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Simple Summary: Polyunsaturated fatty acids (PUFAs) and their derivatives, oxylipins, are a con-
stant focus of cancer research due to the relationship between cancer and processes of energy
metabolism and inflammation, where a PUFA system is an active player. Only recently have methods
been developed that allow for studying such complex systems. Using the Rank-based Random Forest
(RF) model, we show that PUFA metabolism genes are critical for the pathogenesis of breast cancer
(BC); BC subtypes differ in PUFA metabolism gene expression. The enrichment of BC subtypes with
various genes associated with oxylipin signaling pathways indicates a different contribution of these
compounds to the biology of subtypes.

Abstract: Polyunsaturated fatty acid (PUFA) metabolism is currently a focus in cancer research
due to PUFAs functioning as structural components of the membrane matrix, as fuel sources for
energy production, and as sources of secondary messengers, so called oxylipins, important players of
inflammatory processes. Although breast cancer (BC) is the leading cause of cancer death among
women worldwide, no systematic study of PUFA metabolism as a system of interrelated processes in
this disease has been carried out. Here, we implemented a Boruta-based feature selection algorithm
to determine the list of most important PUFA metabolism genes altered in breast cancer tissues
compared with in normal tissues. A rank-based Random Forest (RF) model was built on the selected
gene list (33 genes) and applied to predict the cancer phenotype to ascertain the PUFA genes involved
in cancerogenesis. It showed high-performance of dichotomic classification (balanced accuracy of
0.94, ROC AUC 0.99) We also retrieved a list of the important PUFA genes (46 genes) that differed
between molecular subtypes at the level of breast cancer molecular subtypes. The balanced accuracy
of the classification model built on the specified genes was 0.82, while the ROC AUC for the sensitivity
analysis was 0.85. Specific patterns of PUFA metabolic changes were obtained for each molecular
subtype of breast cancer. These results show evidence that (1) PUFA metabolism genes are critical for
the pathogenesis of breast cancer; (2) BC subtypes differ in PUFA metabolism genes expression; and
(3) the lists of genes selected in the models are enriched with genes involved in the metabolism of
signaling lipids.

Keywords: breast cancer; machine learning; PUFAs; transcriptomics; random forest

1. Introduction

Breast cancer (BC) is the leading cause of cancer death among women worldwide [1].
BC is a heterogeneous disease; such a feature determines the risk of disease progression
and its resistance to therapy [2,3]. There are five molecular subtypes of BC: luminal A,
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luminal B, HER2-enriched, basal-like, and normal-like [4]. Depending on the subtype,
various molecular mechanisms of the pathogenesis of neoplasia are realized [3], while the
patterns of metabolic phenotypes of molecular subtypes remain insufficiently studied [5].

The understanding of the relationship between changes in metabolism and cancer
development has changed the focus of research several times over past decades [6]. Initially,
studies of the mechanism of the “Warburg effect”, i.e., a metabolic switch from oxidative to
glycolytic metabolism, attracted the greatest interest and, then, its relationship with the
metabolism of nucleotides, lipids, and proteins [7]. Currently, metabolic rewiring has been
recognized as an important feature to the progression of cancer in light of producing signal
molecules [8].

One of the leading roles in the synthesis of signal lipid mediators is ascribed to the
polyunsaturated fatty acids (PUFAs). Polyunsaturated fatty acids have more than one
double bond in the carbon skeleton and represent a part of fatty acid (FA) metabolism.
These acids are divided according to the double-bond position, the main important ones
of which are the so-called Omega-3 (e.g., DHA and EPA) and Omega-6 (e.g., AA). Besides
being structural components of the membranes and fuel sources for energy production,
PUFAs also have a signaling function themselves or via their oxidative derivatives [9].
Both PUFAs and their oxidized derivatives, oxylipins, modulate the intrinsic cell programs
and are utilized for communication with neighbor cells [10,11]. The important role of
PUFAs and their corresponding oxylipins is an involvement in regulation of inflammatory
processes. Omega-3 PUFAs (DHA and EPA) are attributed mainly to anti-inflammatory
effects, while Omega-6 PUFAs, such as AA, are thought to be a part of proinflammatory
pathways [12]. Oxylipins could be derived from Omega-3 as well as Omega-6 PUFAs [13,14].
Along with their precursors, oxylipins are responsible for inflammation and its subsequent
resolution [15–17].

Inflammation is designated as a characteristic among the hallmarks of cancer [6,9,18,19],
and unresolved, chronic inflammation, characterized by abnormal oxylipins synthesis,
becomes fertile soil for malignant transformation and tumor immune evasion, including
colorectal [12], gastrointestinal [20], colon [21,22], breast [23,24], pancreatic [25], prostate,
and lung [26] cancers, and in melanoma [27]. Although for decades, it was known that the
action of oxylipins is complex and is the result of PUFA metabolism through various enzy-
matic pathways [13,14,28], only recently did the development of omics technologies and
algorithms for analyzing the data open up new opportunities in studying the role of PUFAs
and their metabolites in the development of various diseases. Although there is evidence
that individual oxylipins or the expression of genes responsible for their metabolism may be
characteristics of different subtypes of BC [29,30], no systematic study of PUFA metabolism
as a system of interrelated processes in this disease has been carried out. Further research
concerning the role of dysregulated PUFA metabolism in the pathobiology of cancer holds
great promise in uncovering novel metabolic and signaling nodes for targeted therapies.

