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Simple Summary: NK cell anti-tumor activity against hematological malignancies is well-established
and many studies support their role in the control of solid tumor growth and metastasis generation.
However, tumor microenvironment may affect NK cell function. Ongoing studies are aimed to design
novel immunotherapeutic protocols to combine NK cell-based immunotherapy with other therapeutic
strategies to improve the anti-tumor NK cell response. In this context, UCB is one of the main sources
of both mature NK cells and of CD34+ HSPC that can generate NK cells, both in-vivo and in-vitro.
UCB-derived NK cells represent a valuable tool to perform in-vitro and preclinical analyses and are
already used in several clinical settings, particularly against hematological malignancies. The present
review describes the characteristics of different types of UCB-derived NK cells and the in-vitro models
to expand them, both for research and clinical purposes in the context of cancer immunotherapy.

Abstract: In the last 20 years, Natural Killer (NK) cell-based immunotherapy has become a promising
approach to target various types of cancer. Indeed, NK cells play a pivotal role in the first-line defense
against tumors through major histocompatibility complex-independent immunosurveillance. Their
role in the control of leukemia relapse has been clearly established and, moreover, the presence of
NK cells in the tumor microenvironment (TME) generally correlates with good prognosis. However,
it has also been observed that, often, NK cells poorly infiltrate the tumor tissue, and, in TME, their
functions may be compromised by immunosuppressive factors that contribute to the failure of
anti-cancer immune response. Currently, studies are focused on the design of effective strategies
to expand NK cells and enhance their cytotoxic activity, exploiting different cell sources, such as
peripheral blood (PB), umbilical cord blood (UCB) and NK cell lines. Among them, UCB represents
an important source of mature NK cells and CD34+ Hematopoietic Stem and Progenitor Cells (HSPCs),
as precursors of NK cells. In this review, we summarize the UCB-derived NK cell activity in the
tumor context, review the different in-vitro models to expand NK cells from UCB, and discuss the
importance of their exploitation in anti-tumor immunotherapy protocols.

Keywords: NK cell anti-tumor activity; UCB-NK cells; NK cell-based cancer immunotherapy

1. Introduction

In recent decades, the exploitation of anti-tumor immune response has become a
feasible approach to fight cancer [1,2]. In particular, the advances in the field of in-vivo
lymphocyte activation, and of ex-vivo lymphocyte activation, expansion and genetic ma-
nipulation (i.e., by the generation of chimeric antigen receptors, CAR), have increased
the efficacy of adoptive cellular immunotherapy, leading to a significant improvement of
cancer patients’ prognosis [3]. Thus far, NK-cell based immunotherapy has not reached
a full success as adoptive T cell therapy, however, preclinical models and ongoing clini-
cal trials suggest that NK cells could play an important role in cancer treatment [4]. In
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particular, their involvement in the control of hematological malignancies in allogeneic
hematopoietic stem cell transplantation (HSCT) has recently pushed the efforts to exploit
their potential anti-tumor activity in other types of cancer patients [4,5]. The source of NK
cells for therapeutic purposes can be represented by mature NK cells derived from either
PB or UCB, but also by NK cells generated from CD34+ HSPCs or from induced-pluripotent
stem cells (iPSC) [6]. In particular, UCB may represent a feasible source of NK cells, as the
worldwide distribution of Cord Blood Banks allows the storage of great amounts of frozen
and easily available UCB sample units. In this context, the most important Cord Blood
Banks are mainly institutional organizations whose activity is under continuous evaluation
and update to create a world-wide network with high-quality standardized protocols of
sample collection, storage and exploitation [7].UCB is a suitable source of hematopoietic
stem cells (HSCs) for HSCT that leads to a fast in-vivo generation and recovery of NK cells
but it may also represent an important source for the “off the shelf” preparation of both
mature and HSPC-derived NK cells, which can be further manipulated to improve their
functional properties [8,9]. The different methods that have been designed to expand and
prepare effective immunotherapeutic NK cell effectors also contributed to improving the
knowledge of NK cell biology and development, and represented a powerful tool to test
the anti-tumor activity of UCB-derived NK cells in preclinical models. Currently, several
encouraging clinical trials are ongoing. The present review will provide an overview of the
features of NK cells and of their ability to control tumors, focusing on UCB-NK cell proper-
ties. In particular, we will discuss the features of UCB mature NK cells and UCB-HSPC- or
UCB-iPSC-derived NK cells and about their potential exploitation for the design of novel
immunotherapy protocols.

2. Natural Killer Cell Biology

Human NK cells belong to the innate lymphoid cell (ILC) family and are characterized
by prominent effector functions. They control viral infections, in particular those caused by
herpesviruses (but also recognize Ags from a variety of other viruses) and can maintain a
sort of memory through the expansion and persistence of specific NK cell subsets. NK cells
also play a pivotal role to prevent tumor growth and progression. In this context, they have
been shown to be very important in the control of leukemic relapse. They can exert their
effects by cytolytic killing of virally-infected and tumor cells that modulate class I Human
Leucocyte Antigens (HLA-I)-molecules. Moreover, they can release inflammatory cytokines,
interact with dendritic cells (DC) (influencing their maturation) and, ultimately, regulate
the T cell response. In this paragraph, we will summarize the mechanisms underlying their
activation and development and their role in the control of solid tumors [10,11].

2.1. NK Cell Activation and Development

NK cells represent 5–15% of lymphocytes in PB and originate primarily in the bone
marrow (BM) from CD34+ HSCs, but they can also develop and be detected in differ-
ent districts such as the spleen, liver, thymus, secondary lymphoid organs, gut, ton-
sils and uterus. According to their tissue distribution, they can also show different
phenotypic and functional features [12–14]. Based on the differential expression of the
CD56 and CD16 molecules, NK cells are generally classified into two main subsets: the
CD56brightCD16− regulatory NK cells and CD56dimCD16+ mature, cytotoxic NK cells. The
CD56bright NK cell subset represents less than 10% of PB-NK cells whereas it covers
the majority of NK cells present in peripheral tissues. CD56bright NK cells are poorly
cytotoxic but are able to produce several cytokines, including IFN-γ, which promote
Th1 CD4+ lymphocyte polarization and stimulate DC maturation [10,13,15,16]. Conversely,
the CD56dim cell subset covers 90% of circulating NK cells, whereas it is less represented
in the tissues. CD56dim NK cells can mediate cytolytic activity through the release of lytic
granules containing perforin and granzymes. Antibody-dependent cell cytotoxicity (ADCC)
is one of the most important killing mechanisms of CD56dim NK cells that involves the
CD16 molecule without the need for any additional costimulatory signals; the recognition
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of the Fc portion of IgG antibodies bound to target cells promotes NK cell degranulation.
Importantly, CD56dim NK cells are also able to produce large amounts of cytokines once
activated [15,17–19].

