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Simple Summary: Kidney cancer diagnoses make up over 2% of newly identified cancers each year. 

SoLute Carrier 22 (SLC22) genes are expressed in normal functioning kidneys and are responsible 

for transport of myriad metabolites, xenobiotics, antioxidants and other small molecules, but their 

role in kidney cancer is not well understood. We assessed the relationship between the expression 

of SLC22 genes and survival in patients with kidney cancer and found expression patterns of mul-

tiple SLC22 genes to be associated with overall survival as well as with disease progression. We 

sought to interpret this data in the context of physiological information from previous studies by us 

and others. Furthermore, network analysis indicated the importance of SLC22 genes and identified 

additional genes that might be therapeutic targets. 

Abstract: (1) Background: Many transporters of the SLC22 family (e.g., OAT1, OAT3, OCT2, 

URAT1, and OCTN2) are highly expressed in the kidney. They transport drugs, metabolites, signal-

ing molecules, antioxidants, nutrients, and gut microbiome products. According to the Remote 

Sensing and Signaling Theory, SLC22 transporters play a critical role in small molecule communi-

cation between organelles, cells and organs as well as between the body and the gut microbiome. 

This raises the question about the potential role of SLC22 transporters in cancer biology and treat-

ment. (2) Results: In two renal cell carcinoma RNA-seq datasets found in TCGA, KIRC and KIRP, 

there were multiple differentially expressed (DE) SLC22 transporter genes compared to normal kid-

ney. These included SLC22A6, SLC22A7, SLC22A8, SLC22A12, and SLC22A13. The patients with 

disease had an association between overall survival and expression for most of these DE genes. In 

KIRC, the stratification of patient data by pathological tumor characteristics revealed the im-

portance of SLC22A2, SLC22A6, and SLC22A12 in disease progression. Interaction networks com-

bining the SLC22 with ADME genes supported the centrality of SLC22 transporters and other trans-

porters (ABCG2, SLC47A1) in disease progression. (3) Implications: The fact that many of these 

genes are uric acid transporters is interesting because altered uric acid levels have been associated 

with kidney cancer. Moreover, these genes play key roles in processing metabolites and chemother-

apeutic compounds, thus making them potential therapeutic targets. Finally, our analyses raise the 

possibility that current approaches may undertreat certain kidney cancer patients with low SLC22 

expression and only localized disease while possibly overtreating more advanced disease in pa-

tients with higher SLC22 expression. Clinical studies are needed to investigate these possibilities. 
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1. Introduction 

SoLute Carrier (SLC) genes are translated into membrane bound proteins critical to 

the transport of small molecules, including a wide range of xenobiotics and metabolites, 

in and out of organs [1]. For example, the gut-liver-kidney axis is critical for homeostasis 

as well as drug absorption, distribution, metabolism, and excretion (ADME) [2–4]. There 

are currently 66 human subfamilies of the SLC family, encompassing over 450 uniquely 

defined genes. These include multi-specific, oligo-specific and monospecific transporters 

of solutes, among which are many endogenous small organic molecules of considerable 

importance in physiology and pathophysiological states [5]. 

One SLC family that has received a great deal of attention is SLC22 [6,7]. This family, 

first identified in 1997 with three members (SLC22A6 or NKT or OAT1, SLC22A7 NLT or 

OAT2, and SLC22A1 or OCT1), now consists of over 30 members and is perhaps best 

known for its multi-specific “drug” transporters (e.g., organic cation transporters and or-

ganic anion transporters) [8]. SLC22 transporters have, in recent years been shown to play 

an essential role in endogenous metabolic processes [9–12]. This includes the regulation 

of a variety of important small molecules such as vitamins, uric acid, gut microbe-derived 

products, antioxidants, nutrients [13–15]. 

Originally, the SLC22 family was divided into three clades: organic cation transport-

ers (OCTs) and organic anion transporters (OATs), and organic zwitterion/cation trans-

porters (OCTNs) and additionally divided into subclades based on phylogenetic analysis 

[16]. More recently, these groupings have been further refined based on structural and 

genomic homology, metabolite interactions, and network characteristics based on sub-

strate specificity, revealing 8 distinct subgroups [17]. While the role of SLC22 transporters 

in metabolic disease and chronic kidney disease is now apparent [18], the role of SLC22 

transporters in other pathophysiological contexts is just beginning to be explored. In con-

trast to ABC transporters (e.g., p-glycoprotein, ABCG2 or BCRP, and members of the MRP 

or ABCC family), which transport drugs and have been studied in the context of cancer 

and tumor resistance, much less is known about the role of SLC22 “drug” transporters 

(and other SLC22 family members) in cancer. 

Previous work showing a link between increased SLC gene expression and cancer 

has focused on the upregulation of glucose, amino acid, and lactate transporters, presum-

ably in order to meet the increased nutrient and waste removal demands of cancer cells 

[19]. More recently, certain SLC22 family genes have been implicated as possible tumor 

suppressors, as in the cases of SLC22A7 in Hepatocellular Carcinoma [20] and SLC22A1 

in Cholangiocellular Carcinoma [21]. Another suggested role for SLC22 is in facilitating 

uptake of anticancer drugs. For example, an observed connection between increased 

SLC22A1, SLC22A2, and SLC22A3 expression and positive response to chemotherapy in 

colon cancer patients is thought to be due to the role of these genes specifically transport-

ing oxaliplatin into cancer cells [22–24]. 

Globally, renal cancer represented 2.2% of new cancer cases in 2020, totaling over 

431,000 instances [19]. Major risk factors include smoking and obesity [25] and there is a 

higher prevalence in men that has been attributed to differential rates of smoking between 

men and women. That said, there are higher obesity rates in women diagnosed with renal 

cancer [26]. Interestingly in women, the mortality rate is lower than the rate of diagnosis, 

which has led to the suggestion of a an “obesity paradox” which presumes a survival 

advantage in obese individuals diagnosed with renal cancer compared to non-obese peo-

ple [27]. Other risk factors include hypertension, chronic kidney disease/end stage renal 

disease, environmental exposure to carcinogenic chemicals, as well as inheritance of ge-

netic alterations (insertions, deletions, mutations) that predispose individuals to develop-

ment of kidney cancer [28]. 