Transcriptome analysis is one of the productive ways to study metabolic pathways
alteration. It was shown that cancer metabolic reprogramming is regulated on the tran-
scription level [31–33]. The heterogeneity of breast cancer and the variability of metabolic
processes accompanying this heterogeneity requires a big amount of data to study. The
data have been accumulated with the rise in next-generation sequencing (NGS) techniques
and microarrays [34,35]. The joint analysis of such datasets via machine learning (ML)
approaches could better resolve PUFAs’ roles in breast cancer development.

ML approaches, particularly, the Random Forest (RF) [36] algorithm, have already
been successfully applied to expression data analysis for various cancer types [37,38].
Nonetheless, the use of the entire data set is restricted by the differences in the corre-
sponding technologies. Nonparametric methods independent of monotonic normalization
can be used to overcome these limits [39,40]. Combining the nonparametric techniques,
particularly, the ranking of the expression profile, with Random Forest simplifies the RF
application on heterogeneous datasets. RF approaches are effectively implemented to
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distinguish heterogeneous groups, while, as far as we know, they have not been run for
PUFA pathway analyses.

In this study, we used an approach based on the combination of nonparametric
method and RF model. Note that the Boruta feature selection [41,42] and Sequential
Feature Selector [43,44] methods have been widely used and shown to be beneficial. The
use of the Boruta feature selection algorithm [45] made it possible to identify the genes
responsible for PUFA metabolism alterations in BC. The prediction ability of the classifiers
was tested on independent datasets. The study has expanded our knowledge about the
role of PUFA metabolic pathways in breast cancer pathogenesis and allowed us to identify
their specific patterns in different molecular subtypes of breast cancer.

2. Materials and Methods
2.1. Data Source

Transcriptome profiles for samples of breast cancer and normal adjacent tissues were
used to train and validate the Random Forest model. For dichotomic classification of breast
cancer and normal tissue samples, four datasets from the database Gene Expression Omnibus
(GEO) were obtained (GSE65216, GSE29044, GSE1078, and GSE62944) (GEO; http://www.
ncbi.nlm.nih.gov/geo/ (accessed on 18 February 2022)) (Supplementary Table S2). Dataset
GSE62944 presents TCGA data from the TCGA (The Cancer Genome Atlas) database (Broad
GDAC, https://gdac.broadinstitute.org/ (accessed on 18 February 2022)). Three datasets
were used (GSE65216, GSE29044, and GSE1078) for the training set and included 221 tumor
and 185 normal samples. TCGA data were used for the validation set and consisted of 1082
tumor and 113 normal samples. In order to distinguish among the subtypes of breast cancer
by the differences in PUFA metabolism gene expression between five datasets (GSE81538,
GSE25066, GSE31448, GSE96058, and GSE21653) with molecular subtypes, annotations were
extracted from the GEO database (GEO; http://www.ncbi.nlm.nih.gov/geo/ (accessed on
18 February 2022)) (Supplementary Table S3).

2.2. Random Forest Model

A Random Forest [36] predictor was built using the random Forest [46] R package.
Briefly, Random Forest is an assembly of decision trees. It represents the union of two
methods: bagging and random subspace method (RSM) [47]. Three main steps can be
highlighted when building a Random Forest classifier:

1. From input data N × M (where N is the number of samples and M is the number of
used features), k subsets are randomly selected with a return;

2. A decision tree is built for each subset;
3. The final decision is made on the majority vote for classification tasks or by averaging

in the regression tasks.

Each decision tree includes a number of comparisons of the feature values and thresh-
old, which is set during the model training. This fact limits the usage of random forest
to gene expression data. In order to overcome this limitation, we ranked genes within a
sample in both the training and test sets.

After performing a ranking procedure, genes from the PUFA list presented in both the
training and test sets (for dichotomic and multi-class classification separately) were selected.
The Boruta algorithm (Boruta R package) was implemented on the training sets with the
extracted PUFA genes (185 genes for tumor vs. normal samples predictor; 155 genes for
molecular subtypes predictor) to shrink the number of studied genes. Final classifiers
were built on the genes highlighted by Boruta as important ones (33 for tumor vs. normal
samples comparison; 46 genes for molecular subtypes comparison) with the number of
trees being 450 (Supplementary Figure S2). The code for the described analysis can be
found at the GitHub repository: https://github.com/gurylevamv/PUFA_rRF (accessed on
21 September 2022).

