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Simple Summary: Cancers are caused by genetic alterations called mutations. In some cases, specific
mutation combinations act synergistically to provide unique advantages for cancer development.
These mutation combinations are observed more frequently than by random chance. In this study,
we investigated a large public tumor mutation database and found the most diverse and frequent
concurrent mutations occur in TP53 and RB1. We enumerated the cancer types with TP53/RB1
co-mutations and investigated the patient outcome and the specific characteristics of cancer cells
with TP53/RB1 co-mutations, especially the drugs that can and cannot be used to kill these cells. Our
work provides a tool for cancer researchers to investigate co-mutations and provides insights into the
treatment of TP53/RB1 co-mutated cancers.

Abstract: Nearly all tumors have multiple mutations in cancer-causing genes. Which of these
mutations act in tandem with other mutations to drive malignancy and also provide therapeutic
vulnerability? To address this fundamental question, we conducted a pan-cancer screen of co-
mutation enrichment (looking for two genes mutated together in the same tumor at a statistically
significant rate) using the AACR-GENIE 11.0 data (AACR, Philadelphia, PA, USA). We developed
a web tool for users to review results and perform ad hoc analyses. From our screen, we identified
a number of such co-mutations and their associated lineages. Here, we focus on the RB1/TP53
co-mutation, which we discovered was the most frequently observed co-mutation across diverse
cancer types, with particular enrichment in small cell carcinomas, neuroendocrine carcinomas, and
sarcomas. Furthermore, in many cancers with a substantial fraction of co-mutant tumors, the presence
of concurrent RB1/TP53 mutations is associated with poor clinical outcomes. From pan-cancer cell
line multi-omics and functional screening datasets, we identified many targetable co-mutant-specific
molecular alterations. Overall, our analyses revealed the prevalence, cancer type-specificity, clinical
significance, and therapeutic vulnerabilities of the RB1/TP53 co-mutation in the pan-cancer landscape
and provide a roadmap forward for future clinical translational research.

Keywords: RB1; TP53; neuroendocrine; sarcoma; small cell carcinoma; co-mutation; AACR-GENIE

1. Introduction

Self-sufficiency in growth signals was proposed as the first hallmark of cancer [1].
This property was generally thought to be driven by mutations in oncogenes, but in recent
years, escaping from a dormant state by lineage plasticity has also been recognized as a
hallmark of cancer [2]. Notably, lineage transdifferentiation is remarkably exemplified
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by small cell lung cancer (SCLC), a high-grade neuroendocrine carcinoma, with almost
ubiquitous co-mutation of RB1 and TP53 [3]. In non-small cell lung cancer and prostate
cancer, neuroendocrine lineage transition is frequently observed in treatment-resistant
tumors harboring RB1/TP53 co-mutation [4–6]. In normal lungs, RB1 and TP53 suppress the
self-renewal program in pulmonary neuroendocrine cells that have stem cell potential [7],
suggesting the loss of these two tumor suppressor genes can corroborate to disrupt cell
fate control.

Intrigued by the cooperation of RB1/TP53 co-mutations, we decided to take an in-
depth co-mutation investigation with the AACR Project GENIE data. AACR-GENIE is a
publicly accessible international cancer registry assembled from 19 cancer centers [8]. The
latest release (v11.0) contains mutation, fusion, and copy number alteration data for over
136,000 sequenced samples from over 121,000 patients [9]. The curated samples and patient
data provide information about cancer types (from 760 detailed cancer types), vital status,
and sample types (metastasis, primary), etc. The scale of this dataset makes it possible
to identify many statistically enriched co-mutations across different cancer types. We,
therefore, performed a co-mutation screen to understand the pan-cancer landscape of co-
mutations. We specifically characterized RB1/TP53 co-mutations due to their abundance,
diverse presence, and biological significance.

2. Results
2.1. RB1/TP53 Is One of the Most Frequently Co-Mutated Gene Pairs across Diverse Cancer Types

AACR-GENIE 11.0 data covers results from a total of 94 gene panels. We selected
76 genes that are covered by at least 50 different gene panels (Figure S1) to assess the
enrichment of 2,850 combinations of co-mutations (Table S1). TP53 is the most frequently
mutated gene with a mutation frequency of 39%, followed by KRAS, with a mutation
frequency of 15% (Figure 1a). Although TP53/KRAS co-mutation ranks 1st of all co-mutation
combinations, it is only significantly enriched in 5 out of 750 detailed cancer types after
controlling for multiple comparisons. In contrast, RB1 is mutated in 4.2% of the tested
cases and ranks 12th on the list (Figure 1a), but by the total number of co-mutated cases,
RB1/TP53 co-mutation ranks 5th of all the co-mutation combinations, with 3832 co-mutated
cases found in a total number of 128,348 cases (Figure 1b). Notably, the four co-mutations
that rank before RB1/TP53 have the majority of their cases dominated by a few cancer
types. Interestingly, RB1/TP53 is the most diversely co-mutated gene pair. It is significantly
enriched in 46 out of 750 detailed cancer types (Figure 1c), suggesting its versatile functional
role in cancers of different lineages.