There are 3 major forms of renal cell cancer, representing 90% of all cases. These are: 

clear cell Renal Cell Carcinoma (ccRCC, 75%), papillary cell (PRCC, 10%), and chromo-

phobe (ChRCC, 5%). ccRCC is twice as prevalent in men compared to women, and PRCC 

is more than 3:1 as prevalent in men; in contrast, ChRCC is somewhat more common in 



Cancers 2022, 14, 4772 3 of 22 
 

 

women who have ~55% of all cases of this form [29]. Since 1977, 5-year overall survival 

rates have improved considerably. There is significant stratification by stage at diagnosis, 

with only 12% 5-year survival for individuals with metastatic (Stage IV) disease [30]. 

Here, we used datasets available from The Cancer Genome Analysis (TCGA) project 

to explore the role of SLC22 transporters in clear cell renal carcinoma (KIRC) and papillary 

cell Renal Cell Carcinoma (KIRP). The analysis revealed an association between overall 

survival and expression of many SLC22 genes between tumor and normal tissue. Patient 

data was stratified according to tumor stage, tumor size and progression, lymph node 

involvement, and presence of metastasis, providing insight into the potential role of par-

ticular SLC22 transporters and their interactions with other genes, metabolites, and xeno-

biotics in disease progression. 

2. Materials and Methods 

2.1. Statistical Analysis 

All analyses, unless otherwise described, were performed in the R statistical compu-

ting environment (v3.5.1) along with the standard functions from the bioconductor pack-

ages for biostatistics functions. The packages used for specific analyses are described be-

low. 

2.2. TCGA RNA-Seq Analysis 

Comparison of specific tumor type and matched normal tissue gene expression data 

for SLC22 gene was performed with the GEPIA online graphical user interface, (http://ge-

pia2.cancer-pku.cn, accessed on 19 May 2021, [31]). This tool was used to produce gene 

specific expression boxplots for KIRC and KIRP tumor along with TCGA and GTEX nor-

mal kidney sample data. Within the boxplots, significant differences between the tumor 

and normal samples were determined as absolute log fold change (LogFC) greater than 1 

and q-values less than 0.01 based on pre-loaded limma analyses. 

KIRC and KIRP normalized RSEM estimate count data and associated metadata were 

obtained from the TCGA portal (http://portal.gdc.cancer.gov, accessed on 22 May 2021). 

The subset of expressed genes in each cancer were defined as having greater than 75 

counts in at least 50% of the tumor samples. Differential expression (DE) analysis along 

with normalization and generation of log-transformed counts per million (LogCPM) were 

performed with the R packages limma [32], and specific application of the limma-voom 

algorithm [33]. Limma models included metadata factors age, gender, and reported race 

as determined in the survival analysis for each gene. A threshold of 0.05 for the Benjamini-

Hochberg adjusted p-value was used to determine the significantly different genes [34]. 

All expression plots were created with the R package ggpubr (v 0.2.5). 

2.3. Survival Analysis 

Initial overall survival analysis results were obtained with the OncoLnc online graph-

ical user interface (www.oncolnc.org, accessed on 3 May 2021, [35]). This tool generates, 

for each expressed gene in each cancer type, a Cox proportional hazards model for overall 

survival fitted using the gene expression values and three metadata variables: AJCC Path-

ologic Stage, gender, and age. The output for each variable in the model is a Cox coeffi-

cient and an associated p-value that can be used to determine if the relationship between 

overall duration of patient survival and the variable are significant. Negative Cox coeffi-

cients correspond to variables where higher values (and higher expression for genes) cor-

relate with longer survival; and conversely for positive Cox coefficients. Genes were iden-

tified as significantly associated with a cancer type if the adjusted p-value was less than 

0.05. For the significant genes, the OncoLnc tools generates Kaplan–Meier survival analy-

sis curves based on the sets of patients with the highest (top tercile) and lowest (bottom 

tercile) expression of the gene. Logrank test p-values reporting the significance of the dif-

ference between the groups are also reported with the plot. 
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Additional survival analysis performed with functions from the R package Sur-

vminer (0.4.6). Using the available data from TCGA, the primary endpoint used for this 

analysis was overall duration of patient survival measured in days post-diagnosis of dis-

ease. The Cox proportional hazards models used in these analyses included the age and 

gender from the “base” model in the OncoLnc analysis and additional metadata variable 

combinations (Table S1) using the clinical metadata from the TCGA portal (Table S2). 

AJCC Pathologic Stage was not used in all models as AJCC Pathologic Stage depends 

upon some of the variables we were investigating (i.e., tumor size and progression, pres-

ence of metastasis). The threshold for significance of the p-values associated with the anal-

ysis of each Cox proportional hazards model was determined by dividing 0.05 by the total 

number of tested models in each cancer (0.05/221 = 2.2 × 10−4). For each significant SLC22 

gene, the model with the lowest p-value was chosen and reported along with the associ-

ated Cox coefficient and Hazard Ratio (Table 1). The directionality and magnitude of these 

values, while consistent with the OncoLnc results, are often greater, suggesting that the 

added variables increase the variance assignable to known factors and better isolate the 

impact of the expression of each SLC22 gene on overall survival. 

Table 1. SLC22 gene optimal Cox Proportional Hazards model results. 

Symbol EG ID 
Cancer 

Type 
Optimal Model * 

KIRC Cox 

Coef. 

Hazard  

Ratio 

SLC22A2 6582 KIRC Base + race + treatment type −0.433 0.649 

SLC22A4 6583 KIRC Base + race + treatment type −0.332 0.717 

SLC22A5 6584 KIRC Base + stage −0.354 0.702 

SLC22A6 9356 KIRC Base + race + treatment type −0.413 0.661 

SLC22A7 10864 KIRC 
Base + race + prior  

malignancy 
−0.319 0.727 

SLC22A8 9376 KIRC Base + race + treatment type −0.465 0.628 

SLC22A11 55867 KIRC Base + race + treatment type −0.384 0.681 

SLC22A12 116085 KIRC Base + race + treatment type −0.389 0.678 

SLC22A24 283238 KIRC Base + race + treatment type −0.442 0.643 

SLC22A2 6582 KIRP Base + prior malignancy −0.911 0.631 

SLC22A13 9390 KIRP 
Base + race + lymph node involve-

ment 
−0.668 0.513 

SLC22A18 5002 KIRP Base + race + tumor size/prog −0.644 0.525 

SLC22A24 283238 KIRP Base + race + stage −0.757 0.469 

* Base model: SLC22 gene expression + age + gender. 