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://gdac.broadinstitute.org/
http://www.ncbi.nlm.nih.gov/geo/
https://github.com/gurylevamv/PUFA_rRF
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2.3. Boruta Feature Selection Algorithm

The feature selection algorithm Boruta was used to computationally identify the genes
for which expression is important to distinguish between biological conditions. The main
idea of this algorithm is to compare the features’ importance with the randomized version
of themselves. The randomized features are referred to as shadows. Technically, a shadow
feature is obtained from the initial one through value shuffling in a dataset copy. Two
datasets, the initial features and the one with shadow features, are then merged. The
Random Forest classifier is built on the merged dataset, and the importance of all features
are calculated by the classifier. If the importance of an initial feature is greater than the
maximum of shadow feature importance, then it receives 1 score. These operations are
repeated a pre-given number (say N) of times. As a result, we obtain the sums of the scores
for each feature after N trials. In a null model, these trials are binomially distributed. If
the score of a feature is greater than the 99.5% quantile of the distribution, the feature is
accepted as the important one. We used the Boruta algorithm as R package Boruta (accessed
on 18 February 2022) [45]. The Boruta algorithm was applied to the PUFA gene list both
for dichotomic (tumor vs. normal controls) and multi-class classifications. For greater
confidence in the selected features, Boruta’s algorithm with the default cycles’ number
parameter N (250) was run 100 times. The genes selected in 90% or more of the runs were
finally considered as important genes. In the dichotomic sample comparison, 33 PUFA
genes were selected by Boruta as important for classification. In the molecular subtype
classification, 46 genes were selected as important.

2.4. Sequential Feature Selector for Minimal Gene Set Selection

The Sequential Feature Selector (SFS) [48] was implemented to reach the minimal set
of genes that shows the highest classification performance. This algorithm consequently
selects a feature that will maximize the quality criterion function from the space of all
features. Additionally, we used a floating extension of the SFS method (SFFS) that allows
us to remove features if this step will make the prediction better. SFFS was used from the
mlxtend Python package (accessed on 18 February 2022) [49].

2.5. SHAP Values to Identify the Most Important PUFA Genes

SHAP refers to Shapley additive explanations, which is an approach that allows us to
reach an explanation for the machine learning models output. It calculates the importance
for each feature in each single sample. By applying SHAP values to the built predictors,
we enhance their transparency, and moreover, in multi-class classification, it allows us to
reach the importance of the feature in the separation of each class. SHAP calculations were
performed via the SHAP package in Python (https://shap.readthedocs.io/ (accessed on
18 February 2022)).

2.6. Enrichment Analysis

A GO functional annotation (Biological process, Molecular function) [50], and a
KEGG [51] and Wiki pathway [52] enrichment analysis for the important PUFA genes
revealed was performed via the Enrichr tool wrapped in python in the GSEApy package
(https://gseapy.readthedocs.io/en/latest/introduction.html#gseapy-enrichr-module (ac-
cessed on 18 February 2022)). Background gene sets were set as the lists of PUFA genes
presented in both the training and test cohorts separately for the classification of tumor and
normal samples and for the molecular subtypes. Terms with adjusted p-value < 0.001 were
considered statistically significant.

2.7. Differential Expression Analysis

The expression levels of the genes that were selected as important features for di-
chotomic classification were compared between the tumor and normal sample groups
with a two-sided Mann–Whitney test, followed by the Benjamini–Hochberg procedure for
multiple comparisons. The false discovery rate (FDR) was set as 0.05. To find PUFA genes

https://shap.readthedocs.io/
https://gseapy.readthedocs.io/en/latest/introduction.html#gseapy-enrichr-module
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that were differentially expressed across molecular subtypes, the first one-way ANOVA
test was applied to the expressions of the genes that were previously selected as important
for the molecular subtype classification. Genes with significantly (adjusted p-value < 0.05)
different expression means were further compared between subtypes with a one-sided
Mann–Whitney test, followed by the Benjamini–Hochberg (FDR = 0.05). Tests were per-
formed with the SciPy library (https://scipy.org/ (accessed on 18 February 2022)) and the
statsmodel module in Python (https://www.statsmodels.org/stable/index.html (accessed
on 18 February 2022)).

3. Results
3.1. Validation of Machine Learning Nonparametric Approach

This study is based on the Random Forest (RF) machine learning approach. The RF
model consists of a number of decision trees with thresholds learned from the training
set. A direct combination of different datasets does not work in this framework due to
the differences in platforms that do not allow us to learn the common thresholds even
for similar biological conditions. This limitation was overcome by the combination of the
nonparametric method with RF algorithm (see the Section 2.2). This approach allowed us
to use merged datasets to learn and to test the RF model. The model was validated on a
dichotomic classification of head and neck cancer and normal tissues based on the 1000
most variable genes (Supplementary Figure S1). Quality metrics (Balanced accuracy 0.99,
ROC-AUC 0.99, PR-AUC 0.96) showed high performance and biological relevance of the
most important features selected by Boruta [45] from the ranked expression levels of the
1000 genes.

