeness centrality (Table S7). Consistent with our hypothesis that the SLC22 family plays
an important role in the progression of KIRC, as measured by degree, four SLC22 genes are
found in the top 10 most connected genes in the T3 v T4 network (Figure 4B).

Two interesting ADME genes that were ranked in the top 5 by closeness centrality in
each of the KIRC networks are ABCG2 and SLC47A1. In addition to being central to each
of these networks, they are DE in each comparison. Violin plots show the changes in these
two genes for tumor size/progression, T3 vs. T4 (Figure 5A), lymph node involvement, N0
v N1 (Figure 5B), and presence of metastasis, M0 v M1 (Figure 5C). Furthermore, SLC47A1
is DE in the KIRP comparison of lymph node involvement classes, N0 v N1 (Figure 5D).
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Figure 4. SLC22 gene network and metrics for tumor size/progression class 3 vs. 4 comparison.
SLC22 and ADME interaction network composed of DE genes for the comparison of Tumor Size and
Progression, T3 vs. T4 (A). The 424 Edges represent interactions found in the STRING interaction
database and the transparency of the edges is a function of the Combined Score which is also stored
in the database. With the exception of SLC22 genes (green triangles), nodes are colored by log
fold-change in the relevant comparison and the node sizes correspond to the negative log(adjusted
p-value). Nodes with the highest (top 10) degrees are identified within black boxes. (B) Table of the
top 10 genes by degree identified by black boxes in (A).
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Figure 5. SLC22 interacting gene expression by class for pathologic variables in KIRC. Violin plot of
expression of ABCG2 and SLC47A1 that are DE in KIRC between two successive sample subsets of the
oncologic variable Tumor Size and Progression, T3 v T4 (A), Lymph Node Progression, N0 v N1 (B),
and presence of Metastasis, M0 v M1 (C). Expression of SLC47A1 in KIRP Lymph Node Progression,
N0 v N1 (D). Expression is measured as the log of counts per million (Log2(CPM)).

As seen with the SLC22A2 and SLC22A12 genes, expression changes across oncologic
variables can be accompanied by a correlation with overall survival. Using the OncoLnc
tool, we observed that both ABCG2 and SLC47A1 had significant and negative Cox co-
efficients, −0.36 (adjusted p-value = 3.0 × 10−4) and −0.415 (2.2 × 10−5), respectively,
indicating that decreased expression of these genes is associated with reduced overall
survival duration (Figure 6A,B). Interestingly, while SLC47A1 shows a significant decrease
in expression in KIRP N0 vs. N1, its expression is not significantly associated with overall
survival in these patients. These data indicate that the central genes in the network of
transport and metabolic factors that are changing in KIRC are also important to the overall
survival of patients with the disease.
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Figure 6. Kaplan–Meier plots for selected SLC22 interacting genes in KIRC. Association of ABCG2
and SLC47A1 and overall survival in KIRC is significant using Cox proportional hazards regression
model and the Cox coefficient is negative indicating that higher expression is observed in patients
with longer survival. This relationship is shown by Kaplan–Meier plot in KIRC for ABCG2 (A) and
SLC47A1 (B). The red line represents patients with gene expression above the median for the gene
of interest; the blue line represents patients with gene expression below the median. The p-values
associated with logrank tests comparing the halves are also shown.

4. Discussion

Many SLC22 transporters have high and sometimes nearly exclusive expression in
the kidney [12,38]. Downregulation of various SLC22 subfamily genes have been as-
sociated with kidney disease [62]. For example, the SLC22 genes SLC22A6/OAT1 and
SLC22A8/OAT3 participate in the transport of uremic toxins during renal excretion, and
accumulation of certain uremic toxins can contribute to the progression of chronic kidney
disease [6,55]. Specifically, we observed large reductions in expression of multiple SLC22
genes in two of the most common types of kidney cancer, ccRCC/KIRC and PRCC/KIRP
(Figure 1A). Multiple OAT and OAT-like genes were downregulated in both cancer types.
When looking at the expression patterns of these genes within the normal and tumor sample
populations, it is clear that while these changes are significant, there is a large population



Cancers 2022, 14, 4772 15 of 21

without decreased expression in their tumor and also a number of individuals without high
SLC22 expression in their normal kidneys (Figure 1B). For those individuals with decreased
SLC22 gene expression, there is a strong potential for systemic complications arising from
the reduced capacity to metabolize the uremic toxins and other small molecules.

Before discussing the SLC22 genes identified in this study in relation to renal cell
cancer and various oncologic variables (TNM class) used to determine pathologic stage, we
note previous work has shown that SLC22A2, SLC22A12, and SLC22A13 are downregu-
lated in human kidney tumors [43,56,63]. Based on these observations and the availability
of the OncoLnc tool [35], we investigated the connection between SLC22 gene expression
and overall survival in patients with KIRC and KIRP primary tumors. In addition to con-
firming previously published results showing an association between overall survival and
expression of SLC22A1/OCT1 and SLC22A2/OCT2, SLC22A5/OCTN2, SLC22A6/OAT1,
and SLC22A12/URAT1 in KIRC [41,43,64,65], multiple additional SLC22 genes of the OAT
and OAT-related subclades were also associated with overall survival, including SLC22A7,
SLC22A8, and SLC22A13 (Figure 2 and Figure S1). These genes were also DE between
KIRC tumors and normal kidney. In KIRP, there were three genes associated with overall
survival that were also significant in KIRC: SLC22A2, SLC22A13, SLC22A24. The patients
with lower expression of each of these SLC22 genes had shorter overall survival durations,
raising the possibility that reduced capacity for transport by these transporters has systemic
effects on the individual.