These models were further analyzed in order to test whether the inclusion of the 

metadata variables violated the assumption of proportionality. This is determined by im-

plementing a chi-square test comparing the full (all variables) proportional hazards model 

with the null model using no variables. Models with p-values less than 0.01 generated by 

this test indicate a violation of the proportionality assumption and were not further inves-

tigated (Table S3). 

Each significant model was analyzed with the gene expression variable removed. A 

Hazard Ratio table for a Cox proportional hazards model incorporating age, gender, re-

ported race, and treatment type in KIRC produces a significant p-value for the age variable 

(Figure S1A). This variable was part of every model tested (including the OncoLnc mod-

els) and thus no further analysis was performed. For the model associated with SLC22A7 

in KIRC (Figure S1B), age was also significant while the two KIRP models had no variables 

that were significant (Figure S1C,D). These data show that, with the exception of age in 

KIRC, none of the metadata variables used in the combinations shown can stratify patients 

by their duration of overall survival. These graphical summaries were generated with sur-

vminer’s ggforest function (v0.4.6). 
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2.4. Network Analysis 

Interactions between DE genes for each comparison were identified using the 

STRING database of protein–protein interactions. The STRING medium confidence 

(Combined Score > 0.4) interactome is an assembly of physical and functional interactions, 

biological knowledge, and various computational metrics that include data mining and 

homology modeling that are used as input to generate a “Combined Score” [36]. These 

interactions were visualized within Cytoscape (v3.8.0) [37] with singletons removed. Net-

works were annotated with data from the log fold change from the DE analysis and genes 

in the top ~15% based on degree were noted. 

3. Results 

3.1. Decreased Expression of SLC22 Transporters in Kidney Cancers and Association with 

Poorer Outcomes 

Of the human SLC22 transporters of organic cations, anions, and zwitterions, there 

are 17 expressed at detectable levels in KIRC and KIRP based on the publicly available 

RNA-Seq data from The Cancer Genome Atlas (TCGA, http://portal.gdc.cancer.gov, ac-

cessed on 24 March 2021). Using the GEPIA2 tool (http://gepia2.cancer-pku.cn, accessed 

on 19 May 2021, [31]), we analyzed expression differences in a large cohort of primary 

tumors and normal kidney tissue and identified 6 genes significantly DE in both KIRC 

and KIRP (Figure 1A). Five of those are found in comparisons of both tumor types: 

SLC22A6/OAT1 (Figure 1B), SLC22A7/OAT2 (Figure 1C), SLC22A8/OAT3 (Figure 1D), 

SLC22A12/URAT1 (Figure 1E), SLC22A13/ORCTL3 (Figure 1F). For each of these DE 

genes, expression was decreased in the primary tumor sample groups, and the difference 

was significant based on limma differential gene expression analysis (adjusted p-value < 

0.01) [32]. 
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Figure 1. SLC22 gene expression changes between normal kidney tissue and KIRC and KIRP tu-

mors. (A) Heatmaps generated by RNA-Seq data collected from the GEPIA tool showing all ex-

pressed SLC22 genes in KIRC (left; num(Tumor) = 523; num(Normal) = 100) and KIRP (right; 

num(Tumor) = 286; num(Normal) = 60) tumors or normal kidney based on average transcripts per 

million reads (TPM). Tumor sample data is based on the TCGA cohort and normal kidney samples 

include matched tissue from TCGA and the GTEX cohorts. Asterisks indicate differentially ex-

pressed (DE) genes between tumor and normal with 5 out of 7 DE genes shared between the tumor 

comparisons. Expression boxplots generated using the GEPIA2 tool compare the expression distri-

bution (with individual points representing patient samples) in primary KIRC and KIRP tumors 
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and matched normal kidney tissue and GTEX samples for SLC22A6 (B), SLC22A7 (C), SLC22A8 

(D), SLC22A12 (E), SLC22A13 (F). For each of these genes in each comparison, the expression is 

significantly higher in normal samples compared to tumor based on limma differential gene expres-

sion analysis. Points represent log-transformed transcripts per million reads (TPM). *—limma ad-

justed p-value < 0.01. 

The categorizations of family and clade are shown for each of the SLC22 genes ex-

pressed in the kidney (Table 2). In the updated grouping, OATs are considered to be or-

ganic anion transporters, OCTs are considered organic cation transporters, and OCTNs 

are considered zwitterionic transporters. However, the associations implied by these gen-

eral groupings are not absolute, especially for the groupings designated “-related” [17]. 

Interestingly, of the DE genes between tumor and normal kidney tissue (in bold), 

SLC22A6, SLC22A7, and SLC22A8 are OAT1, OAT2, and OAT3. These are genes that 

function in the kidney to mediate transfer of a wide variety of organic anion molecules 

(including endogenous and xenobiotic molecules) from the blood to the proximal tubule 

via the basolateral membrane [14]. SLC22A12 (URAT1) and SLC22A13 are found on the 

apical membrane of the kidney and transport urate, amongst other substrates [38,39]. 

Table 2. SLC22 gene annotation and OncoLnc survival analysis results. 

Sym Alias EG ID Subclade * 
Updated 

Grouping ** 
Specificity 

KIRC Cox 

Coef. 

KIRC BH-adj 

p-val 

KIRP Cox 

coef. 

