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Simple Summary: Angiogenesis is crucial in tissue regeneration and a relevant factor in tumor
growth. Consequently, there is a demand for methods to assess angiogenesis. The chorioallantoic
membrane (CAM) assay is a widely used in vivo model for the study of angiogenesis. However,
there is no established gold standard to evaluate the vascularisation of the CAM, which limits the
comparability of the different studies. In this manuscript, we present a novel approach to address
this topic.

Abstract: Angiogenesis is a highly regulated process. It promotes tissue regeneration and contributes
to tumor growth. Existing therapeutic concepts interfere with different steps of angiogenesis. The
quantification of the vasculature is of crucial importance for research on angiogenetic effects. The
chorioallantoic membrane (CAM) assay is widely used in the study of angiogenesis. Ex ovo cultured
chick embryos develop an easily accessible, highly vascularised membrane on the surface. Tumor
xenografts can be incubated on this membrane enabling studies on cancer angiogenesis and other
major hallmarks. However, there is no commonly accepted gold standard for the quantification of
the vasculature of the CAM. We compared four widely used measurement techniques to identify the
most appropriate one for the quantification of the vascular network of the CAM. The comparison
of the different quantification methods suggested that the CAM assay application on the IKOSA
platform is the most suitable image analysis application for the vasculature of the CAM. The new
CAM application on the IKOSA platform turned out to be a reliable and feasible tool for practical
use in angiogenesis research. This novel image analysis software enables a deeper exploration of
various aspects of angiogenesis and might support future research on new anti-angiogenic strategies
for cancer treatment.

Keywords: chorioallantoic membrane assay; angiogenesis; comparison of image analysis methods
for angiogenesis; artificial intelligence

1. Introduction

Angiogenesis is a critical biological process that ensures blood supply to cells. Fur-
thermore, it is a crucial factor in tissue regeneration, as well as in pathological processes
such as tumor development. New vessels are formed from pre-existing ones by means of
sprouting or intussusceptive angiogenesis. Angiogenesis is a highly regulated process. The
existing therapeutic concepts intervene with the different steps of angiogenesis.

The chick egg chorioallantoic membrane (CAM) assay is a widely used model to study
angiogenesis. The chorioallantoic membrane is a highly vascularised membrane within
fertilised and incubated chicken eggs that transports gases, metabolites, and minerals.
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The ex ovo CAM model offers a convenient opportunity for angiogenesis research on
the easily accessible vascular network on the surface, which can easily be imaged [1–3].
The highly vascularized membrane offers the possibility to use CAM as a bioreactor to
cultivate different tissue grafts [4]. Tumor xenografts can be transplanted onto the CAM
offering an alternative in vivo model to study cancer hallmarks, such as angiogenesis [3].
Furthermore, in the gelatin sponge–chorioallantoic membrane assay, different drugs, used
as antiangiogenic agents, may be tested as new treatment strategies for cancer [5].

In numerous CAM studies, different methods of quantifying vasculature have been
used and described [6–8]. The manual count of the vessels dates back to Folkman’s research
group’s first use of the CAM assay in 1974. [9]. However, manual analysis is quite time-
consuming and prone to human bias. Automated and semi-automated applications enable
the quantitative assessment of various vasculature morphometric and spatial parameters.
The performance of the different measurement methods has to be validated. Nevertheless,
the lack of a commonly accepted gold standard for quantifying the vasculature of the CAM
limits the comparability of the different studies.

In this article, we present a user-friendly, standardised, and reproducible experimen-
tal design for studies on angiogenic effects with the help of artificial intelligence-based
image analysis.

For this purpose, we compared widely used measurement techniques to identify the
most appropriate one for the quantification of the vascular network of the CAM.