NK cell activation depends on the balance between stimulatory and inhibitory signals
delivered by receptors that recognize ligands and/or soluble ligands that can be expressed
by tumor cells. The main stimulatory receptors, beyond CD16, are represented by the three
Natural Cytotoxicity Receptors (NCRs) [20]: NKp46 (CD335), NKp44 (CD336, expressed
upon activation) and NKp30 (CD337). Other stimulatory receptors used by NK cells are
DNAM-1 (CD226), 2B4(CD244), and some C-type lectins, including NKG2D (CD314),
NKp80, and the HLA-E-specific low affinity receptor, NKG2C/CD94 heterodimer [21].
Activating receptor ligands are not yet fully characterized but, generally, they are repre-
sented by molecules expressed by cells under stressing and inflammatory conditions, such
as viral infections or neoplastic transformations [20,22].

The inhibitory counterpart is mainly represented by the heterodimer CD94/NKG2A
(CD159a), recognizing HLA-E molecules and the Killer-Cell Immunoglobulin-like re-
ceptors (KIRs, CD158-a/b/e/k), each specific for a different group of classical HLA-I
molecules [23,24]. Other important inhibitory receptors include Siglec-7 (CD328), IRP60
(CD300a) and LIR-1 [25]. Finally, the function of NK cells is also under the control of the
so-called inhibitory immune checkpoint receptors, such as PD1 (CD279), TIM-3 (CD366)
and TIGIT, which can be overexpressed or de-novo induced upon prolonged stimulation
within the TME, favoring tumor escape [26–29].

NK cells originate primarily in the BM from CD34+ HSCs, which express the DNA-
binding protein inhibitor (ID2) transcriptional regulator. The CD34+ cell precursors can also
generate other ILCs which display a preferential tissue distribution. Three main groups are
well-described on the basis of expressed transcription factors (TF) and cytokine production:
ILC1 (T-bet; IFN-γ), ILC2 (GATA-3 and Retinoic Acid Receptor-related Orphan Receptor
alfa, RORα; IL-5 and IL-13) and ILC3 (Retinoic Acid Receptor-related Orphan Receptor
gamma, RORγt, and Aryl hydrocarbon receptor, AhR; IL-22 and IL-17) [30–34].

NK cell development requires specific cytokines, such as stem cell factor (SCF), Fms-
like Tyrosine kinase receptor 3- Ligand (FlT3-L), IL-7, IL-15, IL-21 and TF including PU.1,
ETS Proto-Oncogene 1 (Ets-1), Thymocyte Selection Associated High Mobility Group Box
(TOX), Nuclear Factor Interleukin 3 Regulated (NFIL3) and Promyelocytic leukemia zinc
finger protein (PLZF) [12,30,33]. Recently, Holmes et al. have shown that Bcl11b TF promote
the classical NK cell development and its high expression in NK cells may be correlated
with the heterogenous phenotype of adaptive NK cells [35]. In humans, NK cell differentia-
tion occurs through different stages that are characterized by the expression (or lack of the
expression) of peculiar surface markers and TF: CD34+CD45RA+ CD117−CD94/NKG2A−

stage CD34+CD7+CD117+CD127+CD122+CD45RA+CD94/NKG2A−T-bet+ stage II, CD34−

CD117+CD122+CD161+/−NCRs+/−Eomes+ stage III, CD117low/−CD16+NKG2D+NCRs+

CD94/NKG2A+T-bet+eomes+CD56bright stage IV, NKG2D+NCRs+→NKp80+CD94/
NKG2A+/−CD16+KIRs+/−eomes+CD56dim stage V and NCRs+NKG2D+CD94/NKG2A+/−

NKp80+CD16+KIRs+NKG2C+CD56+/−CD57+ stage VI (memory-like NK cells).The achieve-
ment of stage IV and stage V of NK cell development requires the expression of T-bet (T-box
transcription factor TBX21) and Eomes (Eomesodermin)TF, which positively regulate the
production of IFN-γ and lytic granules (perforin and granzymes), respectively [36,37].

2.2. NK Cells and Tumors

The importance of NK cells in controlling tumor growth and metastasis has been
well described. Indeed, their effect against hematological malignancies have been exten-
sively proven while strong evidences support their potential role in the control of solid
tumors [38–42] as well.Their ability to recognize cells expressing poor levels of HLA-I
molecules and high levels of stress-related molecules favors their specific activation against
neoplastic cells, in a way that is complementary to that of T lymphocytes [43,44]. In 2017,
Lopez-Soto et al. described an accurate model by which NK cells may play a key role
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mainly in the inhibition of tumor generation and metastasis dissemination, assuming that
they may exert the immune-surveillance at early stages of the disease [45]. In this context,
NK cells have been shown to recognize cancer stem cells (CSC) [46,47]. High numbers of
tumor-infiltrating NK cells have been correlated with good prognosis and lower relapse
rates in patients affected by HER2-positive and triple negative breast cancer, gastrointesti-
nal stromal tumor (GIST), neuroblastoma, head and neck cancer, lung, prostate cancer
and melanoma [48–54]. Moreover, higher levels of NKp46 expression at the tumor site are
associated with better survival [55]. Analysis of the NK cell infiltrate in melanoma patients
showed that lesions displaying higher NK-cell numbers were found to correlate with the
presence of protective stimulatory DCs in the tumor, patient responsiveness to anti–PD-1
immunotherapy and better overall survival [56].

NK cell activity depends on their ability to be recruited to the tumor nest by chemokines.
CD56bright cells display a wide range of chemokine receptors: CCR2 (which binds to
CCL2/MCP-1, CCL7/MCP-3, CCL12, CCL13/MCP4), CCR5 (recognizing RANTES, MIP1α,
and MIP1β), CXCR3 (recognizing CXCL4, CXCL9/MIG, CXCL10/IP10), and CXCR4
(CXCL12 /SDF1α). Moreover, they also express CCR7 (CCL19 and CCL21), which can
address the cells to lymph nodes [57,58]. By contrast, CD56dim NK cells show a limited
pattern of chemokine receptor expression, including CXCR1 (recognizing CXCL8), CXCR4,
and CX3CR1 (recognizing CX3CL1) [57]. On the whole, the different chemokine receptor
profile in the two NK cell subsets reflects the higher ability to infiltrate different peripheral
tissues and bone marrow of CD56bright as compared to CD56dim NK cells. This is a key
issue, since tumor infiltrating (TI) NK cells often display a CD56bright phenotype and/or a
reduced expression of the activating receptors, resulting in a de-potentiated anti-tumor activity.
In breast cancer, TI-NK cells are enriched in CD56bright cells, and they exhibit low levels of
NKp30, NKG2D, DNAM-1, CD16 and poor cytotoxic potential [59]. In early-stage non–small
cell lung cancer (NSCLC), TI-NK cells are mostly CD56dim, but express limited amounts of
activating receptors and show a low degranulation and cytokine release potential [60]. In
general, NK cells present in different solid tumors (including lung, gastric, colorectal, and head
and neck cancers) are frequently limited in number and may be located within the stroma, far
from the tumor nest, and with few exceptions represented by Renal Cell Carcinoma (RCC)
and GIST, which are infiltrated by a significant number of NKp46+ cells [61–63].