KIRP BH-adj 

p-val 

SLC22A1 OCT1 6580 OCT OCT Multi- 0.2069 &
0.02783 0.0921 0.69794 

SLC22A2 OCT2 6582 OCT OCT Multi- −0.3411 +&
0.00033 −0.9214 6.94 × 10−5 

SLC22A3 OCT3 6581 OCT OCT Oligo- 0.0074 0.94686 −0.3733 0.08201 

SLC22A4 OCTN1 6583 OCTN 
OCTN- 

related 
Oligo- −0.3159 0.00029 −0.3289 0.16737 

SLC22A5 OCTN2 6584 OCTN 
OCTN- 

related 
Oligo- −0.2901 #

0.00281 −0.4169 0.07343 

SLC22A6 OAT1 9356 OAT OATS1 Multi- −0.3473 +
0.00015 −0.0640 0.82770 

SLC22A7 OAT2 10864 OAT OATS2 Oligo- −0.2599 0.00814 −0.3251 0.15414 

SLC22A8 OAT3 9376 OAT OATS1 Multi- −0.3883 9.46 × 10−5 NA NA 

SLC22A11 OAT4 55867 OAT OATS3 Oligo- −0.3384 0.00049 −0.3131 0.12484 

SLC22A12  URAT1 116085 OAT OATS3 Mono- −0.3211 ^0.00135 −0.3657 0.07921 

SLC22A13 ORCTL3 9390 OAT-like OAT-like Mono- −0.2307 0.02281 −0.4095 0.04680 

SLC22A14 ORCTL4 9389 OAT-like OAT-like N/A 0.2288 0.01846 −0.2331 0.32010 

SLC22A15 FLIPT1 55356 
OCTN- 

related 
OCTN-related Mono- 0.1598 0.08677 0.2117 0.33305 

SLC22A17 BOCT 51310 
OAT- 

related 
OAT-related Mono- 0.0689 0.54035 −0.2479 0.23082 

SLC22A18 ORCTL2 5002 
OAT- 

related 
OAT-related N/A −0.0784 0.47059 −0.4283 0.04613 

SLC22A23 N/A 63027 
OAT- 

related 
OAT-related Oligo- −0.0992 0.35122 0.4132 0.05213 

SLC22A24 N/A 283238 OAT OATS4 Oligo- −0.3146 0.00200 −0.5923 0.00669 

* Defined in Zhu et al. 2015 [16]; ** Defined in Engelhart et al. 2020 [17]; and & shown previously in 

Ciarimboli et al. 2020 [40]; + Shown previously in Hu et al. 2020 [41]; # Shown previously in Edemir 

et al. 2020 [42]; ^ Shown previously in Xu et al. 2021 [43]. 

To further investigate the observation that SLC22 gene expression changes upon 

presentation of primary tumors in the kidney, we looked at overall survival times for pa-

tients suffering from KIRC and KIRP in the context of SLC22 gene expression (Table S2, 

Column J). In the kidney, SLC22 transporters are considered excellent markers of differ-

entiation [44–46]. Thus, the hypothesis was that decreases in SLC22 gene expression cor-

relate with (and possibly contribute to) reduced duration of overall survival following 

initial diagnosis in these tumor types. We used our list of expressed SLC22 genes as input 
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into the OncoLnc tool [35], which searches for significant correlations between gene ex-

pression and overall survival in 12 different cancer RNA-Seq datasets available from the 

TCGA Project. The outputs are Cox coefficients, raw, and adjusted p-values for all ex-

pressed SLC22 genes in the KIRC and KIRP datasets (Table 1). Negative Cox coefficients 

correspond to variables where higher values (and higher expression for genes) correlate 

with longer survival and conversely for positive Cox coefficients. A majority of the SLC22 

genes (12 of 17) demonstrate a significant association (B-H adjusted p-value < 0.05) with 

overall survival in KIRC while only 4 genes [SLC22A2, SLC22A13, SLC22A18, and 

SLC22A24] are significantly associated in KIRP. 

Of the significantly DE genes between KIRC primary tumors and normal kidney tis-

sue, SLC22A6 (Figure 2A, [41]), A7 (Figure 2B), A8 (Figure 2C), A12 (Figure S2A, [43]), 

and A13 (Figure 2D) also showed significant association with overall survival. Although 

the first three genes are multi-specific (SLC22A6, SLC22A7 and SLC22A8) and the latter 

two (SLC22A12 and SLC22A13) are relatively monospecific, it is worth noting that all of 

them are strongly implicated in transport of the anti-oxidant, uric acid. This may be of 

particular clinical-translational interest since, in a prospective analysis of the UK Biobank, 

high serum uric acid (SUA) levels were associated with higher incidence of renal cancer 

[47]. Other studies have also associated uric acid levels with renal cancer and outcomes 

[48,49]. For each of these genes, the signs of the Cox coefficient were all the same direction 

(negative). SLC22A13 was also significantly associated with overall survival in KIRP and 

had a negative Cox coefficient (Figure S2B). Two other genes, SLC22A2 (OCT2, Figure 

S2C,D) and SLC22A24 (Figures 2E and S2E) were significant in both KIRC and KIRP and 

had negative Cox coefficients. Consistent with our hypothesis, the negative Cox coeffi-

cients for these genes indicate that higher gene expression is observed in samples from 

patients with longer survival times. These results also extend the previously observed 

trend of decreased expression in tumor samples by showing that SLC22 expression further 

decreases in patients with poorer outcomes. 
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Figure 2. Kaplan–Meier plots for selected SLC22 genes in KIRC. Plot of the results of Kaplan–Meier 

survival analysis and logrank test showing the association of SLC22A6 (A), SLC22A7 (B), SLC22A8 

(C), SLC22A13 (D), and SLC22A24 (E) expression and overall survival (in days) in KIRC. High ex-

pression is defined as the top tercile (n = 172) of patient tumor values and low expression represents 

the bottom tercile. The p-value of the logrank test is significant at less than 0.05. 