2. Materials and Methods
2.1. Ex Ovo Chorioallantoic Membrane Assay

Ethics committee approval is not necessary for studies with CAM assays as chick
embryos are not defined as animals until hatching [1,3]. Our study was conducted per the
consensus guidelines by Schneider-Stock and Ribatti 2020 [3]. Fertilised white Lohmann
chicken eggs (LSL-hatching eggs, Schropper GmbH, Gloggnitz, Austria) were incubated
lying horizontally at a temperature of 37.6 ◦C and a constant humidity of 60% while being
turned automatically for three days in an incubator (Easy 100, J.Hemel Brutgeräte, Verl,
Germany). The incubator and all working areas were disinfected to prevent infection of
the immunodeficient chick embryos [1]. On day 3 of incubation, all the eggs were cracked,
placed into sterile weight boats, covered with a sterile square petri dish, and then put back
in the incubator. On day 10 of incubation, all the CAMs were imaged, as described in
subchapter two, and then euthanised. An overview of the experimental setup can be found
in Figure 1.
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2.2. Imaging

On the tenth day of development, all the chorioallantoic membranes of the surviving
embryos were imaged. Imaging was performed using a light microscope (Leica M651, Leica
Microsystems, Wetzlar, Germany) at tenfold magnification and a standard SLR camera
(NIKON D5600, Nikon Corp, Tokyo, Japan).

2.3. Image Analysis

There are various methods available to analyse images of the CAM vascular network.
On the one hand, there is the possibility of manual analysis. On the other hand, several
applications allow an automatic or semi-automatic quantification of various vascular
network parameters. Some quantification methods for CAM assays have been described;
however, there is no comparison of the different image analysis methods available in the
existing literature. In our present study, 100 randomly picked pictures of the vascular
network of chorioallantoic membranes were analysed using each measurement technique
to compare the results.

2.3.1. Manual Analysis

The manual analysis of the vascular network of CAMs is very time-consuming, es-
pecially for larger sample sizes. Furthermore, the manual analysis is prone to human
error and bias. We performed the manual analysis with the Software ImageJ (National
Institutes of Health, Bethesda, MD, USA). It is possible to count the branching points of
the vasculature with the ‘Multi-point Tool’. Furthermore, the mean vessel thickness can be
evaluated by measuring a random sample of vessels with the straight-line selection tool.
Our study included the mean thickness of 20 randomly picked vessels.

2.3.2. ImageScope

The Software ImageScope can be used to quantify the number of pixels in an image
within a specific colour range. Marinaccio et al. described how to assess the vascularisation
of the CAM with the ‘Positive Pixel Count v9’ tool embedded in ImageScope. The algorithm
yields the number of strong positive pixels in %, which is a morphometric value for the
quantification of the surface of the vasculature [7].

2.3.3. AngioTool

Another widely used application to analyse vascular networks is the freely available,
open-source software AngioTool. It collects data on morphological and spatial parameters,
such as the total area of the vascular network, the number of vessels, vessel density, length,
and lacunarity [10].

2.3.4. IKOSA

Recent developments in artificial intelligence (AI) have opened new possibilities for
image analysis, especially in life sciences. The IKOSA platform [11] provides various
analysis tools whereby one of them, called “CAM Assay”, facilitates AI-based analysis of
vascular networks on CAM images. With IKOSA, quantitative information such as the
vessel area and length can be extracted. The underlying image analysis model is based
on a fully convolutional neural network [12], which uses an InceptionResNetv2 [13] as an
encoder and a U-Net [14] based structure as a decoder path. The model was trained in
2 stages: The first training stage included manually annotated blood vessels of (i) 322 retinal
fundus images. Each image had a size of 1024 × 1024 pixels. During training, random
image patches of size 256 × 256 were cropped, normalised, and augmented by various
commonly used methods such as random horizontal and vertical flipping. In the second
training stage, the previously trained model was additionally trained on the target (ii) CAM
dataset, consisting of 8 training images with each being 6000 × 4000 pixels. To provide a
reasonably sized receptive field to the network, the resolution of each image was reduced
to 1536 × 1024 pixels. Again, image patches of size 256 × 256 pixels were cropped during
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training, using the same augmentation methods as for the previous training. Since the
trained model of the first stage was used as a basis to be re-trained on a (slightly) different
task, this can also be referred to as transfer learning [15,16]. Especially for training on a
very small number of training images, the principle of transfer learning is often superior to
training the same model from scratch, which is also concluded by Ghafoorian et al. [16].
When applying the final model to CAM images, we obtain a segmentation map in terms
of a binary mask representing the vessel area at pixel level. Based on that, prediction
postprocessing and statistical analysis finally yield different output parameters such as
the total vessel area, the total vessel length, the mean vessel thickness, and the number of
vessel branching points.