3.2. Rank Model to Identify Most Important PUFA Genes for Breast Cancer vs. Normal
Tissues Classification

To assess the role of PUFA metabolism in the pathogenesis of BC, we compiled a list of
202 genes based on known data [13,14,53–55] that was previously described (Genes List in
Supplementary Materials) [56]. We performed a systematic search for transcriptomes from
open databases using previously developed tool ARGEOS [57], and we selected datasets
GSE65216, GSE29044, GSE10780 (n = 231 tumor samples, n = 185 normal samples), and
GSE62944 (n = 1082 tumor samples, n = 113 normal samples), with the latter representing
TCGA data from the TCGA (The Cancer Genome Atlas) database. The datasets included
samples of both breast cancer and normal adjacent tissues (Supplementary Table S2).
Next, the initial list of PUFA genes selected overlapped with the genes presented in the
datasets; 185 genes presented in all datasets were chosen for further analysis (Genes
list, Supplementary). The chosen datasets were divided into two groups: training sets
(GSE65216, GSE29044, and GSE10780) and test set (GSE62944). The workflow for further
studying the differences in PUFA regulation between normal and breast cancer samples is
presented in Figure 1.

We used our pipeline based on the Boruta feature selection method. We reran Boruta
several times, and on each run, the method selected the genes with ranked expression
levels that are reliably more important for the classification than their shuffled ranks; see
the Section 2.3. for details. From the 185 PUFA genes, 33 genes (Supplementary Genes list)
were chosen as important in the training set (Figure 1, left flowchart).

These genes were further used to learn a rank Random Forest dichotomic model. The
model’s quality was evaluated on the test samples (Figure 1, right flowchart). The results
are shown in Figure 2 and Supplementary Table S4.

https://scipy.org/
https://www.statsmodels.org/stable/index.html
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normal ones.

The resulting classifier based on 33 PUFA genes effectively separates diseased and
normal samples (Supplementary Table S4). This indicates that, indeed, the expression
profiles of PUFA metabolism genes differ between normal and tumor tissues.

Of the 33 selected genes, 6 genes were significantly (p-value < 0.05) upregulated (see
Section 2.7) in the breast cancer samples and 24 genes were downregulated in comparison
with normal tissues (Supplementary Table S5). To characterize these genes, an analysis
of the GO functional and biological pathways, as well as the KEGG and WikiPathways
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pathways were performed using the Enrichr method (see the Section 2.6). KEGG enrichment
indicated that the linoleic acid metabolic pathway was upregulated in breast cancer, while
in normal adjacent tissues, arachidonic acid metabolic processes were the most enriched
KEGG pathways (Supplementary Figures S3 and S4). Moreover, eicosanoid metabolism via
the cyclooxygenase pathway was found to be downregulated in tumors compared with
normal samples according to WikiPathways (Supplementary Figure S3).

At the next stage, we used the Sequential Feature Selector (SFS) method (see the
Section 2.4) to identify the minimum set of genes that demonstrates the best quality of the
tumor vs. normal tissue separation. The SFS algorithm has determined that the rank RF
classifier based on a list of seven genes (ADIPOR1, HADH, ACOT7, PTGER4, PLA2G15,
PLA2G1B, and CYP46A1) has the highest predictive efficiency according to ROC-AUC
score (ROC-AUC 0.99, ci-bound 0.002) (Figure 3A). The expression of these genes in breast
cancer and normal adjacent tissues is shown in Figure 3B.Cancers 2022, 14, 4663 8 of 17 
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3.3. Rank Model to Identify Most Important PUFA Genes for Breast Cancer Classification

Breast cancer is a heterogeneous oncological disorder [58]. Since the emergence of high-
throughput sequencing intrinsic molecular subtypes of breast cancer became widely used.
Sørlie et al. distinguished five molecular subtypes: luminal A, luminal B, normal-like, HER2-
enriched, and basal-like tumors [59]. These subgroups differ in prognosis and therapeutic
strategies [60,61]. Thus, it is worth investigating the differences in PUFA metabolism not only
between normal and cancer tissues but also between molecular subtypes.

Aiming to address this question, we used five datasets from the GEO database: training
sets (GSE81538, GSE25066, and GSE31448) and test sets (GSE96058 and GSE21653). The
workflow for further studying the differences in PUFA regulation between tumor subtypes
is presented in Figure 4. Due to the platform differences, only 155 genes from the full PUFA
list (202 genes) were present in both sets and selected for further study (Supplementary
Genes list). No normal-like subtype was considered due to the small number of samples
presented in datasets. Our feature selection Boruta-based pipeline (see the Section 2.3.)
marked 46 genes as important for separation of four molecular subtypes of breast cancer
(Supplementary Genes list). Genes highlighted as important were further used for building
the rank Random Forest classifier. The multi-class model had a balanced accuracy of 0.82
and an ROC-AUC of 0.85. As the test was not balanced between classes, it was worth
looking at the quality metric for multi-class prediction F1-score, which was 0.75.
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The quality descriptors (balanced accuracy, ROC-AUC, and F1 score) of the constructed
model show that the expression profiles of PUFA genes differ between the molecular
subtypes. The largest number of misclassifications (Figure 5) falls on the luminal subtype
(luminal A and luminal B) separation.
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Figure 5. Confusion matrix for breast cancer molecular subtype predictor based on expression of
PUFA genes.