Of note, the altered metabolism in patients with tumor and chronic inflammatory
disease may also interfere with NK cell development and functions [64]. The different
actors present in the TME may determine the activation or exhaustion status of NK cells, as
it occurs for T cells. Indeed, tumor cells, macrophages, Treg, and fibroblasts may directly or
indirectly modulate NK cell activity by releasing mediators that influence inflammatory
anti-tumor response, but also by directly affecting the NK cell-mediated recognition of
malignant cells [65–69]. Several tumor immune escape mechanisms have been discov-
ered: up-regulation of HLA class I molecules in myeloma disease; down-regulation of
the NKG2D ligands, such as HLA class I chain-related proteins A and B (MICA/B) and
unique long 16 (UL16) binding proteins 1–6 (ULBP1-6) in hematological tumors, and
down-regulation of activating NK cell receptors due to the release of suppressor cytokines,
including transforming growth factor-β (TGF-β) [68]. In melanoma, both tumor cells and
tumor-associated fibroblasts can induce the downregulation of activating receptors from
the NK cell surface by cell-to-cell contact and the release of PGE2 [70,71]. In addition,
it has been demonstrated that indoleamine 2, 3-dioxygenase (IDO) can reduce NK cell
cytotoxicity in melanoma patients [70]. The shedding from the tumor cells of activating
receptor ligands, such as MICA, MICB and ULBPs, represents another powerful escape
strategy, as soluble molecules can mask the activating NK cell receptor or even induce
their downregulation from NK cell surface, preventing recognition and killing of tumor
cells [72,73]. NK cells may also suffer of tumor epigenetic changes (e.g., histone deacetylase,
histone methylation) that can modulate tumor transcriptional activity [74]. Alterations in
DNA modifying enzymes such as histone deacetylases (HDACs) or microRNAs, involved
in epigenetic gene regulation, repress the expression of MICA/B in leukemic cells and
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of ULPB in epithelial cancer cells, supporting the role of HDAC inhibitors in anti-cancer
therapy [75–77]. In-vitro studies of NK/tumor cell cross-talk have also shown that the
NK/tumor cell crosstalk can give rise to various functional interactions, with possible con-
trasting effects on the control of tumor progression. Recently, it has been suggested that NK
cells could play a role in epithelial-to-mesenchymal transition of melanoma cells, favoring
their progression to more malignant stages [78]. Cantoni et al. showed that NK cells could
efficiently degranulate upon incubation with stromal-like Wilm’s tumor cells whereas, on
the other hand, these cells could inhibit NK cells via IDO and PGE2 production [79]. Finally,
TME-associated hypoxia may contribute to partial abrogation of NK cell activity [80,81].
The characterization and knowledge of these tumor-mediated immune escape mechanisms
are providing important clues to overcome them and to improve the efficacy of NK cells in
innovative anti-tumor therapies.

3. Adoptive NK Cell Therapy

As discussed above, the observation that patients’ NK cells could be dysfunctional
or unable to reach the tumor nest prompted researchers to investigate the possibility to
design adoptive NK cell-based immunotherapy protocols to improve NK cell anti-tumor
response [82,83]. First attempts included the use of autologous NK cells in different types
of cancer, however, despite the increase of circulating NK cells and the lack of adverse
events such as graft versus host disease (GvHD), these transfers failed to provide significant
improvement in patients’ clinical outcome, probably due to the inhibition by self-HLA
molecules and to the lack of a sustained in-vivo cell activation [84–86]. First evidence
that the use of allogeneic, rather than autologous, NK cells could represent a preferential
option in cancer treatment came from allogeneic HSCT for hematological diseases, in par-
ticular in the haploidentical setting [87]. In patients with leukemia undergoing allogeneic
HSCT, NK cells are the first lymphoid subset to appear after transplantation, and play a
crucial role in controlling host defense against infections and cancer cells before T cells
are reconstituted [87–89]. In patients with high-risk AML undergoing haplo-HSCT in
complete remission (CR), the use of NK-alloreactive donors (according to the KIR/KIR-L
mismatch in the GvH direction model) was associated with better event-free survival (EFS)
(67% vs. 18%) [90–92]. Important evidences were reported also in pediatric patients in
which the overall survival rate was very successful in the presence of NK alloreactivity,
especially for the subset of patients with high-risk ALL [93].

However, major issues remain: first of all, the persistence of immature poorly cytolytic
CD56bright CD16−CD94/NKG2A+ NK cells during the first 2 months after transplantation,
which may greatly compromise the control of leukemia relapse and infections [94,95]. To
address this point, novel transplantation protocols are now under evaluation [93]. Another
major issue is the limited availability of fully or, at least, partially compatible donors. In
this context, UCB has been shown to represent an important source of CD34+ HPCs and of
NK cells for allogeneic HSCT [96–98]. Of note, NK cells have been shown to recover more
quickly after UCB transplantation [99,100].

The findings from the HSCT setting for hematological malignancies prompted the
design of adaptive NK cell therapies in other types of cancer diseases, suggesting the
possibility to isolate NK cells from PB or UCB to treat cancer patients, used alone or
in combination with other therapeutic protocols [83]. In the last two decades, several
preclinical and clinical experimentations of NK cell-based cancer immunotherapies have
been applied, aimed at evaluating their efficacy [5,6].