2.2. A Web Tool for Performing Co-Mutation Analysis with the AACR-GENIE v11.0 Data

We constructed a web application “comut”, at https://lccl.shinyapps.io/comut/
(accessed on 1 August 2022), to allow users to review screening results and perform ad
hoc analyses. To be more comprehensive, we loosened the cut-off to include 178 genes
covered by at least 40 gene panels, resulting in 15,753 unique gene pairs. Note that this
may, however, increase the variability of sample size and cancer types across different
gene pairs, making the results less comparable. Results from concurrent and mutually
exclusive co-mutations were calculated, respectively. Two sets of analyses were performed,
one only considered mutation and gene fusion events, and the other added in copy number
alteration (CNA) events. In the latter approach, we referred to the COSMIC Cancer Gene
Census (CGC) [10] annotation of mutation types for cancer driver genes to determine the
type of CNA to include. We only consider deletion as mutations when “D” is included as
the mutation type from CGC, and vice versa for amplification events. However, with this
approach, pairs of genes physically adjacent to each other have exceedingly high numbers
of significant co-mutations across different cancer types. Such results should be interpreted
with a grain of salt. In Figure 1d–f, we provide a snapshot of the web application inter-
face. This web tool allows users to review the number of cancer types with significant
co-mutation in different gene pairs to evaluate co-mutation cancer diversity (Figure 1d).

https://lccl.shinyapps.io/comut/
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It also lists the number of significantly co-mutated gene pairs by cancer types (Figure 1e).
Average numbers of total cases per cancer type are provided in this table so that one can
take into consideration that the power to detect statistically significant co-mutations goes
down with smaller sample sizes. We also provide the results from all combinations of gene
pairs and cancer types (Figure 1f), so users may derive insights by different sorting and
filtering strategies, such as looking up their gene of interest to find the top co-mutated
partners, or looking up their cancer type of interest to find the top co-mutated gene pairs,
etc. Besides precalculated screening results, we also allow users to perform ad hoc analyses
with this web tool. Users may browse the full table from co-mutation analysis for a specified
gene pair (Figure S2). They may also generate an interactive scatterplot (Figure 2a).
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tailed Fisher’s exact test was used to determine the statistical significance of co-mutation enrichment 
in about 700 detailed cancer types. The number of cancer types with significant enrichment in 
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combination, case contribution from different cancer types is visualized as stacked grids within each
bar and each grid represents a contribution from one cancer type. Note that for the top four mutation
pairs, the majority of the cases were contributed by a small number of cancer types. (c). RB1/TP53
co-mutation is the most diversely co-mutated pair from 2850 pairs of co-mutations screened. One-
tailed Fisher’s exact test was used to determine the statistical significance of co-mutation enrichment
in about 700 detailed cancer types. The number of cancer types with significant enrichment in
specific co-mutations is shown on the y-axis, and the number of total co-mutated cases is shown
on the y-axis. (d–f). Screening result review from the “comut” web application. The number of
cancer types with significant co-mutation for a given gene pair can be reviewed from the upper left
table (d). The number of gene pairs with significant co-mutations for a given cancer type can be
reviewed from the upper right table (e). All the significant results for different combinations of gene
pairs and cancer types can be reviewed from the bottom table (f). These tables are filterable and
downloadable. The full name and explanation of the table headers are provided in a tooltip upon
mouseover. For example, in this snapshot, a tooltip for “exclusive.pv.sig” is displayed. Abbreviated
for headers: overall.comut.frac, the fraction of co-mutated samples from all cancer types; *.sig,
number of significant hits by nominal (*.pv.sig) or adjusted (*.padj.sig) p-values in tests for concurrent
or mutually exclusive co-mutation; avg.total, averaged total cases belonging to the specific cancer
type, the total cases vary by gene pair due to variable coverage of gene panels; comutant, number of
co-mutated cases; g1_mutant and g2_mutant, number of cases with mutations on gene 1 and gene 2
(left and right part of “co-mutation”); total, the total number of cases; co.frac, g1.frac, g2.frac are
comutant, g1_mutant, g2_mutant divided by total. “*” is a wildcard that represents “concurrent”
or “exclusive”.