With this overall survival information in hand, we performed a deeper investigation
into the oncologic variables (TNM classification) used to classify tumor behavior as well as
interacting genes. This resulted in novel insights likely to be of interest in the contexts of
cancer biology and therapeutics. The base Cox proportional hazards model used by the
OncoLnc tool incorporates the additional variables of age, gender, and stage (determined
by pathology) in order to better account for the relationship between each gene’s expression
and duration of overall survival. To further investigate this relationship, we sequentially
incorporated additional demographic and tumor associated variables into Cox models.
The demographic variable of reported race was part of nearly all the top scoring models
for SLC22 genes in both KIRC and KIRP, and the p-values associated with these models
were lower than the original base models (Table 2). While inclusion of this variable can be
problematic due to nuances associated with collecting this information (i.e., underrepre-
sentation of the Asian subgroup), the data suggest that, in the context of specific SLC22
gene expression, it can improve our ability to identify those patients who might need more
aggressive treatment due to reduced overall survival times.

Another variable identified in multiple highest performing models in KIRC is “treat-
ment type.” Given that this variable was a significant covariate in most of the KIRC models,
we took it as an indication that something about those treatment groups increases the
variance in gene expression values within other variables of interest to us. This variable,
treatment type, has two possible values: Pharmaceutical and Radiation. The variable was
not present in any of the models that violated the assumption of proportionality, and it
was not significant in the proportional hazards model without gene expression values.
The standard of care for KIRC and KIRP, following surgical resection of the tumor, varies
depending on the staging information—where more localized disease (Stage I) will most
likely be treated through radiation while advanced (or at least non-localized) disease will
be treated with pharmaceuticals or a combination of both [66]. Interestingly, there is strong
evidence that patients receiving blood transfusions at the time of surgery had significantly
increased disease recurrence and cancer specific mortality [67]. With both the observation
that surgical details are important and that accounting for treatment type in the model
improves the association of SLC22 gene expression and overall survival, it is conceivable
that the current criteria used for deciding the course of treatment may be undertreating
localized disease when SLC22 gene expression is low or overtreating more progressive
disease where SLC22 gene expression is still elevated. It is also undergirding the need
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for biomarkers that can be used to personalize treatment regimens, where expression of
specific SLC22 genes could be part of the panel for KIRC and KIRP.

An interesting observation in the deeper survival analysis is the lack of the onco-
logic variables related to disease progression (tumor size and progression, lymph node
involvement, and presence of metastasis) in the best performing models. This suggests
that SLC22 gene expression correlates with these variables; and it has been established
that these variables contribute to assignment of stage and stage correlates with overall
survival [40]. On the other hand, the potential correlation with oncologic variables made it
likely that SLC22 gene expression was significantly changed across the various levels of the
oncologic variables. Differential expression analysis did identify many SLC22 genes that
were changed in KIRC but only a handful in KIRP (Table 3). Some of these genes were found
in multiple comparisons. In KIRC, the SLC22 genes significant in the most comparisons
analyzing disease progression were SLC22A2, SLC22A6, and SLC22A12. Furthermore,
SLC22A2 was seen to be DE between patients with and without lymph node involvement
in both KIRC and KIRP.

SLC22A12 is DE between KIRC tumors and normal kidney, associated with overall
survival in KIRC and DE between tumor size and progression (T3 vs. T4, Figure 3A),
stage I v II, and presence of metastasis (M0 vs. M1, Figure 3B). It has been identified
as a biomarker of KIRC and shown to inhibit cancer cell growth in vitro when overex-
pressed [43]. SLC22A12 (aka URAT1) is, additionally, best known as a kidney transporter
of urate, an antioxidant, which may be relevant to tumor behavior. Indeed, many of the
OATs and OAT-related SLC22 transporters identified here are known urate transporters
(SLC22A6, SLC22A7, SLC22A8, SLC22A11, SLC22A12, SLC22A13) [42,57,58]. In the context
of treating uric acid disorders, several of these transporters are established drug targets
(SLC22A6, SLC22A8, SLC22A12). The effects of these existing drugs on kidney cancer
biology is worthy of further investigation.

As a first step toward a biological and/or clinical interpretation of the observed
SLC22 gene expression changes, we curated a list of endogenous small molecules and
chemotherapeutic drugs that have documented interaction with SLC22 transporters. These
interactions, compiled from our own prior studies and available databases containing
the work of others, included information from in vitro transport assays, in vivo murine
knockout studies, and human GWAS. These data support the importance of SLC22 genes
in regulating levels of metabolites, signaling molecules and antioxidants in both cells and
plasma. In the context of their altered expression in kidney cancer and their relationship to
disease progression, this suggests that they may play a key role in tumor biology related
to pathological stage. Moreover, their role in uptake of chemotherapeutic agents like
methotrexate and cis-platinum raises the possibility that their altered expression may play
a role in tumor responsiveness to certain chemotherapeutics.