3.2. Variables Other Than OAT Family Expression Associated with Decreased Survival 

Because these are transporters of endogenous metabolites and drugs—and, in the 

case of SLC22A6, SLC22A8, SLC22A12, established drug targets—these observations are 

of interest from both the viewpoint of cancer biology and therapeutics [50]. Therefore, we 

further investigated the relationship between overall survival and gene expression. To 

expand on the previous OncoLnc Cox proportional hazards model analysis using the 

metadata variables age and gender, we included additional demographic and oncologic 
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variables available from the TCGA (Table S2). These variables were: reported race, type 

of treatment (Radiation or Pharmaceutical), prior malignancy, tumor size and progression 

(AJCC Pathologic T), lymph node involvement (AJCC Pathologic N), and presence of me-

tastasis (AJCC Pathologic M). After analyzing all variable combinations (Table S1), there 

were 9 of 12 (SLC22A2, SLC22A4, SLC22A5, SLC22A6, SLC22A7, SLC22A8, SLC22A11, 

SLC22A12, SLC22A24) (Figure S3A) and 4 of 4 (SLC22A2, SLC22A13, SLC22A18, 

SLC22A24) (Figure S3B) SLC22 genes still significantly associated with overall survival in 

KIRC and KIRP, respectively. From these results, we determined that the oncologic vari-

ables tested were not part of highest performing proportional hazards models and a sep-

arate analysis utilizing these variables in limma models for differential expression is re-

quired to determine their relationship to SLC22 gene expression. 

3.3. Influence of OAT (and Other SLC22 Transporter) Expression on Tumor Stage and 

Individual TNM Parameters in the Context of Overall Survival 

The survival analysis tracks expression in the tumor with long term patient outcomes 

and suggests previously unidentified roles of OATs and other SLC22 genes in cancer bi-

ology and clinical outcomes. Since there are accepted criteria for the staging of malignant 

solid tumors for the purposes of estimating both disease progression, as well as the overall 

duration of intervention-less survival, we hypothesized that there is a relationship be-

tween the aforementioned SLC22 genes and the criteria for stage determination, specifi-

cally: tumor size and progression (AJCC Pathologic T), lymph node involvement (AJCC 

Pathologic N), and presence of distant metastasis (AJCC Pathologic M). To focus specifi-

cally on the relationship between our genes of interest and these pathologic classifications, 

the TCGA clinical metadata variables (age and gender) were added to the models used in 

DE comparisons. We determined there is no direct correlation between SLC22 gene ex-

pression and age or gender in the TCGA renal cancer data. In addition, there is a precedent 

for using these variables in linear models to obtain lists of differentially expressed genes 

[31]. Furthermore, in two separate Cox proportional hazards models in KIRC that were 

independent of gene expression, age was significantly associated with overall survival 

(Figure S1A,B). These results suggest that any biological variation associated with age will 

be removed in the limma models and increase our confidence in any significant DE SLC22 

genes. Additionally, based on the overall survival analysis data discussed above, reported 

race was included in the limma models. For both KIRC and KIRP, comparisons were made 

across each of the oncologic variables for the subset of SLC22 genes where sufficient sam-

ples had detectable gene expression levels. 

While multiple comparisons had no DE genes in the entire expressed gene list (i.e., 

Stage III vs. Stage IV), there were 6 DE SLC22 genes in the Tumor Size and Progression 

comparison in KIRC [SLC22A2, SLC22A5, SLC22A6, SLC22A11, SLC22A12, SLC22A18] 

(T3 v T4, Figure 3A, Tables 3 and S4). The comparison of absence vs. presence of Metasta-

sis (M0 v M1, Figure 3B) revealed 4 DE SLC22 genes (SLC22A2, SLC22A6, SLC22A12, 

SLC22A23). SLC22A2, SLC22A6, and SLC22A12 were DE in both these comparisons (T3 

v T4 and M0 v M1); moreover, SLC22A2 was also DE in the comparison of positive versus 

negative lymph node involvement (N0 v N1, Figure 3C). Two other comparisons, Stage I 

vs. II and Stage II vs. III, displayed significant differences in SLC22A17 expression (Figure 

3D). 
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Figure 3. SLC22 gene expression by class for pathologic variables in KIRC. (A) Violin plot of expres-

sion of SLC22 genes differentially expressed (DE) in KIRC between two successive sample subsets 

of the variable Tumor Size and Progression (T3 and T4). Plots of expression of DE SLC22 genes in 

the categories for the variable Presence of Metastasis, M0 and M1 (B); Lymph Node Involvement, 

N0 and N1 (C); and Pathologic Stage, Stage I, Stage II, Stage III, Stage IV (D). Expression is measured 

as the log of counts per million (Log(CPM)). 

Table 3. Summary of pathologic variable DE analysis in KIRP and KIRC. 

Oncologic 

Variable 
Comparison 

KIRP-SLC22  

(p adj. < 0.1) 

KIRC-SLC22  

(p adj. < 0.1) 

Stage Stage I v Stage II 0 2 
 Stage II v Stage III 0 1 
 Stage III v Stage IV 0 0 

T T1 v T2 0 0 
 T2 v T3 0 0 
 T3. v T4 0 6 

M M0 v M1 0 4 

N N0 v N1 5 2 

PriMalig Yes v No 0 0 

TxType Pharm v Rad 0 0 

In KIRP, only positive versus negative lymph node involvement (N0 vs. N1) showed 

any DE SLC22 genes which were SLC22A2, SLC22A18, SLC22A3, SLC22A11, and 

SLC22A5 (Figure S4). In comparing the lists of DE genes from KIRC and KIRP associated 
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with these oncologic staging criteria to those that were either DE between tumor versus 

normal tissue or implicated in overall survival (highlighted in orange in Table S5), these 

results support the conclusion that some SLC22 genes are important throughout develop-

ment and progression of kidney cancer. 