An overview of the segmentation masks of the different image analysis methods can
be found in Figure 2.
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2.3.5. Statistical Analysis

All statistical analyses were performed with SPSS for Mac, Version 27 (IBM, Armonk,
NY, USA). To compare the different image analysis methods, we created Bland–Altman
plots to visualise and describe the advantages and disadvantages of each application.
Furthermore, we conducted paired sample t-tests with branching points outputs of the
different measurement methods. Comparing the means was not reasonable for the other
parameters as the results might have differed because of the different input parameters.

3. Results

We examined the advantages and disadvantages of several widely used image anal-
ysis methods for vascular networks. Not all measurement techniques provide the same
morphological and specific parameters. Some image analysis methods cannot be compared
with each other as some of the applications yield no corresponding parameters. The Bland–
Altman plots show the concordance of the measurements. The green line depicts the mean
difference. The two red lines represent the level of agreement (average difference ± 1.96 ×
standard deviation of the difference).

3.1. Branching Points

The number of branching points is a well-suited parameter to compare different
methods for quantifying vascular networks. It is an absolute number that does not depend
on the selected input parameters. Branching points are a main parameter for assessing
angiogenesis as new vascular branches develop by sprouting or intussusception from
pre-existing vessels [2].

The manual count of the branching points is very time intensive. However, if carried out
conscientiously, it is a reliable method to quantify the number of branching points. Figure 3
compares the quantification of branching points with the different image analysis methods.
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The IKOSA CAM Assay application results show the smallest difference compared
to the manual analysis (mean difference 12.18, SD 19.26). When manually counted, signif-
icantly (p < 0.001) more branching points could be detected (mean 190.61) than with the
application on the IKOSA platform (mean 178.43). The quantification of branching points
with AngioTool (mean 944.26) delivers a significantly (p < 0.001) higher number of vascular
branches than the manual counting method (mean 190.61) (mean difference −753.65, SD
296.18). The difference between the measurement methods is more apparent for images
with a higher number of branching points. This effect can also be observed in comparing
the IKOSA CAM Assay application with AngioTool (mean difference −765.83, SD 298.93).
Here, a significantly (p < 0.001) higher number of vascular branches is also detected with
AngioTool (mean 944.26) than with the application on IKOSA (mean 178.43).

The validation of the new CAM application on IKOSA is mainly based on the number
of branching points as parameters for the vasculature. Branching points can clearly be
identified in the course of the manual analysis. They are a reproducible parameter.

Moreover, a visual validation has been performed by evaluating the segmentation
masks after the image analysis. Visual analysis of the segmentation masks is reliable as
human visual perception is highly sensitive to detecting incongruences.

3.2. Total Length

Another critical process during angiogenesis is vessel elongation [17]. The appearance
of new branches and pre-existing vessels’ elongation influence the vascular network’s total
length. The total length of the vessels in an image can be determined with AngioTool and
the new application on IKOSA.

The comparison of the results (Figure 4) shows that the difference in the measurements
with the two applications becomes apparent in pictures with a higher total vascular length
(mean difference 30,048.67 Px, SD 14,084.06). The results of AngioTool (mean 71,311.21 Px) are
higher than those collected with the IKOSA CAM Assay application (mean 41,262.54 Px).
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IKOSA CAM Assay application and AngioTool.

3.3. Total Area

The total area quantifies the surface of all vessels in an image. The vascular area
increases as the vascular network grows. However, it also depends on the thickness of the
blood vessels. New vascular sprouts appearing during angiogenesis are thin and might
not impact the total vascular area as much as other parameters. Furthermore, the input
parameters of the image analysis application differ; consequently, the results might diverge.
There is no gold standard for the quantification of the vascular area. Since the measurement
of the surface of all vessels cannot be determined using manual analysis, only a comparison
of the quantification software outputs is possible.