2.3. RB1/TP53 Co-Mutation Is Enriched in Small Cell Carcinoma, Neuroendocrine Carcinoma,
and Sarcomas

We further integrated copy number and gene fusion data to determine the concurrent
loss status of RB1/TP53 (Figure S3). With these additional annotations, RB1/TP53 co-
mutation (concurrent loss) is significantly enriched in 76 out of 576 detailed cancer types
that each has at least 5 cases (Table S2). When we review the frequency distribution of
samples by RB1/TP53 mutation status in these 76 cancer types, we found in most of these
cancer types, the number of RB1/TP53 co-mutants is much larger than the number of
samples with RB1 mutation alone whereas there are many more samples with TP53 but not
RB1 mutation (Figure 2b). High frequencies of RB1/TP53 co-mutation were observed for
many types of small cell carcinomas besides SCLC, such as small cell bladder cancer, small
cell carcinoma of unknown primary, small cell carcinoma of the stomach, etc. However,
despite the high RB1/TP53 co-mutation frequencies, due to the small sample sizes, the
enrichment of RB1/TP53 co-mutation has not reached or cannot be calculated for statistical
significance in some of these cancers (Figure S4). We also observed higher frequencies
of RB1/TP53 co-mutation in many neuroendocrine carcinomas, such as uterine, prostate,
head and neck, etc. neuroendocrine carcinoma. Interestingly, frequencies of RB1/TP53
co-mutations were also found in many types of sarcomas, such as pleomorphic liposarcoma,
leiomyosarcoma, myxofibrosarcoma, etc. The overall RB1/TP53 co-mutation frequencies
are significantly higher in small cell carcinoma, neuroendocrine carcinoma, and sarcomas
compared to the other cancer types (Figure 2c).
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Pleomorphic Sarcoma/…” is “Undifferentiated Pleomorphic Sarcoma/Malignant Fibrous 
Histiocytoma/High-Grade Spindle Cell Sarcoma”, full name for “Solitary Fibrous Tumor/…” is 
“Solitary Fibrous Tumor/Hemangiopericytoma”, and full name for “Chronic Lymphocytic 
Leukemia/…” is “Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma”. (c). RB1/TP53 
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Figure 2. Pan-cancer landscape of RB1 and TP53 mutations. (a). Screenshot from “comut” web tool
for Adhoc co-mutation analysis. Users can specify a gene pair, and whether to include copy number
alterations in mutation for analysis. The interactive scatterplot allows users to inspect results from
different cancer types upon mouseover. The background color of the plot indicates the expected
co-mutation frequency assuming independence of each mutation. (b). Cancer types with significantly
enriched RB1/TP53 co-mutations. Fraction of cases with RB1/TP53 co-mutation, RB1 mutation only,
TP53 mutation only, or WT in both genes were visualized as stacked bar plots. The transparency of the
bars denotes the number of cases for each cancer type. Full name for “Undifferentiated Pleomorphic
Sarcoma/ . . . ” is “Undifferentiated Pleomorphic Sarcoma/Malignant Fibrous Histiocytoma/High-
Grade Spindle Cell Sarcoma”, full name for “Solitary Fibrous Tumor/ . . . ” is “Solitary Fibrous
Tumor/Hemangiopericytoma”, and full name for “Chronic Lymphocytic Leukemia/ . . . ” is “Chronic
Lymphocytic Leukemia/Small Lymphocytic Lymphoma”. (c). RB1/TP53 co-mutation frequencies
are higher in small cell carcinoma, neuroendocrine carcinoma, and sarcoma. Individual cancer types
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were represented by jittered points in the category denoted on the x-axis label. Statistical significance
of RB1/TP53 co-mutation enrichment in each cancer type was denoted by color and the total number
of cases was denoted by point size. The overall distribution of each category is visualized as violin
plots. p-values for pairwise comparison between “other” and selected cancer groups were calculated
by the Mann-Whitney test.