3.4. Biological Support and Network Interpretation of the Role of SLC22 Genes in KIRC and 

KIRP Disease Progression (in the Context of the Remote Sensing and Signaling Theory) 

SLC22-interacting genes are known to play a role in absorption, distribution, metab-

olism, and excretion of endogenous small molecules as well as drugs and toxins. For ex-

ample, an interaction network of 690 ADME-related and other genes revealed SLC22 

genes to be central within the network structure [12]. It was shown that there exists a 

highly connected network of ADME and other genes that is co-expressed across the gut, 

liver, and kidney tissues that likely plays a role in system level metabolism of xenobiotics 

(including chemotherapy drugs) and endogenous small molecules and metabolites. Ac-

cording to the Remote Sensing and Signaling Theory, such a network is critical for inter-

organ (e.g., gut-liver-kidney) and inter-organismal (e.g., gut microbe-host) communica-

tion via endogenous small molecules [1,6,15]. More generally, the Remote Sensing and 

Signaling Theory addresses the roles of multi-, oligo- and monospecific transporters in 

small molecule communication across organelles, cells, organs, organ systems, and organ-

isms. The SLC22 transporter family is particularly noteworthy in that it consists of multi-

, oligo,- and monospecific transporters with established in vivo and in vitro roles in the 

regulation of metabolites, signaling molecules, antioxidants, nutrients, and gut microbe 

products. It is possible that an accumulation of perturbations in genes of the SLC22 trans-

porter family and/or other genes in the larger Remote Sensing and Signaling network, 

driven by the gene expression changes associated with KIRC and KIRP disease progres-

sion, contributes to reduced overall survival for these patients. 

Similarly, SLC22 interactions with other compounds including metabolites, signaling 

molecules, antioxidants, nutrients and chemotherapeutic drugs are likely to contribute to 

overall patient survival. Given the reduced expression observed for many SLC22 genes, 

the downstream effect might be a shift in the SLC22 transporter-mediated uptake of these 

small molecules into tumor cells as the disease progresses across the multiple pathologic 

stages. Identification of the relevant interacting compounds for each SLC22 gene requires 

a multifaceted approach. Based on our work and others, we have compiled the com-

pounds that have been associated with the SLC22 transporters discussed here (Table S5). 

The data comes from in vitro transport assays, in vivo knockout mouse metabolomics, 

and GWAS studies. The asterisks indicate that metabolite data for SLC22A6 and SLC22A8 

comes from papers published by the senior author’s group [4,10,16,51–58]. The non-drug 

data is partly adapted from supplementary information in Engelhart et al. 2020 [17] with 

the addition of some other published data from the senior author’s group [59,60]. The data 

on the association of these transporters with endogenous metabolites, signaling mole-

cules, nutrients, and antioxidants may shed mechanistic light on tumor growth, invasion 

and/or metastasis. The chemotherapeutic drug data was found in the UCSF-FDA Trans-

portal [61] where there is information on SLC22A2, SLC22A5, SLC22A6, and SLC22A8 

interactions with chemotherapeutic drugs. Loss of these uptake transporters with disease 

progression could conceivably play a role in tumor resistance to certain chemotherapeu-

tics. 

Of the 690 ADME-related and other genes in the aforementioned network, 430 were 

expressed in KIRC, and 511 were expressed in KIRP. For these expressed network genes, 

we performed the same comparisons for differential expression across the T, N, and M 

categories described above for the SLC22 genes (Table S6). The DE genes were combined 

with the DE SLC22 genes to generate networks and calculate network metrics using the 

STRING interaction database [36]. The two largest networks were generated using the DE 

genes from the tumor size/progression class, T3 v T4 (156 nodes, Figure 4A), and presence 

of metastasis, M0 v M1 (158 nodes, Figure S5A), comparisons. Analysis of each network 
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was performed to generate a series of metrics including degree, betweenness centrality, 

and closeness centrality (Table S7). Consistent with our hypothesis that the SLC22 family 

plays an important role in the progression of KIRC, as measured by degree, four SLC22 

genes are found in the top 10 most connected genes in the T3 v T4 network (Figure 4B). 

 

Figure 4. SLC22 gene network and metrics for tumor size/progression class 3 vs. 4 comparison. 

SLC22 and ADME interaction network composed of DE genes for the comparison of Tumor Size 

and Progression, T3 vs. T4 (A). The 424 Edges represent interactions found in the STRING interac-

tion database and the transparency of the edges is a function of the Combined Score which is also 

stored in the database. With the exception of SLC22 genes (green triangles), nodes are colored by 
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log fold-change in the relevant comparison and the node sizes correspond to the negative log(ad-

justed p-value). Nodes with the highest (top 10) degrees are identified within black boxes. (B) Table 

of the top 10 genes by degree identified by black boxes in (A). 

Two interesting ADME genes that were ranked in the top 5 by closeness centrality in 

each of the KIRC networks are ABCG2 and SLC47A1. In addition to being central to each 

of these networks, they are DE in each comparison. Violin plots show the changes in these 

two genes for tumor size/progression, T3 vs. T4 (Figure 5A), lymph node involvement, N0 

v N1 (Figure 5B), and presence of metastasis, M0 v M1 (Figure 5C). Furthermore, SLC47A1 

is DE in the KIRP comparison of lymph node involvement classes, N0 v N1 (Figure 5D). 

 

Figure 5. SLC22 interacting gene expression by class for pathologic variables in KIRC. Violin plot of 

expression of ABCG2 and SLC47A1 that are DE in KIRC between two successive sample subsets of 

the oncologic variable Tumor Size and Progression, T3 v T4 (A), Lymph Node Progression, N0 v N1 

(B), and presence of Metastasis, M0 v M1 (C). Expression of SLC47A1 in KIRP Lymph Node Pro-

gression, N0 v N1 (D). Expression is measured as the log of counts per million (Log2(CPM)). 

As seen with the SLC22A2 and SLC22A12 genes, expression changes across onco-

logic variables can be accompanied by a correlation with overall survival. Using the On-

coLnc tool, we observed that both ABCG2 and SLC47A1 had significant and negative Cox 

coefficients, −0.36 (adjusted p-value = 3.0 × 10−4) and −0.415 (2.2 × 10−5), respectively, indi-

cating that decreased expression of these genes is associated with reduced overall survival 

duration (Figure 6A,B). Interestingly, while SLC47A1 shows a significant decrease in ex-

pression in KIRP N0 vs. N1, its expression is not significantly associated with overall sur-

vival in these patients. These data indicate that the central genes in the network of 
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transport and metabolic factors that are changing in KIRC are also important to the overall 

survival of patients with the disease. 