The comparison of the total area quantified with the different image analysis appli-
cations is depicted in Figure 5. The difference in the results for the vascular area from
AngioTool (mean 1,217,033.23 Px2) and ImageScope (mean 899,284.93 Px2) seems to be the
smallest, with a greater difference for images with a larger vascular area (mean difference
317,748.3 Px2, SD 246,416.687). This divergence can also be seen in the comparison of
the application on IKOSA (mean 848,942.21 Px2) and AngioTool (mean 1,217,033.23 Px2),
where images with a larger surface area of blood vessels show higher differences in the
results (mean difference −368,091.02 Px2, SD 261,717.82). The measured vascular area
with the IKOSA CAM Assay application and ImageScope has the biggest difference (mean
difference −50,342.72 Px2, SD 140,711.099). ImageScope (mean 899,284.93 Px2) measures a
higher vascular area than the application on IKOSA (mean 848,942.21 Px2).
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3.4. Mean Thickness

Changes in the mean thickness of the vasculature are related to angiogenic processes.
New thin sprouts develop, leading to a decrease in the mean diameter of the vascular
network. The mean thickness can be assessed using manual measurement of the diameter
of a random sample of vessels or with the IKOSA CAM Assay application.

The comparison of the mean thickness of the vascular network using manual analysis
and with the application on IKOSA (Figure 6) shows a slight difference in the results (mean
difference −2.09 Px, SD 0.93). Furthermore, no trend for measurement errors in pictures
with high or low thickness values can be found. The IKOSA CAM Assay application (mean
20.92 Px) tends to measure a higher mean thickness than the manual measurement method
(mean 18.8 Px).
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Figure 6. Bland–Altman plot with the comparison of the mean thickness of the vasculature measured
manually and with the IKOSA CAM Assay application.

4. Discussion

In the present study, we compared the widely used image analysis methods for the
vasculature of the CAM. We presented a new AI-based approach for quantifying the
vasculature of the CAM and evaluated the sensitivity and practical use.

The new AI-based image analysis CAM Assay application on the IKOSA platform is a
convenient and accurate method to quantify the vascular network of the chorioallantoic
membrane. Our results show that this application is the most precise method for analysing
the branching points and the mean vascular thickness compared to the standard, manual
count. In addition, it provides the advantage of evaluating further vascular parameters,
which cannot be assessed manually.

The data analysis with AngioTool revealed higher values for all parameters than all
other analysis methods. This could indicate a measurement error whereby vessels are
falsely detected, as shown in Figure 7.
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ImageScope delivers a rough estimation of the surface of the vessels in an image. Other
spatial or morphometric parameters cannot be evaluated. The algorithm ‘Positive Pixel
Count v9’ does not directly detect the vessels but detects pixels in a specific colour range.
Image artefacts, such as light reflections, may distort the results, as depicted in Figure 8.
These artefacts can be excluded from the analysis with the negative pen tool embedded
in ImageScope. Reviewing the images prior to the analysis to exclude these artefacts is
time-consuming and might bias the results.
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Figure 8. Image analysis with ImageScope. (a) Artefacts related to specific background structures
(here: deeper blood vessels). (b) Light artefacts due to light reflections. (c) Exclusion of areas with the
‘negative pen tool’.

The possibility of automated image analysis enables studies with high sample sizes
and consequently a higher predictive power. Furthermore, it permits the quantification of
various morphometric and spatial parameters. Treatments and drugs influence different
vasculature parameters [8]. While some of these parameters cannot be quantified manually,
image analysis software enables a deeper exploration of various aspects of angiogenesis.

We believe our work will shed light on new directions for using the CAM Assay in
broad areas of medical research.

5. Conclusions

In conclusion, we demonstrated the practical use of a new AI-based automated quan-
tification method for angiogenesis in CAM. Compared to the widely used image analysis
methods, the IKOSA platform turned out to be a reliable and feasible tool for practical use
in research on angiogenesis. This new image analysis software enables a deeper exploration
of various aspects of angiogenesis and might support future research. The CAM Assay pro-
vides an alternative in vivo model for angiogenesis in tumor development. In the gelatin
sponge–chorioallantoic membrane assay, different drugs, such as antiangiogenic agents
may be tested. The CAM model is an inexpensive and easy-to-use model to study new
anti-angiogenic strategies for cancer treatment. Reliable quantification of vascularisation is
indispensable for meaningful research.
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