The 46 genes selected were analyzed to identify the subtype in which they are signifi-
cantly (p-value < 0.05) differentially expressed. The analysis was carried out on the largest
dataset (GSE96058) from the test set. Table 1 shows the genes in which the expression was
significantly increased in the corresponding molecular subtype of cancer. It can be seen that
for each subtype, a characteristic set of genes is revealed, most of them attributed to the
group of genes responsible for ensuring the functioning of the signaling oxylipin system.
The expression values for individual genes are shown in Supplementary Figure S5.

Table 1. Genes that are upregulated in the respective subtype.

Luminal A Luminal B HER2+ Basal-Like

ELOVL5 PTGES3 FASN * AKR1B1
ACAA1 * ADIPOR1 FABP6 CYP39A1

PLD2 MBOAT7 * MGLL PLD1
ACAD8 * ACOT8 * ALOX15B PLA2G4A

PLCL1 CYP2B6 FADS2 FPR2
HPGDS FAAH PLCG2

CYP4F11 CYP7B1
PTGER3 FABP5
CYP4F8 PLA2G7
ELOVL2 CBR1
EPHX2 PLAA

LPCAT3 * ACOT9 *
LTC4S HSD17B12
FABP4 CYP39A1

PLA2G2D
PLCH1

*—assigned to the group of genes responsible for the energy and structural functions of fatty acids; the rest can be
attributed to the genes of the signaling oxylipin system.
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We investigated the impact of the 46 genes utilized in the subtype classification
using SHAP values (see the Section 2.5). The summary plot in Figure 6 shows the top 20
most influential genes. The color bar represents the features’ impact on separating the
corresponding class from the others. ELOVL5 was the most important gene for overall
classification, particularly, for the basal and luminal A subtypes. Rank FABP7 expression
made the biggest impact on luminal B separation, while ELOVL2 expression made the
biggest impact on the HER2-enriched subtype (Figures 6 and S6).
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4. Discussion

Here, we applied a rank Random Forest to the expression data of PUFA genes in
BRCA to investigate their role in BRCA pathogenesis and in subtype phenotype differences.
Our analysis shows that changes in the energy metabolism of PUFA, particularly, in the
metabolism of signaling messenger oxylipins are important characteristics that can even be
biomarkers for separating patients with BC from healthy people, as well as can determine
the nature of molecular subtypes. The use of the feature selection RF-based algorithm
Boruta made it possible to identify 33 PUFA metabolism genes that distinguish BC samples
from normal tissues and 46 genes that differ between BC subtypes.

It should be noted that the search for biomarkers (signatures) that allows for classifying
breast cancer subtypes was carried out earlier (see, for example [62], where using copy
number variant data can identify some biomarkers). The focus of our work was to evaluate
the role of PUFA metabolic pathways in the biology of subtypes. The impetus for this study
was previous work in which we compared the blood profile signatures of oxylipins and
PUFAs in 152 healthy volunteers (HC) and 169 patients with various stages of BC [56].
Blood oxylipin signatures reflect the organism’s level of response to the disease. We also
analyzed the DEGs of ten transcriptome datasets, and 19 genes for oxylipins biosynthesis
were among the DEGs [56]. The SNP data for 33 genes related to oxylipin metabolism
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analysis reveal that CYP2C19, PTGS2, HPGD, and FAAH were on the list of DEGs in the
analysis of transcriptomes and the list of SNPs associated with BC [56]. There is no doubt
that PUFA metabolism is involved in BC manifestation, but further research is required to
understand the mechanisms of interactions within PUFA metabolic cascades.

The rank RF model built on 33 selected genes showed high performance classifying
breast cancer and normal adjacent tissues. The minimal number of genes required for
the best performance (ROC-AUC 0.99, ci-bound 0.002; Figure 3) included seven genes
(ADIPOR1, HADH, ACOT7, PTGER4, PLA2G15, PLA2G1B, and CYP46A1). In this list,
HADH and ACOT7 belong to the fatty acid beta-oxidation (FAO) pathway. Previously, for
various malignant neoplasms, the so-called “lipolytic phenotype” was shown, in which the
FAO pathway was reprogrammed [63,64]. Cancer cells can use changes in FAO metabolism
for proliferation, survival, stemming, and metastasis [65]. The other four genes (ADIPOR1,
HADH, ACOT7, PTGER4, PLA2G15, PLA2G1B, and CYP46A1) can be signed to the PUFA
signaling function.

Breast cancer is a highly heterogeneous disease; therefore, it is also essential to under-
stand the diversity in PUFA metabolism across molecular subtypes for further research
on the possibility of their use, both as a biomarker and target for therapy. We defined a
list of 46 PUFA genes differentially across four molecular subtypes. Some of the genes
identified in our study in “the distinguishing list” have previously been linked to cancer. It
was shown that ELOVL5 (elongase, responsible for elongation of long chain fatty acids) is
upregulated in breast cancer (BC) vs. normal adjacent tissue, with the expression correlated
with changes in blood lipid species [66]. ELOVL2 expression was associated with malignant
phenotypes and suggested as a novel prognostic biomarker in breast cancer [30]. On a
cellular model, it was shown that ELOVL2 downregulation is associated with an increased
likelihood of metastasis in breast cancer [30]. This is consistent with the data obtained
suggesting that the level of ELOVL2 expression has the highest expression in the luminal A
subtype, which has the best survival prognosis [4].