2.4. RB1/TP53 Co-Mutants Are More Aggressive in Many Types of Cancer

The AACR-GENIE 11.0 data contains vital status but not follow-up time, so we
compared the frequency of RB1/TP53 co-mutants by vital status in different types of cancer.
After controlling for multiple comparisons, there are 12 types of cancer with RB1/TP53
co-mutation more frequent in dead patients (Figure 3a), but none of the cancer types
have RB1/TP53 co-mutation more frequent in living patients (Table S3). Among the four
oncogenotypes by RB1 and TP53 mutation status, the highest death rate was found in
RB1/TP53 co-mutants for almost all of these cancer types (Figure S5). When we compared
the frequency of RB1/TP53 co-mutants by sample type (primary vs. metastasis) (Figure S6),
we observed many of the cancer types with co-mutants enriched in the dead patients also
have co-mutants enriched in the metastatic samples, such as prostate adenocarcinoma, lung
adenocarcinoma, and pancreatic adenocarcinoma. Interestingly, several types of breast
cancer have co-mutants enriched in the primary cancer samples (Figure S6), despite also
having co-mutants enriched in the dead patients (Figure 3a). We hence examined RB1/TP53
co-mutation pattern by both vital status and sample type in these breast cancer types
(Figure 3b) and found that the death association of RB1/TP53 co-mutation is much more
prominent in primary cancer samples than in metastatic samples, suggesting RB1/TP53
co-mutation confers a more aggressive disease and account for more deaths in primary
breast cancer.
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as stacked bar plots for 25 cancer types with higher co-mutation frequency found in the dead patients.
The transparency of the bars denotes the number of cases for each cancer type. p-values were
denoted by asterisks (**, adjusted p-value < 0.05, *, nominal p-value < 0.05) or printed on the graph.
(b). Enrichment of RB1/TP53 co-mutations in dead patients is more prominent in primary than in
metastatic breast cancer. p-values from Fisher’s exact tests are provided.

2.5. RB1/TP53 Co-Mutation Confers Unique Therapeutic Vulnerability in Cancer

With multi-omics and high-throughput functional screening data available from a
large panel of cell lines, we performed lineage-adjusted comparative analysis to identify
features associated with RB1/TP53 co-mutation (Tables S4–S11). In the panel of cell lines
previously profiled by CCLE and DepMap, very few cell lines contain only RB1 but not
TP53 mutation, i.e., the majority of the RB1 mutations were found concurrently with TP53
mutations (Figure 4a), agreeing with our observation from AACR-GENIE data (Figure 2b).
As a result, the comparison between RB1mutTP53wt and WT is short of statistical power, so
we only examined the comparisons for RB1/TP53 co-mutants vs. WT and RB1wtTP53mut
vs. WT. We found many more significant hits from the co-mutant vs. WT comparison than
the RB1wtTP53mut vs. WT comparison (Tables S4–S11, and Figure 4b,c). From the RPPA
analysis (Figure 4b and Table S4), as expected, Rb was the most down-regulated protein in
the co-mutant cell lines. Decreases in components of the Hippo pathway (YAP, TAZ) and
Receptor Tyrosine Kinase (RTK) signaling (HER2, EGFR phosphorylation, IRS1) were also
seen. On the other hand, cyclin E was prominently upregulated in the co-mutants as a result
of E2F release from Rb suppression. Proapoptotic proteins (Bcl2 and Bim) and microtubule
assembly regulators (Stathmin and acetyl-tubulin) were also found to increase in the co-
mutants. These results from RPPA data connect quite well with results from the functional
screening data. The co-mutants are resistant to genetic or pharmacological inhibition of
upstream regulators of Rb, such as cyclin D and CDK4/6, but they have become more
sensitive to inhibition of Rb downstream, such as cyclin E, E2F, CDK2, and WEE1, as well as
other cell cycle regulators, such as PLK1 and aurora kinases (Figures 4c,d and S7). Beyond
the cell cycle, the co-mutants are sensitive to Bcl2 inhibitors and microtubule inhibitors,
and resistant to inhibition of RTK, MAPK/ERK, and PI3K/mTOR pathway (Figure 4d),
agreeing with the changes observed in the RPPA data. In addition, co-mutants are also more
sensitive to the inhibition of HDAC and PARP, as well as various chemotherapy agents that
target DNA replication (Figure 4d). These results suggest the addition of RB1 mutation
to TP53 mutation substantially reprogrammed the cell and confers unique therapeutic
resistance but also vulnerabilities that may be exploited.
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Figure 4. Therapeutic vulnerability of RB1/TP53 co-mutants. (a). RB1/TP53 mutation status
in cell lines datasets used for association analyses. (b–d), Identification of differential features
from RPPA functional proteomics data (b), CRISPR gene dependency data (c), and four sets of
compound screening data (d). Lineage-adjusted linear models were used to generate t-statistics
comparing mutants against WTs (reference). In the scatterplots (b,c), x-axis values are from
comparing co-mutant and WT whereas y-axis values are from comparing RB1wtTP53mut and
WT, line x = y is added. Hits with a false discovery rate (FDR) < 10% are colored and labeled in c
whereas only hits with FDR < 2% are labeled in (b) due to limited space. In the analysis of drug
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sensitivity (d), compounds were categorized by the pathways they act upon. Within each category,
t-values for compounds with nominal p-value < 0.05 were plotted, with colors indicating data source,
sizes indicating significance after controlling for multiple comparisons, and labels indicating drug
targets.