4. The Challenge of Designing UCB-Derived NK Cell Adoptive Therapy

UCB is a feasible and suitable source for adaptive immune cell therapy: it can be easily
collected and frozen to obtain either mature lymphocytes, or HSC from which it is possible
to generate both CD34+-HSPC-derived NK cells and iPSC-derived NK cells (Figure 1A). In
particular, it has been taken into consideration as a source of mature allogeneic NK cells to
be used unmanipulated or after in-vitro expansion and activation [8,9]. However, several
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challenges must still be faced and their possible resolutions are under evaluation: they are
discussed below and summarized in Table 1.
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Figure 1. UCB as a source of NK cells. Panel (A). Overview of methods to generate, enrich and
expand NK cells from UCB. Purified mature NK cells can be obtained directly from UCB and in-vitro
expanded in the presence of IL-12 and IL-15 and feeder cells (e.g., K562, 721.221 cell lines). NK cells
can also be differentiated from CD34+ HSPCs, previously separated from UCB, using appropriate
cytokine cocktails including SCF, FLT-3L, IL-7, IL-15, IL-21, StemRegenin-1(SR1) antagonist and
IL-12 added at a later time. In some instances, feeder cells can also be used (e.g., OP9 cell line).
Finally, NK cells can be generated from UCB CD34+ HSPC-derived iPSC. iPSCs are firstly induced to
differentiate towards CD34+ CD43+/CD45+ HPCs by using BPEL medium and BMP4, VEGF and SCF
factors. HPCs are then differentiated towards NK cells with SCF, FLT-3L, IL-7 and IL-15 cytokines
and further expanded with aAPCs. All UCB-derived CD56+NK cells are used for in-vitro studies and
in preclinical models while at present, UCB-derived mature NK cells are the most exploited source
for adoptive cell therapy against hematological and solid tumors. In the HSCT setting, CD34+HSC
are responsible for the in-vivo generation of NK cells. Panel (B). Comparison of UCB-derived
NK cells phenotype. Left: UCB-derived mature NK cells; center: CD34+HSPC-derived NK cells;
right: iPSC-derived NK cells. All types of UCB-derived NK cell express the same levels of CD56,
NCRs (NKp46, NKp44 and NKp30), NKG2D and DNAM-1 molecules but UCB-mature NK cells
and iPSC-derived NK cells show higher expression of NKG2A and KIRs as compared to UCB-
CD34+ derived NK cells. UCB-CD34+ derived-and iPSC-derived-NK cells express lower amounts
of CD16 receptor as compared to UCB-derived mature NK cells. Notably, the expression of memory
marker NKG2C on UCB-derived mature NK cells and on iPSC-derived NK cells may activate NK
cell degranulation and cytokine production. UCB-derived mature NK cells and UCB-CD34+ derived
NK cells exhibit higher levels of adhesion molecules such as the heterodimer CD11a/CD18, (LFA-1),
and CD62L as compared to iPSC-derived NK cells. The expression of CXCR4 receptor on UCB-CD34+

derived NK cell and on UCB-derived mature NK cell could be crucial for homing in the bone marrow.
Finally, the expression of TRAIL and FASL on iPSC-derived NK cell could have a pivotal role to activate
tumor cell apoptosis. Illustration also created using BioRender.com (accessed on date: 9 August 2022).
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Table 1. The challenge of designing UCB-derived NK cell adoptive therapy.

Challenges Possible Improvements/Resolutions

Low numbers of NK cells

• Purification and in-vitro expansion of
mature NK cells with IL-2/IL-15 ±
irradiated feeder cells

• Exploitation of approved GMP protocols
for large scale generation of NK cells from
UCB CD34+ HSPC

• Generation of UCB-iPSC-derived NK
cells (iNK)

Low expression of activating receptors,
adhesion molecules and Granzyme B In-vitro activation with IL-15 plus IL-12/IL-18

In-vitro survival and sustained activation of
infused NK cells

• IL-15 administration
• Generation of UCB-CAR NK cells

equipped with IL-15 construct
• IL-15 superagonist/IL-15Rα fusion

construct in iNK
• Deleting in iNK cells the CISH gene

coding for CIS protein, a negative
regulator of IL-15 signaling

Improvement of NK cell homing in tumor
nest and of their antitumor activity

• Generation of UCB CAR NK cells
equipped with CD16/NKG2D/
chemokine receptors/tumor
specific antigens

• Generation of BIKE/TRIKE molecules
• Use of anti-CD94/NKG2A antibodies

4.1. UCB-Derived Mature NK Cells

The percentages of CD3− CD56+ cells are similar to those of the PB counterpart,
however, a higher proportion of CD56bright cells in UCB compared to PB has been reported.
UCB-derived NK cells are more prone to proliferation than PB NK cells [101] and have a
high ability to produce IFN-γ when stimulated with IL-12 and IL-18 and high cytotoxicity
when stimulated with IL-12 and/or IL-15 [102]. In addition, UCB-derived NK cells express
significant levels of CXCR4 that support their capability to home to the BM [103] (Figure 1B).

A limitation of the use of UCB-derived NK cells is represented by the low number
of CD56+ NK cells that can be recovered. Indeed, the concentration of mononucleated
leucocytes is similar in PB and UCB (mean of 1.3 × 106 cells/mL with NK cells repre-
senting 5–15% of CB lymphocytes), but the amount of blood that can be collected from
CB is generally lower than that collected from PB apheresis. Moreover, compared to PB-,
CB-NK cells often show lower expression of CD16, KIRs and DNAM-1 and higher expres-
sion of CD94/NKG2A receptors [103]. In particular, the high expression levels of this latter
inhibitory immune checkpoint receptor and the low levels of granzyme B may limit the
NK cell capability of killing target cells [104] (Figure 1B). In addition, CB-NK cells also
show lower expression of homing and adhesion molecules including CD62L, CD54, CD2,
and of the heterodimer CD11a/CD18, also known as the Lymphocyte Function-associated
Antigen 1 (LFA-1); thus, the necessity of in-vitro cell activation has been taken into consid-
eration to increase their expression [105]. Of note, once activated, UCB-NK cells display
functional capabilities similar to those of PB NK cells. Thus, to overcome these issues,
several approaches have been evaluated to isolate and activate them in-vitro. The in-vitro
expansion of NK cells have shown to benefit from the use of multiple cytokines, including
IL-2, IL-12 and IL-18 [101,103,106–108]; an important role is exerted by IL-15, which is
fundamental during NK cell development and is an NK cell homeostatic mediator [109].
The use of feeder cells, such as K562 and Epstein-Barr virus, transformed B cell lines, which
could act as promoters of expanding cells, have been shown to improve NK cell expansion.



Cancers 2022, 14, 4439 8 of 21

However, this may represent a limitation in clinical settings because it is mandatory to
avoid cell line proliferation [110,111].