The ACOT (Acyl-CoA thioesterase) genes were mostly expressed in the basal-like and
luminal B molecular subtypes. ACOT enzymes catalyze the hydrolysis of coenzyme A
(CoA) esters to free fatty acids and CoA. Further pathways of these fatty acid’s metabolism
are not completely clear. Additionally, acyl-CoA esters have more functions than simply an
energy source, and modulation of their levels via ACOT enzymes activities is important for
various pathways of lipid metabolism [67]. It was shown that an increased expression of
ACOT1 was correlated with pivotal clinicopathological parameters and poor prognosis in
gastric adenocarcinoma [68]. ACOT7 expression increased in lung and breast carcinoma,
and low levels of its expression were associated with better survival prognosis [69]. This is
also confirmed by the data obtained in the present work. A bar plot with the SHAP values
shows the importance of the ACOT7 gene expression for distinguishing luminal subtypes
(Figure 6). Increased expression values of this gene are more likely to indicate the luminal
B subtype, which is more aggressive than luminal A (Figure S6).

Fatty acid-binding proteins (FABPs) are involved in binding, storing, and transporting
to the appropriate compartments in the cell various fatty acids and other lipophilic ligands
such as oxylipins and retinoids. This group of protein is tightly involved in inflammatory
processes. Previous studies have revealed that FABP5 [70] and FABP7 [71] might regulate
lipid quality and/or quantity to promote aggressiveness such as cell growth, invasiveness,
survival, and inflammation in breast cancer cells. FABP7 was suggested as a potential
target for the treatment complications of HER2 in breast cancer patients [71]. In our
study, we found that a lower expression of this gene is the most important feature for
determining luminal B subtype, while its higher expression levels make up the top five
important features for basal-like breast cancer (Figure S6). FABP4 was also previously
linked to the invasion and migration of colon cancer cells and obesity-associated breast
cancer development [72,73]. We showed that the expressions of FABP4 are found in the
luminal subtypes of breast cancer; nonetheless, it was not included in the most important
hallmark of any subtype (Table 1 and Figure S6).
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Twenty of the most important features for classification between molecular subtypes of
BC include genes that could be combined into groups of PUFA elongation or desaturation
(ELOVL5, ELOVL2, and FADS2); intracellular transport (FABP4, FABP5, and FABP7);
release of fatty acids from CoA esters (ACOT7 and ACOT9) and from more complex lipids
(phospholipases PLA2G7, PLAA, PLA2G4A, PLCL1, PLCG2, PLCH1, and PLD2); and
others, which include six genes attributed to various pathways FASN (fatty acid synthase
catalyzes elongation of saturated fatty acids), FAAH (fatty acid amide hydrolase), PTGER3
(prostaglandin EP3 receptor), EPHX2 (soluble epoxide hydrolase), and CYP4F8 (one of the
monooxygenases that is specialized in the metabolism of PUFAs). The list of 185 genes
took into account the processes of synthesis and degradation of fatty acids (both saturated
and unsaturated), their transformation into oxylipins, and various oxylipin receptors.
Interesting to note is that, besides PTGER3 and EPHX2, all other genes from the list in
Figure 6 can be attributed to processes that regulate the amounts and species of free fatty
acids within cells. It is currently difficult to say why differences between these genes lead
to differences in BC subtypes. All of the enzymes corresponding to these genes have been
studied in different processes and have not previously been considered as a whole system.
It is important that the study indicates the need for such a consideration.

5. Conclusions

Thus, BC subtypes can be discriminated by genes for fatty acid metabolism. A signifi-
cant part of the genes that differ between subtypes refers specifically to the metabolism of
PUFAs and regulatory oxylipins. This supposes that changes in PUFA metabolism are deci-
sive in the manifestation of the subtype phenotypes. The use of rank RF has demonstrated
the effectiveness of this approach and has yielded promising results. These results indicate
that the genes found for FA metabolites may be potential biomarkers and therapeutic
targets for different BC subtypes.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14194663/s1, Figure S1. Validation of the model was pro-
vided by the binary classification of head and neck cancer and healthy tissues based on
1000 most variable genes; Table S1. Genes_supplementary.xlsx; Table S2. Datasets selected for
binary classification of healthy and tumor breast tissues; Table S3. Datasets selected for multiclass
subtype classification of breast cancer; Table S4. Quality of rank RF for binary classification of healthy
and tumor breast tissues; Table S5. Genes significantly upregulated in tumor samples (left column)
and upregulated in healthy samples (right column); Figure S2. OOB error according to set number
of trees (ntree) in the model for binary classification of normal and breast cancer tissues; Figure S3.
Enrichment analysis of GO functional and biological pathways, as well as KEGG and WikiPathways
pathways by genes important for classification of healthy and tumor breast tissues and upregulated
in cancer samples; Figure S4. Enrichment analysis of GO functional and biological pathways, as well
as KEGG and WikiPathways pathways by genes important for classification of healthy and tumor
breast tissues and upregulated in healthy samples; Figure S5. Expression of FABP6, PLA2G7, ACOT7,
FAAH, EPHX2 genes across subtypes; Figure S6. Top-5 most important genes for defining each of
four molecular subtypes of breast cancer revealed by SHAP values.
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55. Bryk, M.; Chwastek, J.; Kostrzewa, M.; Mlost, J.; Pędracka, A.; Starowicz, K. Alterations in anandamide synthesis and degradation
during osteoarthritis progression in an animal model. Int. J. Mol. Sci. 2020, 21, 7381. [CrossRef] [PubMed]