 

Figure 6. Kaplan–Meier plots for selected SLC22 interacting genes in KIRC. Association of ABCG2 

and SLC47A1 and overall survival in KIRC is significant using Cox proportional hazards regression 

model and the Cox coefficient is negative indicating that higher expression is observed in patients 

with longer survival. This relationship is shown by Kaplan–Meier plot in KIRC for ABCG2 (A) and 

SLC47A1 (B). The red line represents patients with gene expression above the median for the gene 

of interest; the blue line represents patients with gene expression below the median. The p-values 

associated with logrank tests comparing the halves are also shown. 

4. Discussion 

Many SLC22 transporters have high and sometimes nearly exclusive expression in 

the kidney [12,38]. Downregulation of various SLC22 subfamily genes have been associ-

ated with kidney disease [62]. For example, the SLC22 genes SLC22A6/OAT1 and 

SLC22A8/OAT3 participate in the transport of uremic toxins during renal excretion, and 

accumulation of certain uremic toxins can contribute to the progression of chronic kidney 

disease [6,55]. Specifically, we observed large reductions in expression of multiple SLC22 

genes in two of the most common types of kidney cancer, ccRCC/KIRC and PRCC/KIRP 
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(Figure 1A). Multiple OAT and OAT-like genes were downregulated in both cancer types. 

When looking at the expression patterns of these genes within the normal and tumor sam-

ple populations, it is clear that while these changes are significant, there is a large popu-

lation without decreased expression in their tumor and also a number of individuals with-

out high SLC22 expression in their normal kidneys (Figure 1B). For those individuals with 

decreased SLC22 gene expression, there is a strong potential for systemic complications 

arising from the reduced capacity to metabolize the uremic toxins and other small mole-

cules. 

Before discussing the SLC22 genes identified in this study in relation to renal cell 

cancer and various oncologic variables (TNM class) used to determine pathologic stage, 

we note previous work has shown that SLC22A2, SLC22A12, and SLC22A13 are down-

regulated in human kidney tumors [43,56,63]. Based on these observations and the avail-

ability of the OncoLnc tool [35], we investigated the connection between SLC22 gene ex-

pression and overall survival in patients with KIRC and KIRP primary tumors. In addition 

to confirming previously published results showing an association between overall sur-

vival and expression of SLC22A1/OCT1 and SLC22A2/OCT2, SLC22A5/OCTN2, 

SLC22A6/OAT1, and SLC22A12/URAT1 in KIRC [41,43,64,65], multiple additional SLC22 

genes of the OAT and OAT-related subclades were also associated with overall survival, 

including SLC22A7, SLC22A8, and SLC22A13 (Figures 2 and S1). These genes were also 

DE between KIRC tumors and normal kidney. In KIRP, there were three genes associated 

with overall survival that were also significant in KIRC: SLC22A2, SLC22A13, SLC22A24. 

The patients with lower expression of each of these SLC22 genes had shorter overall sur-

vival durations, raising the possibility that reduced capacity for transport by these trans-

porters has systemic effects on the individual. 

With this overall survival information in hand, we performed a deeper investigation 

into the oncologic variables (TNM classification) used to classify tumor behavior as well 

as interacting genes. This resulted in novel insights likely to be of interest in the contexts 

of cancer biology and therapeutics. The base Cox proportional hazards model used by the 

OncoLnc tool incorporates the additional variables of age, gender, and stage (determined 

by pathology) in order to better account for the relationship between each gene’s expres-

sion and duration of overall survival. To further investigate this relationship, we sequen-

tially incorporated additional demographic and tumor associated variables into Cox mod-

els. The demographic variable of reported race was part of nearly all the top scoring mod-

els for SLC22 genes in both KIRC and KIRP, and the p-values associated with these models 

were lower than the original base models (Table 2). While inclusion of this variable can be 

problematic due to nuances associated with collecting this information (i.e., underrepre-

sentation of the Asian subgroup), the data suggest that, in the context of specific SLC22 

gene expression, it can improve our ability to identify those patients who might need more 

aggressive treatment due to reduced overall survival times. 

Another variable identified in multiple highest performing models in KIRC is “treat-

ment type.” Given that this variable was a significant covariate in most of the KIRC mod-

els, we took it as an indication that something about those treatment groups increases the 

variance in gene expression values within other variables of interest to us. This variable, 

treatment type, has two possible values: Pharmaceutical and Radiation. The variable was 

not present in any of the models that violated the assumption of proportionality, and it 

was not significant in the proportional hazards model without gene expression values. 

The standard of care for KIRC and KIRP, following surgical resection of the tumor, varies 

depending on the staging information—where more localized disease (Stage I) will most 

likely be treated through radiation while advanced (or at least non-localized) disease will 

be treated with pharmaceuticals or a combination of both [66]. Interestingly, there is 

strong evidence that patients receiving blood transfusions at the time of surgery had sig-

nificantly increased disease recurrence and cancer specific mortality [67]. With both the 

observation that surgical details are important and that accounting for treatment type in 

the model improves the association of SLC22 gene expression and overall survival, it is 
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conceivable that the current criteria used for deciding the course of treatment may be un-

dertreating localized disease when SLC22 gene expression is low or overtreating more 

progressive disease where SLC22 gene expression is still elevated. It is also undergirding 

the need for biomarkers that can be used to personalize treatment regimens, where ex-

pression of specific SLC22 genes could be part of the panel for KIRC and KIRP. 

An interesting observation in the deeper survival analysis is the lack of the oncologic 

variables related to disease progression (tumor size and progression, lymph node involve-

ment, and presence of metastasis) in the best performing models. This suggests that SLC22 

gene expression correlates with these variables; and it has been established that these var-

iables contribute to assignment of stage and stage correlates with overall survival [40]. On 

the other hand, the potential correlation with oncologic variables made it likely that SLC22 

gene expression was significantly changed across the various levels of the oncologic vari-

ables. Differential expression analysis did identify many SLC22 genes that were changed 

in KIRC but only a handful in KIRP (Table 3). Some of these genes were found in multiple 

comparisons. In KIRC, the SLC22 genes significant in the most comparisons analyzing 

disease progression were SLC22A2, SLC22A6, and SLC22A12. Furthermore, SLC22A2 

was seen to be DE between patients with and without lymph node involvement in both 

KIRC and KIRP. 