Preclinical studies have shown that UCB-derived, in-vitro expanded NK cells displayed
good anti-tumor performances as compared to PB NK cells as well. They efficiently produced
IFN-γ, TNF-α and degranulated against primary breast cancer or cervical tumor cells [112,113].
As discussed before, the high percentages of CD94/NKG2A+ UCB-NK cells could repre-
sent a major issue in the limitation of their anti-tumor response, however, the monoclonal
antibody (mAb) Monalizumab designed to block NKG2A inhibitory function could en-
hance NK cell activity [114,115]. Several clinical trials are ongoing for the treatment of
hematological and solid tumors; it has been shown that in patients affected by chronic
lymphocytic leukemia, the blocking of NKG2A on NK cells with Monalizumab could re-
store the capability of tumor infiltrating NK cells to exert cytotoxic activity against HLA-E+

leukemic cells [115]. Another possibility to enhance NK cell activation is to improve the
expression of the activating NK cell receptors and the efficacy of their signaling pathway.
NCRs and NKG2D are well-expressed on UCB-derived NK cells, suggesting a possible
activation against target cells [103]. In particular, NKG2D can be strongly upregulated
upon in-vitro cell activation and is able to mediate NK cell activity against several types
of tumor cells [102,116,117]. As for T lymphocytes, the Chimeric Antigen Receptor (CAR)
technique has been explored in UCB-NK cells as well. Of note, Herrera et al. showed that
UCB-derived CD19-CAR- NK cells, obtained by transducing a CD19-CAR plasmid into
IL-2- and IL-15-activated NK cells, displayed higher cell degranulation capability against
CD19+ cells as compared to unmodified NK cells [118]. In this context, there are two other
clinical trials ongoing on CAR-NK cells: a phase 1 study that evaluates NKG2D-CAR-NK
cells derived from UCB in patients with relapsed/refractory AML, and a phase 1/2 study
of CAR.70-IL-15 transduced UCB-derived NK cells for the management of hematological
malignancies (NCT05247957 and NCT05092451, see Table 2).

Recently, novel molecules aimed at specifically redirecting NK cell killing to neoplastic
cells have been produced. They are called NK Cell Engagers (NKCE) and would promote
the formation of the immunological synapse and thus, of NK cell activation [119]. These
molecules are composed by two single chain variable fragments that engage CD16a and
specific target tumor antigens and are called bi-specific killer engagers (BIKEs) [119]. It has
been also reported that bi-specific antibody CS1-NKG2D favored immune synapse between
CS1+-Multiple Myeloma and cytotoxic NKG2D+-NK cells [120]. More recently, tri-specific
killer engagers (TRIKE)-NKCE engagers have been produced, able to trigger CD16, NKp46
or NKp30 NK cell receptors and target CD19 or CD20, to induce killing of pediatric acute B
cell Leukemia. Colomar-Carando and colleagues have shown that the use of NKp46-and
NKp30-NKCE, incubated with NK cells derived from healthy donors, could potentiate NK
cell killing against pediatric B leukemia cell lines and also against ex-vivo isolated primary
B cell leukemic blasts. Similarly, the effect was observed by using NK cells derived from
HSCT-transplanted patients [121]. Thus, this novel technique could represent a powerful
tool also to enhance UCB-derived NK cell anti-leukemic activity, also considering that UCB
is used in pediatric HSCT more often [94].

In the clinical setting, UCB-NK cells are actually studied and exploited to improve the
outcome of several hematological malignancies (Table 2).

The role of UCB-derived NK cells in an HSCT setting has been well demonstrated [97,98,122]:
the mismatch between KIR receptors expressed by donor NK cells and HLA ligands on host
cells triggered NK cell cytotoxicity against leukemic cells in patients upon T cell depletion [97,98].
Besides the effects mediated by NK cells expanded in-vivo after UCB-transplantation, the
potential role of ex-vivo expanded UCB-derived NK cells is also under evaluation [123]. In
the study by Shah et al., UCB-NK cells were infused five days before autologous transplant
in patients affected by multiple myeloma (MM), achieving a good partial remission without
GHVD reaction. However, four patients relapsed and two of them died. Moreover, UCB-NK
cell detectability did not exceed 26 days. Thus, the duration of infused NK cells represents a key
issue; as previously discussed, the discovery of the role of IL-15 as NK cell homeostatic mediator
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highlighted the importance of expanding NK cells more effectively, and of reducing tumor cell
activity in patients affected by hematological and non-hematological malignancies [109].

Table 2. Ongoing clinical trials with UCB-NK cell-based therapies in hematological and solid tumors.
HCC (Hepatocellular Carcinoma); RCC (Renal Cell Carcinoma);ALL (Acute Lymphoid Leukemia);
AML (acute myeloid leukemia); Rec.(Recurrent); Rec. Mal. (Recurrent Malignant); CML (Chronic
Myeloid Leukemia); CLL (Chronic Lymphoid Leukemia); CRC (Colorectal Cancer); MDS (Myeloid
dysplastic syndrome); Acc.(Accelerated); HSCT (Hematopoietic stem cell transplant).

Trials NCT Number Disease Trial Phase Interventions

1 NCT05110742 Hematological Malignancy • Phase 1
• Phase 2

• Drug: Fludarabine Phosphate

Cyclophosphamide

• Biological:CAR.5/IL15-UCB-NK cells

2 NCT01914263
• HCC
• RCC
• Lung Cancer

• Phase 1 • Biological: cytokine induced NK cells

3 NCT03056339

• B-Lymphoid Malignancies
• ALL
• CLL
• Non-Hodgkin’s Lymphoma

• Phase 1
• Phase 2

• Drug: Fludarabine
• Drug: Cyclophosphamide
• Drug: Mesna
• Biological:

iC9/CAR.19/IL15-UCB-NK
• Drug: AP1903

4 NCT01729091 • Plasma Cell Leukemia
• Plasma Cell Myeloma • Phase 2

• Autologous HSCT
• Biological: Elotuzumab
• Other: Laboratory Biomarker Analysis
• Drug: Lenalidomide
• Drug: Melphalan
• Biological: NK Cell Therapy
• Biological: UCB-Derived Lymphocyte

5 NCT03420963

• Rec.Cutaneous Melanoma
• Rec.Lip and Oral Cavity

Carcinoma
• Rec.Malignant Endocrine

Neoplasm
• Rec. Mal.Female and Male

Reproductive System Neoplasm

• Phase 1

• Biological: UCB-derived Expanded
Allogeneic NK Cells

• Drug: Cyclophosphamide
• Drug: Etoposide

6 NCT04796675
• ALL
• CLL
• Non Hodgkin’s Lymphoma

• Phase 1
• Drug+Biological: Fludarabine

+Cyclophosphamide + UCB
CAR-NK-CD19 Cells

7 NCT03841110

• Advanced Solid Tumors
• Lymphoma
• Gastric Cancer
• CRC
• Head and Neck Cancer
• Squamous Cell Carcinoma
• EGFR+Solid Tumor
• HER2+ Breast Cancer
• HCC
• Small Cell Lung Cancer

• Phase 1

FT500 (iPSC-derived NK cell product)
• Drug: Nivolumab
• Drug: Pembrolizumab
• Drug: Atezolizumab
• Drug: Cyclophosphamide
• Drug: Fludarabine
• Drug: IL-2
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Table 2. Cont.