56. Chistyakov, D.V.; Guryleva, M.V.; Stepanova, E.S.; Makarenkova, L.M.; Ptitsyna, E.V.; Goriainov, S.V.; Nikolskaya, A.I.;
Astakhova, A.A.; Klimenko, A.S.; Bezborodova, O.A.; et al. Multi-Omics Approach Points to the Importance of Oxylipins
Metabolism in Early-Stage Breast Cancer. Cancers 2022, 14, 2041. [CrossRef] [PubMed]

57. Gavrish, G.E.; Chistyakov, D.V.; Sergeeva, M.G. ARGEOS: A new bioinformatic tool for detailed systematics search in GEO and
arrayexpress. Biology 2021, 10, 1026. [CrossRef]

http://doi.org/10.1158/0008-5472.CAN-05-4368
http://doi.org/10.3389/fonc.2019.00145
http://doi.org/10.1152/physrev.00025.2005
http://www.ncbi.nlm.nih.gov/pubmed/16601267
http://doi.org/10.3390/cells8101225
http://www.ncbi.nlm.nih.gov/pubmed/31600993
http://doi.org/10.1111/cas.12085
http://www.ncbi.nlm.nih.gov/pubmed/23279446
http://doi.org/10.1242/dmm.025585
http://doi.org/10.1016/j.drudis.2017.01.014
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1016/j.jbi.2019.103313
http://doi.org/10.1016/j.cell.2018.03.034
http://doi.org/10.2202/1544-6115.1071
http://doi.org/10.1093/bioinformatics/bti631
http://doi.org/10.1186/s12920-020-00826-6
http://www.ncbi.nlm.nih.gov/pubmed/33228632
http://doi.org/10.1371/journal.pone.0107801
http://www.ncbi.nlm.nih.gov/pubmed/25247789
http://doi.org/10.1186/s12859-018-2400-2
http://www.ncbi.nlm.nih.gov/pubmed/30373514
http://doi.org/10.3389/fgene.2021.632620
http://doi.org/10.18637/jss.v036.i11
http://doi.org/10.1007/BF00058655
http://doi.org/10.21105/joss.00638
http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
http://doi.org/10.1093/nar/gkaa1113
http://doi.org/10.1093/nar/gkaa970
http://doi.org/10.1093/nar/gkaa1024
http://www.ncbi.nlm.nih.gov/pubmed/33211851
http://doi.org/10.1194/jlr.M017822
http://www.ncbi.nlm.nih.gov/pubmed/22068350
http://doi.org/10.3389/fendo.2020.591819
http://www.ncbi.nlm.nih.gov/pubmed/33329396
http://doi.org/10.3390/ijms21197381
http://www.ncbi.nlm.nih.gov/pubmed/33036283
http://doi.org/10.3390/cancers14082041
http://www.ncbi.nlm.nih.gov/pubmed/35454947
http://doi.org/10.3390/biology10101026


Cancers 2022, 14, 4663 15 of 15

58. The Cancer Genome Atlas (TCGA) Research Network. Comprehensive molecular portraits of human breast tumours. Nature
2012, 490, 61–70. [CrossRef]

59. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; et al.
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA
2001, 98, 10869–10874. [CrossRef]

60. Perou, C.M.; Sørile, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Ress, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.; et al.
Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [CrossRef]

61. Weigelt, B.; Baehner, F.L.; Reis-Filho, J.S. The contribution of gene expression profiling to breast cancer classification, prognostica-
tion and prediction: A retrospective of the last decade. J. Pathol. 2010, 220, 263–280. [CrossRef]

62. Pan, X.; Hu, X.H.; Zhang, Y.H.; Chen, L.; Zhu, L.C.; Wan, S.B.; Huang, T.; Cai, Y.D. Identification of the copy number variant
biomarkers for breast cancer subtypes. Mol. Genet. Genomics 2019, 294, 95–110. [CrossRef] [PubMed]

63. Shao, H.; Mohamed, E.M.; Xu, G.G.; Waters, M.; Jing, K.; Ma, Y.; Zhang, Y.; Spiegel, S.; Idowu, M.O.; Fang, X. Carnitine
palmitoyltransferase 1A functions to repress FoxO transcription factors to allow cell cycle progression in ovarian cancer. Oncotarget
2016, 7, 3832–3846. [CrossRef] [PubMed]