SLC22A12 is DE between KIRC tumors and normal kidney, associated with overall 

survival in KIRC and DE between tumor size and progression (T3 vs. T4, Figure 3A), stage 

I v II, and presence of metastasis (M0 vs. M1, Figure 3B). It has been identified as a bi-

omarker of KIRC and shown to inhibit cancer cell growth in vitro when overexpressed 

[43]. SLC22A12 (aka URAT1) is, additionally, best known as a kidney transporter of urate, 

an antioxidant, which may be relevant to tumor behavior. Indeed, many of the OATs and 

OAT-related SLC22 transporters identified here are known urate transporters (SLC22A6, 

SLC22A7, SLC22A8, SLC22A11, SLC22A12, SLC22A13) [42,57,58]. In the context of treat-

ing uric acid disorders, several of these transporters are established drug targets 

(SLC22A6, SLC22A8, SLC22A12). The effects of these existing drugs on kidney cancer bi-

ology is worthy of further investigation. 

As a first step toward a biological and/or clinical interpretation of the observed SLC22 

gene expression changes, we curated a list of endogenous small molecules and chemo-

therapeutic drugs that have documented interaction with SLC22 transporters. These in-

teractions, compiled from our own prior studies and available databases containing the 

work of others, included information from in vitro transport assays, in vivo murine knock-

out studies, and human GWAS. These data support the importance of SLC22 genes in 

regulating levels of metabolites, signaling molecules and antioxidants in both cells and 

plasma. In the context of their altered expression in kidney cancer and their relationship 

to disease progression, this suggests that they may play a key role in tumor biology related 

to pathological stage. Moreover, their role in uptake of chemotherapeutic agents like 

methotrexate and cis-platinum raises the possibility that their altered expression may play 

a role in tumor responsiveness to certain chemotherapeutics. 

In a subsequent. analysis, we identified ADME and related genes that were differen-

tially expressed and generated interaction networks to visualize the SLC22 genes within 

a larger gene set (Figures 4A and S5A). Strong support for our hypothesis that the SLC22 

genes are important was shown in their centrality to these networks as measured by de-

gree and closeness centrality (Table S7). Additional non-SLC22 genes, ABCG2 and 

SLC47A1 were also observed to be central to these networks (Figures 4B and S5B). The 

ABC transporter gene, ABCG2, transports urate in normal kidney tissue [68]. It has been 

shown to transport xenobiotics and play a role in multi-drug resistance to chemothera-

peutic drugs in other types of cancer [69]. We observed significant changes in ABCG2 gene 

expression within multiple comparisons of the TNM classes of oncologic variables (Figure 

5A–C) and also a larger association of expression with overall survival (Figure 6A). Pre-

vious work has also shown the relationship between ABCG2 expression and overall sur-

vival in KIRC [41,70]. Similarly, SLC47A1 was DE in multiple comparisons (Figures 5A–
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D) and shown previously to be significantly associated with overall survival in KIRC (Fig-

ure 6B) [71]. These results are strong confirmation that the further investigation of the 

central genes identified in this network approach are likely to have importance in the pro-

gression of KIRC and KIRP. 

It is worth considering some strengths and limitations of what has been presented 

here. The TCGA dataset used is an invaluable resource due to the size of the cohort and 

the metadata available for each patient sample. However, these bulk RNA-Seq expression 

levels are many years old and newer technologies, such as single cell RNA-Seq, could 

provide better specificity and resolution regarding whether the genes studied here are 

decreased in both tumor and non-tumor cells. Similarly, other types of data like somatic 

mutation and protein abundance levels could provide additional context and support for 

the observed expression levels in the RNA-Seq data. Alternatively, the results described 

here provide some promising leads for diagnosis/prognosis of longer compared to shorter 

overall survival durations based on SLC22 gene expression. Further testing and validation 

are needed. 

5. Conclusions 

Using publicly available datasets from the TCGA project, we investigated the role of 

SLC22 transporters in the two most common types of renal cell carcinoma, KIRC and 

KIRP. Many important SLC22 genes—including those of the OAT and OAT-related 

groups—had decreased expression over the continuum of stages of renal cell carcinoma 

from well-functioning, healthy kidneys to advanced metastatic disease. This relationship 

is manifested, when accounting for the patient-specific demographics of gender and age 

at diagnosis, in the significant association of decreased SLC22 gene expression with re-

duced duration of overall survival. Most often, this association was deepened by account-

ing for reported race, but not factors that define pathologic disease progression. Alterna-

tively, analysis of patients with different classifications of tumor size/progression, lymph 

node involvement, and presence of metastasis identified multiple SLC22 transporters as 

significantly changed, often decreasing with severity. Within the context of a network of 

transporter and metabolic genes, SLC22 genes are central along with other genes like 

ABCG2 and SLC47A1; and identifying the meaning of this centrality is likely to be an 

important step in understanding the stratification of overall survival within the popula-

tion of kidney cancer patients. A number of the identified transporters (e.g., 

SLC22A12/URAT1, SLC22A6/OAT1, SLC22A8/OAT3, ABCG2) are well-established uric 

acid transporters; this may be clinically important since, as discussed above, a number of 

studies indicate that altered uric acid levels and kidney cancer are associated. According 

to the Remote Sensing and Signaling Theory, uric acid and other antioxidants, metabo-

lites, and signaling molecules are transported by SLC22 and other transporters to regulate 

small molecule homeostasis across organelles, cells, organs, and organisms [1,6,38,39]. 

Concepts underlying this theory could be highly relevant to cancer biology. Moreover, 

these genes have the potential to be used as targets of treatment and/or biomarkers for 

overall survival, especially in advanced disease. There are few treatments for metastatic 

renal carcinoma, so the prospect of new potential therapeutic targets requires novel inter-

pretations and analyses of the currently available data. In addition, our studies suggest 

that strategies for kidney cancer treatment need to consider the potential biomarkers 

found here. It is at least conceivable that present strategies may insufficiently treat disease 

in patients with low SLC22 expression but only localized disease. In contrast, the possibil-

ity exists that patients with advanced disease and higher SLC22 expression might be over-

treated. It is important that future clinical studies address these possibilities. 
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