Trials NCT Number Disease Trial Phase Interventions

8 NCT01619761
• Acc. Phase CML, BCR-ABL1 +
• Acute Biphenotypic Leukemia
• ALL in Remission

• Phase 1
• Allogeneic HSCT
• Drug: Cyclophosphamide
• Drug: Fludarabine Phosphate

9 NCT04347616 • AML refractory
• AML relapsed adult • Phase 2 • Biological: UCB-CD34+ NK cells

• Drug: IL-2

10 NCT04023071 • AML
• B-cell lymphoma • Phase 1

FT516 (iPSC-derived NK cell product)
• Drug: Rituximab or Obinutuzumab

11 NCT05247957 • AML refractory
• AML relapsed adult • Phase 1 • Biological: UCB NKG2D-CAR-NK cells

12 NCT05092451
• AML
• B-cell lymphoma
• MDS

• Phase 1
• Phase 2

• Drug: Cyclophosphamide
• Biological: CAR.70/IL-15- UCB-NK cells
• Drug: Fludarabine Phosphate

In this context, UCB-NK cells have been shown to be a good source for the gen-
eration of CAR-NK cells. Phase 1 and 2 clinical trials reported results obtained us-
ing CAR-UCB-NK cells in which the CAR construct was composed of anti-CD19, CD28,
CD3ζ IL-15 and inducible caspase 9. Treated patients were affected by CD19+ lymphoid
tumors and demonstrated a rapid response. Importantly, CAR-NK cells persisted at low
levels for at least one year and no significant side effects were observed except for a tran-
sient myelotoxicity. Of note, CAR-NK cells could also be detected in patients who did not
achieve any response or relapsed, suggesting their possible exhaustion [124,125].

Currently, the efficacy of UCB-derived NK cell therapies in solid tumors is also under
evaluation and several clinical trials are ongoing (see the Table 2).

4.2. UCB-CD34+ Cell-Derived NK Cells

UCB is an important source of CD34+ HSPCs to obtain NK cells. Several in-vitro
models of NK cell differentiation from CD34+HSPCs have been optimized and all of
them have represented a powerful tool for several purposes. First, they have provided
a unique opportunity to understand the mechanisms sustaining and regulating NK cell
development [33,36]; second, they give hints to evaluate the UCB CD34+-derived NK cell
therapeutic potential in preclinical analyses [126–128], and third, they provide the basis for
the “off the shelf” NK cell generation for adoptive immunotherapy [8,9,129].

All in-vitro models for NK cell differentiation include the use of an SCF, FlT3-L, IL-7
and IL-15 cytokine cocktail in the medium, in combination with other cytokines such as
IL-21 or IL-12, which may promote terminal differentiation by accelerating the acquisition
of KIRs, cytokine production and of full cytolytic potential. The addition of other soluble
factors (TPO, G-CSF, IL-6) may further support precursor proliferation from fresh or frozen
UCB samples (Figure 1A) [128,130,131]. Feeder cells, such as the OP9 cell line, have been
shown to promote the generation of large numbers of mature and functional NK cells [132]
but, as for the expansion of mature PB-or UCB-NK cells, the use of supportive cell lines
may present limitations in the clinical setting. In 2012, two methods have been shown to
obtain large numbers of NK cells from UCB-derived CD34+ HSPCs: the first approach used
the embryonic liver cell line EL08.1D2 in the presence of the above described cytokines,
plus IL-3, that was added only at the beginning of the culture [133]. The second protocol
is a GMP-compliant system that concerns the using of Glycostem® expansion medium
(Oss, The Netherlands) plus addition of several factors such as TPO, GM-CSF, IL-6 and
G-CSF added at different time culture intervals [129,131]. This production process occurs
in closed, large-scale bioreactors, representing a valuable tool for the generation of clinical
grade NK cells for adoptive transfer. Of note, frozen UCB samples have also been shown
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to support the generation of great numbers of functional UCB CD34+-derived NK cells,
further underlining the advantages of this source for the generation of NK cells [131,134].

Since the first experiments, in-vitro differentiation models provided unique infor-
mation on the kinetics of NK cell development which paralleled the results from ex-vivo
analyses, in particular those obtained in the allogeneic transplantation setting. Of note,
based on these experiments, it has also been stated that UCB-CD34+ precursors can
give rise to both NK cells and to ILC3. ILC3, which can be identified by the expres-
sion of RORγt TF and by the ability to produce IL-22, are generated from CD34+ ILC3-
specific precursors [135–138]. Regarding NK cells, during precursor development, the
CD161+CD56+CD117−CD7+ cells acquire the expression of CD94/NKG2A, NKp80 and
LFA-1 and of NCRs, cytolytic granules and the ability to produce IFN-γ. A subset of these
NK cells further acquires the expression of KIRs and CD16, witnessing the acquisition of
final terminal differentiation (stage IV–V) [33,37]. On the other hand, the lack of expression
of CD94/NKG2A and LFA-1 identifies a heterogeneous cell subset (characterized by the
CD161+CD56+CD117+CD7−LFA-1−CD94/NKG2A− phenotype) that may contain both
stage III NK cell precursors and ILC3 [135,136,139]. In this model, it is also possible to
obtain limited amounts of CD33+CD14+/− myelomonocytic cells and of CD83+CD86+ DCs
(authors’ observation), and it has been suggested that, in the presence of hydrocortisone, it
is possible to observe NK cell differentiation from myeloid precursors [140]. More recently,
an in-vitro platform able to generate all the lineages of ILCs by the use of different combina-
tions of cytokines and feeder cells has been proposed. In particular, it has been shown that
the simultaneous presence of SCF, FlT3-L, IL-7, IL-15 and OP9-DL1 feeder cells favored
most exclusively the generation of ILC1/NK cells. These results confirm the key role of
IL-15 in the generation of NK cells but also underline the role of the NOCTH signaling
pathway and provide novel insights into mechanisms that may regulate ILC differentiation
and may promote the expansion of different ILC subsets for clinical purposes [141].