64. Liu, P.P.; Liu, J.; Jiang, W.Q.; Carew, J.S.; Ogasawara, M.A.; Pelicano, H.; Croce, C.M.; Estrov, Z.; Xu, R.H.; Keating, M.J.; et al.
Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug
perhexiline. Oncogene 2016, 35, 5663–5673. [CrossRef] [PubMed]

65. Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of
metabolic transformation in cancer. Cancer Lett. 2018, 435, 92–100. [CrossRef]

66. Tomida, S.; Goodenowe, D.B.; Koyama, T.; Ozaki, E.; Kuriyama, N.; Morita, M.; Yamazaki, Y.; Sakaguchi, K.; Uehara, R.;
Taguchi, T. Plasmalogen deficiency and overactive fatty acid elongation biomarkers in serum of breast cancer patients pre-and
post-surgery—new insights on diagnosis, risk assessment, and disease mechanisms. Cancers 2021, 13, 4170. [CrossRef]

67. Hunt, M.C.; Alexson, S.E.H. The role Acyl-CoA thioesterases play in mediating intracellular lipid metabolism. Prog. Lipid Res.
2002, 41, 99–130. [CrossRef]

68. Wang, F.; Wu, J.; Qiu, Z.; Ge, X.; Liu, X.; Zhang, C.; Xu, W.; Wang, F.; Hua, D.; Qi, X.; et al. ACOT1 expression is associated with
poor prognosis in gastric adenocarcinoma. Hum. Pathol. 2018, 77, 35–44. [CrossRef]

69. Jung, S.H.; Lee, H.C.; Hwang, H.J.; Park, H.A.; Moon, Y.A.; Kim, B.C.; Lee, H.M.; Kim, K.P.; Kim, Y.N.; Lee, B.L.; et al. Acyl-CoA
thioesterase 7 is involved in cell cycle progression via regulation of PKCζ-p53-p21 signaling pathway. Cell Death Dis. 2017, 8, e2793.
[CrossRef]

70. Senga, S.; Kobayashi, N.; Kawaguchi, K.; Ando, A.; Fujii, H. Fatty acid-binding protein 5 (FABP5) promotes lipolysis of lipid
droplets, de novo fatty acid (FA) synthesis and activation of nuclear factor-kappa B (NF-κB) signaling in cancer cells. Biochim.
Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 1057–1067. [CrossRef]

71. Cordero, A.; Kanojia, D.; Miska, J.; Panek, W.K.; Xiao, A.; Han, Y.; Bonamici, N.; Zhou, W.; Xiao, T.; Wu, M.; et al. FABP7 is a key
metabolic regulator in HER2+ breast cancer brain metastasis. Oncogene 2019, 38, 6445–6460. [CrossRef]

72. Tian, W.; Zhang, W.; Zhang, Y.; Zhu, T.; Hua, Y.; Li, H.; Zhang, Q.; Xia, M. FABP4 promotes invasion and metastasis of colon
cancer by regulating fatty acid transport. Cancer Cell Int. 2020, 20, 512. [CrossRef] [PubMed]

73. Zeng, J.; Sauter, E.R.; Li, B. FABP4: A New Player in Obesity-Associated Breast Cancer. Trends Mol. Med. 2020, 26, 437–440.
[CrossRef] [PubMed]

http://doi.org/10.1038/nature11412
http://doi.org/10.1073/pnas.191367098
http://doi.org/10.1038/35021093
http://doi.org/10.1002/path.2648
http://doi.org/10.1007/s00438-018-1488-4
http://www.ncbi.nlm.nih.gov/pubmed/30203254
http://doi.org/10.18632/oncotarget.6757
http://www.ncbi.nlm.nih.gov/pubmed/26716645
http://doi.org/10.1038/onc.2016.103
http://www.ncbi.nlm.nih.gov/pubmed/27065330
http://doi.org/10.1016/j.canlet.2018.08.006
http://doi.org/10.3390/cancers13164170
http://doi.org/10.1016/S0163-7827(01)00017-0
http://doi.org/10.1016/j.humpath.2018.03.013
http://doi.org/10.1038/cddis.2017.202
http://doi.org/10.1016/j.bbalip.2018.06.010
http://doi.org/10.1038/s41388-019-0893-4
http://doi.org/10.1186/s12935-020-01582-4
http://www.ncbi.nlm.nih.gov/pubmed/33088219
http://doi.org/10.1016/j.molmed.2020.03.004
http://www.ncbi.nlm.nih.gov/pubmed/32359475

	Introduction 
	Materials and Methods 
	Data Source 
	Random Forest Model 
	Boruta Feature Selection Algorithm 
	Sequential Feature Selector for Minimal Gene Set Selection 
	SHAP Values to Identify the Most Important PUFA Genes 
	Enrichment Analysis 
	Differential Expression Analysis 

	Results 
	Validation of Machine Learning Nonparametric Approach 
	Rank Model to Identify Most Important PUFA Genes for Breast Cancer vs. NormalTissues Classification 
	Rank Model to Identify Most Important PUFA Genes for Breast Cancer Classification 

	Discussion 
	Conclusions 
	References