In a subsequent. analysis, we identified ADME and related genes that were dif-
ferentially expressed and generated interaction networks to visualize the SLC22 genes
within a larger gene set (Figures 4A and S5A). Strong support for our hypothesis that
the SLC22 genes are important was shown in their centrality to these networks as mea-
sured by degree and closeness centrality (Table S7). Additional non-SLC22 genes, ABCG2
and SLC47A1 were also observed to be central to these networks (Figures 4B and S5B).
The ABC transporter gene, ABCG2, transports urate in normal kidney tissue [68]. It
has been shown to transport xenobiotics and play a role in multi-drug resistance to
chemotherapeutic drugs in other types of cancer [69]. We observed significant changes
in ABCG2 gene expression within multiple comparisons of the TNM classes of oncologic
variables (Figure 5A–C) and also a larger association of expression with overall survival
(Figure 6A). Previous work has also shown the relationship between ABCG2 expression
and overall survival in KIRC [41,70]. Similarly, SLC47A1 was DE in multiple comparisons
(Figure 5A–D) and shown previously to be significantly associated with overall survival in
KIRC (Figure 6B) [71]. These results are strong confirmation that the further investigation
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of the central genes identified in this network approach are likely to have importance in the
progression of KIRC and KIRP.

It is worth considering some strengths and limitations of what has been presented
here. The TCGA dataset used is an invaluable resource due to the size of the cohort and
the metadata available for each patient sample. However, these bulk RNA-Seq expression
levels are many years old and newer technologies, such as single cell RNA-Seq, could
provide better specificity and resolution regarding whether the genes studied here are
decreased in both tumor and non-tumor cells. Similarly, other types of data like somatic
mutation and protein abundance levels could provide additional context and support for
the observed expression levels in the RNA-Seq data. Alternatively, the results described
here provide some promising leads for diagnosis/prognosis of longer compared to shorter
overall survival durations based on SLC22 gene expression. Further testing and validation
are needed.

5. Conclusions

Using publicly available datasets from the TCGA project, we investigated the role of
SLC22 transporters in the two most common types of renal cell carcinoma, KIRC and KIRP.
Many important SLC22 genes—including those of the OAT and OAT-related groups—had
decreased expression over the continuum of stages of renal cell carcinoma from well-
functioning, healthy kidneys to advanced metastatic disease. This relationship is mani-
fested, when accounting for the patient-specific demographics of gender and age at diagno-
sis, in the significant association of decreased SLC22 gene expression with reduced duration
of overall survival. Most often, this association was deepened by accounting for reported
race, but not factors that define pathologic disease progression. Alternatively, analysis of
patients with different classifications of tumor size/progression, lymph node involvement,
and presence of metastasis identified multiple SLC22 transporters as significantly changed,
often decreasing with severity. Within the context of a network of transporter and metabolic
genes, SLC22 genes are central along with other genes like ABCG2 and SLC47A1; and iden-
tifying the meaning of this centrality is likely to be an important step in understanding the
stratification of overall survival within the population of kidney cancer patients. A number
of the identified transporters (e.g., SLC22A12/URAT1, SLC22A6/OAT1, SLC22A8/OAT3,
ABCG2) are well-established uric acid transporters; this may be clinically important since,
as discussed above, a number of studies indicate that altered uric acid levels and kidney
cancer are associated. According to the Remote Sensing and Signaling Theory, uric acid
and other antioxidants, metabolites, and signaling molecules are transported by SLC22 and
other transporters to regulate small molecule homeostasis across organelles, cells, organs,
and organisms [1,6,38,39]. Concepts underlying this theory could be highly relevant to
cancer biology. Moreover, these genes have the potential to be used as targets of treatment
and/or biomarkers for overall survival, especially in advanced disease. There are few treat-
ments for metastatic renal carcinoma, so the prospect of new potential therapeutic targets
requires novel interpretations and analyses of the currently available data. In addition, our
studies suggest that strategies for kidney cancer treatment need to consider the potential
biomarkers found here. It is at least conceivable that present strategies may insufficiently
treat disease in patients with low SLC22 expression but only localized disease. In contrast,
the possibility exists that patients with advanced disease and higher SLC22 expression
might be overtreated. It is important that future clinical studies address these possibilities.
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SLC22 Genes in KIRC and KIRP; Figure S3: Significance of Cox Proportional Hazards models
across parameter sets for selected SLC22 genes; Figure S4: SLC22 gene expression by class for
lymph node progression in KIRC; Figure S5: SLC22 gene network and metrics for presence of
metastasis class comparison; Table S1: Parameter combinations used for Cox Proportional Hazards
models; Table S2: TCGA Clinical metadata; Table S3: Optimal Cox Proportional Hazards model
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and interacting genes.
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