Taken together, all the above described in-vitro models indicate a high plasticity of
human UCB CD34+ precursors, whose cell differentiation could largely depend on microen-
vironmental stimuli. Thus, studies on UCB precursors may be of great help to understand
whether tumors cells, soluble factors or drugs could affect the NK cell developmental
process, allowing for performing different types of in-vitro and preclinical analyses. In this
context, we showed that IL-1β-releasing AML blasts can interfere with ILC3 and NK cell
development [142]. The role of leukemic cells, in particular of the minimal residual disease
(MRD), in the modulation of normal hematopoiesis and generation of competent anti-tumor
effector cells is a key issue that should also be considered. Indeed, the role of NK cells in
leukemic immunosurveillance have been suggested not only for acute diseases but also for
chronic myeloid leukemia [143,144]. In particular, a role of NK cells has been suggested
in patients undergoing therapy with tyrosine kinase inhibitors (TKI) who reached a deep
molecular response (DMR), and were eligible for therapy discontinuation, remaining free of
relapse for several years [145–147]. However, we observed that the in-vitro administration
of these compounds (Imatinib, Nilotinib and Dasatinib) could affect in-vitro myeloid differ-
entiation and also NK cell recovery from UCB CD34+ precursors. In particular, Dasatinib
seemed to favor the expansion of ILC3 rather than that of mature NK cells [148].

Similarly, the recent increasing clinical use of epigenetic drugs targeting myeloid
and solid malignancies prompted researchers to also better evaluate the effect of these
compounds on the generation and function of potential anti-tumor effector lymphocytes
such as T and NK cells [74,149]. Of note, the addition of EZH1/2 inhibitors to the cul-
ture of UCB-CD34+ cells undergoing NK cell differentiation favored lineage commitment
towards ILC3 differentiation [150]. In our opinion, these results suggest that ex-vivo
monitoring of NK cell repertoire should be recommended in patients undergoing these
therapeutic protocols, particularly in view to enforce patient NK cell response against
tumors. UCB-CD34+-derived NK cells display similar functional properties of PB NK cells
in terms of IFN-γ, TNF-α production and cytolytic activity. Of note, they express high
amounts of HLA-E-specific CD94/NKG2A inhibitory receptor, whereas the percentages
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of KIR+CD56+ cells are limited (Figure 1B) [33]. This would suggest that the expression of
non-classical HLA-E class I molecules could play a key role in protecting potential tumor targets.

Preclinical studies allow the evaluation of UCB CD34+-derived NK cell efficacy in
different tumor models and of the possibility of its modulation by putative factors. In
this context, the group of Dolstra reported several studies showing how the combined
use of IL-2 and IL-15 or the addition of Decitabine epigenetic drug could improve the
anti-leukemic activity of NK cells generated from UCB CD34+ precursors [127,151]. In
particular, they showed that the treatment with hypomethylating agent Decitabine had a
positive effect on UCB CD34+-derived NK cell anti-tumor response against human AML
blasts in-vitro and in-vivo, in NOD/SCID/IL-2Rγ null mice inoculated with human AML
leukemia [151]. Of note, in another report, they showed an increased killing by UCB
CD34+-derived NK cells in combination with gemcitabine in a murine model of ovarian
cancer [152]. Thus, UCB CD34+-derived NK cells may also display a potential activity
against solid malignancies. Hoogstad-van Evert et al. evaluated the potential role of
activated UCB CD34+-derived NK cells in infiltrating and killing human ovarian cancer
spheroids, using an in-vivo-like model. This model concerns the use of a three-cytokine
cocktail during in-vitro NK cell differentiation and the addition of the AhR antagonist to
prevent ILC3 differentiation [32,128]. Their results support the notion that UCB-CD34+-
derived NK cells may control tumor cells and also kill cancer stem cells involved in tumor
progression and metastasis formation. Of note, the use of IL-15 super agonist N-803
improved the functional activity of CD34+-derived NK cells in leukemia and ovarian cancer
models both in-vitro and in-vivo, in OC-bearing immunodeficient mice [153]. Currently,
in our laboratory, we are evaluating whether UBC-CD34+-derived NK cells may infiltrate
and kill human NSCLC spheroids, in view to design potential models for the treatment of
NSCLC–induced bone metastases.

It must be underlined that only few groups have focused on developing cell therapy
approaches based on the in-vitro differentiation of NK cells from UCB CD34+ HSCs. These
NK cells have been shown to be safe and their use is feasible when considered in the
context of allogeneic HSCT, and in a phase I study with patients affected by recurrent
ovarian carcinoma [154,155]. In 2017, a clinical trial indicated that NK cells expanded from
UCB CD34+ HSC and NK progenitor cells could achieve a successful adoptive transfer in
elderly AML patients from partially HLA-matched UCB units [156]. Without any cytokine
boosting, NK cells persisted in a patient’s PB until day 8 and, of note, NK cell precursor
maturation was observed as witnessed by the acquisition of CD16 and KIR receptors. These
patients were in complete morphologic remission post treatment with no GVHD and NK
cell infusion-related toxicities. Of note, two out of four patients with MRD in BM before
NK cell infusion became MRD-negative, and the remission lasted for 6 months, suggesting
that UCB CD34+-derived NK cells might have contributed to this result.

Recently, a novel clinical trial (NCT04347616) has been approved, in which refractory
and relapsed adult AML patients will be eligible to be treated with ex-vivo expanded
NK cells derived from allogeneic UCB CD34+ HSCs (see Table 1).

4.3. UCB-Derived iPSCs as a Source of NK Cells

UCB can also be a source of human iPSCs, which represent an alternative to produce
NK cells in a standardized manner for anticancer immunotherapy [157]. Indeed, iPSCs can
be obtained through the genetic reprogramming of various somatic cell types by induced
overexpression of different stemness transcription factors, usually represented by Oct,
Sox2, Klf4, and c-Myc [158]. In addition, UCB-derived purified CD34+ HSPC can be easily
reprogrammed through previous cell stimulation by SCF, IL-3, and GM-CSF, followed by
introduction of the exogenous stemness genes (Figure 1A).

The employment of mature NK cells, either directly isolated from UCB or ex-vivo
differentiated from UCB-derived CD34+HSPC, is challenging because this approach re-
quires the continuous availability of suitable UCB units and adequate cell numbers to be
infused. In this context, iPSCs would represent an appealing solution. Indeed, they can be
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indefinitely expanded from selected iPSCs clones devoid of genomic alterations in order to
ensure a therapeutically safe cell product. Thus, the generation of functionally mature NK
cells could rely on a stable, unlimited source of selected and characterized cells.

The differentiation protocol for the development of mature, functional NK cells from
UCB-iPSC involves a step-by-step culture method in which iPSC are firstly induced
to differentiate towards CD34+ CD43+/CD45+ hematopoietic progenitor cells that, by
mimicking embryonal hematopoiesis, originate from the previous stage of hemogenic
endothelium [159]. This step involves the formation of spin embryoid bodies that are
cultured in a BPEL (bovin serum albumin, polyvinyl alcohol, essential lipids) medium
containing BMP4, VEGF, and SCF. The hematopoietic cell precursors are then stimulated to
obtain fully differentiated NK cells by the addition of a cytokine cocktail consisting of SCF,
FLT3L, IL-3, IL-7, and IL-15, which promotes HPC commitment to the lymphoid lineage
and the differentiation and maturation of NK lymphocytes. Further expansion of NK cells
can be obtained with IL-2 or with the so-called artificial antigen presenting cells (aAPCs),
represented by the NK-sensitive K562 cells that have been genetically modified to express
the membrane-bound IL-21 and 4-1BB ligand [160]. Notably, the differentiation protocol
has evolved, according to the need of obtaining a serum- and stroma-free cell product
suitable for therapeutic infusion [159].

UCB-iPSC-derived NK (iNK) cells are CD3−CD56+ cells, expressing the most relevant
NK cell receptors, including both activating, as CD16, the NCRs, e.g., NKp46 and NKp44
molecules, NKG2D, and inhibitory receptors, as NKG2A and KIRs (Figure 1B). Moreover,
cells are fully functional as they show cytotoxic activity against different tumor cell targets
both in-vitro and in-vivo [161], mediated by perforins and granzymes of lytic granules and
by FasL and TRAIL. In addition, they release IFN-γ and TNF-α upon interaction with target
cells. Both phenotype and effector functions of iNK cells are comparable with those shown
by conventional NK cell populations [161].Thus, iNK cells represent a suitable alternative
tool for immunotherapy approaches employing NK lymphocytes.

Many studies have recently focused on the use of genetic modification to improve NK
cell functions and persistence in-vivo. In this context, iNK may represent an advantageous
platform as, in this case, cell engineering would be performed on iPSCs, and the starting
cell population can be indefinitely expanded and stored as a ready-to-use product for NK
cell generation. Following this approach, the sustained stimulation of the IL-15 signaling
pathway (to promote cell expansion and activity) has been induced on iNK cells by deleting
the CISH gene coding CIS protein, a negative regulator of IL-15 signaling. Alternative
strategies have employed an IL-15 superagonist/IL-15Rα fusion construct, activating
cytokines or aAPC [162,163]. The potentiation of the NK cell effector function has also been
achieved through sustained ADCC by introducing the gene coding for the F158V variant of
the CD16 receptor, which is resistant to ADAM17 metalloprotease cleavage [164].

In addition, concerning strategies aimed at increasing NK cell expansion and effector
functions, experimental attempts to specifically redirect cells against tumor antigens have
been tried. For example, UCB CD34+ cell-derived iPSCs have been genetically engineered
with CAR constructs. In an ovarian cancer xenograft model, the iNK cells, engineered to
target the tumor associated antigen mesothelin, have shown efficient anti-cancer activity
and improved survival [165]. A more recent approach has been the use of an engager
molecules, represented by an anti-NKG2C/IL-15/anti-CD33 killer engager to specifically
target CD33+ acute myeloid leukemia cells [166].

Very recently, since 2019, phase I clinical trials have been started by Fate Therapeutics
using iPSC-derived NK cells for the treatment of solid or hematologic tumors. In the
NCT03841110 trial, the iNK cells are used in combination with checkpoint inhibitor im-
munotherapy against various advanced solid tumors, whereas, in the NCT04023071 trial,
genetically modified iNK cells, expressing the high affinity, cleavage-resistant form of
the CD16 receptor, are being employed against hematological malignancies (Table 2).
Preliminary clinical data account for the safety and potential efficacy of these biological
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therapies, thus appearing as a promising alternative to more conventional but less versatile
therapeutic products.

5. Conclusions

In recent years, the NK cell-based adoptive therapy has emerged as a promising and
effective tool to fight cancer. The major source of NK cells has been typically represented
by peripheral blood, but some issues on the selection of the HLA-mismatched NK cell
subset and on the in vivo persistency of mature PB-NK cells are pushing towards new
strategies of effective NK cell supplies. BM has been studied as a source of CD34+ HSC
rather than for its content of mature NK cells, and, in clinics, it has been successfully
utilized in HSCT. In this setting, HSC proved crucial to the development in the patient of
persistent NK cells, which were effective in the control of certain hematologic malignancies.
Given its limited availability, however, BM has rarely been considered for the preparation
of precursor-derived NK cells for therapy. On the other hand, UCB-derived NK cells
may represent an important resource to be employed in immunotherapy protocols. In
particular, UCB cells can be easily achievable and are taken into consideration as a third-
party platform because of the large availability of stored and fresh UCB units. Of note,
the existence of Cord Blood Banks may also ensure the selection of donors with peculiar
HLA haplotypes. This selection is required for the generation of alloreactive NK cells (e.g.,
expressing inhibitory KIRs missing recognition of the host HLA-I alleles), which may be
more effective in targeting host tumor cells.

UCB mature NK cells can be expanded and activated in-vitro for clinical purposes.
Several efforts have been made to improve their potential therapeutic efficacy in terms of
proliferation, cytolytic potential, tumor specificity and in-vivo long surviving. In this context,
the use of specific cytokine cocktails to expand and stimulate UCB-NK cells in-vitro, as well
as the generation of CAR-UCB-NK cells, represent effective approaches and several clinical
trials have been approved and are ongoing. To prolong the efficacy and persistence of infused
NK cells, the support of IL-15 seems mandatory and thus, the transduction of the IL-15 coding
gene should be considered. In this context, iNK cells represent an important platform.

Although UCB-NK cells have been shown to be a reliable tool in hematological malig-
nancies, their use in solid tumors still represents a challenge. The necessity to overcome the
inhibitory effects of TME, and to drive CD56dimCD16+ cytotoxic NK cells into the tumor
nest by promoting their recruitment, represents a key issue not only for UCB-NK cells. In
this context, the use of the NKCE (BIKE/TRIKE) as well could offer novel opportunities.

Of note, UCB-CD34+ cells or UCB-iPSC as sources to expand functional NK cells are
still poorly exploited in clinics. However, the availability of feasible GMP protocols should
prompt more researchers and clinicians to improve the design of novel trials with these
kind of NK cell products. Indeed, the advances in the preparation techniques of NK cells
from iPSC, and the improved knowledge of the field, have led to the start of preliminary
trials. Nevertheless, some issues regarding NK cell generation and safety still remain, and
could have contributed somehow to limit their actual exploitation. Thus, investigations and
efforts are required in the next years to make the use of UCB-derived NK cells a common
“off the shelf” immunotherapeutic tool. Importantly, as for other novel protocols, the use of
UCB-derived NK cells in combination with other therapeutic approaches (chemotherapy,
monoclonal antibodies, epigenetic drugs) should be carefully investigated to find out
strategies that could significantly improve the efficacy of current treatments, providing a
great benefit for cancer patients.
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