3. Methods
3.1. Development of Web Application “Comut”

The web application https://lccl.shinyapps.io/comut/ is a shiny app deployed at
the shinyapps.io servers. It is implemented through the following R packages: ‘shiny’,
‘data.table’, ‘ggplot2’, ‘DT’, ‘plotly’, ‘RColorBrewer’, ‘shinyjs’, ‘shinythemes’, ‘scales’, and
‘ggrepel’. Screening results and ad hoc analysis results are downloadable from the web
application. The source code is available at https://github.com/cailing20/comut.

3.2. Assessment of Pan-Cancer Co-Mutation Frequency and Diversity

We restricted our analysis to genes covered by at least 50 panels in the AACR GENIE
data. For each gene pair, only cases from platforms that cover both genes were used to
assess the co-mutation frequency. Copy number data and fusion data are not integrated
into the analysis for this analysis. For each cancer type, one-tailed Fisher’s exact test was
used to assess the enrichment of co-mutation. The p-values were controlled for multiple
comparisons by Benjamini–Hochberg procedures. Results with adjusted p-values less than
0.05 were considered statistically significant.

3.3. Analysis of RB1/TP53 Co-Mutation Enrichment

Based on mutation data, 128,348 cases were available from gene panels that cover both
RB1 and TP53. To be more comprehensive, we also utilized the discrete copy number and
genomic fusion data from AACR-GENIE 11.0 to define the genomic alteration status of
RB1 and TP53. We referred to the COSMIC Cancer Gene Census (CGC) [10] annotation of
mutation types for cancer driver genes to determine the type of CNA to include. A “loss”
status was assigned to cases with copy number values less than zero or if a fusion event
involves RB1 or TP53. Note that this result is slightly different from the result in our web
tool, as COSMIC CGC did not include “D” as a mutation type for TP53 whereas we have
considered TP53 deletion in our analysis.

3.4. Association of RB1/TP53 Co-Mutation with Cancer Aggressiveness

Fisher’s exact test was used to assess the association between RB1/TP53 co-mutation
(co-mutant vs. others) and patient death (alive vs. dead), or sample type (primary vs.
metastasis) in different detailed cancer types. Two sets of results were obtained from one-
tailed tests enforcing different directionalities. The p-values were controlled for multiple
comparisons by Benjamini–Hochberg procedures. Results with adjusted p-values less than
0.05 were considered statistically significant.

3.5. Differential Analyses of RB1/TP53 Mutation-Associated Features in Cell Line Datasets

RPPA data was downloaded from the DepMap data portal [11]. Gene dependency
datasets (CRISPR, RNAi) [12,13] and compound screening datasets (CCLE, CTRP, GDCS,
PRISM primary, and secondary screens) [14–17] were downloaded and processed as previ-
ously described [18]. Briefly, the cell line names were harmonized by mapping to RRIDs,
and the compound names were unified by mapping to PubChem IDs. To identify features
associated with RB1/TP53 co-mutants or RBwtTP53mut cell lines, for each feature, we
fitted a linear model with lineage and binary mutation status (mutant vs. WT) as predictor
variables. p-value and t-value for the mutation term were extracted and recorded. Multiple
comparison-adjusted p-values were generated with the Benjamini–Hochberg procedures.

https://lccl.shinyapps.io/comut/
https://github.com/cailing20/comut
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4. Discussion

Cross-cancer mutation patterns of co-occurrence and mutual exclusivity are informa-
tive of the epistatic relationship between driver genes [19]. Previous pan-cancer co-mutation
analyses were mostly based on TCGA and ICGC datasets [20,21]. In this study, we per-
formed co-mutation analyses with the AACR Project GENIE data, which has a sample size
and lineage diversity ten times greater than TCGA and ICGC combined. The co-mutation
screen we have conducted revealed essentially all of the important co-mutations in the most
frequently mutated cancer genes across the whole spectrum of tumor lineages. We focused
on RB1/TP53 co-mutation, the most diverse and abundant co-mutation, and performed
in-depth characterization with tumor and cell line datasets.

Although previous genomic studies have documented enrichment of RB1 and TP53
co-mutation in a few cancer types [3,4,22–24], a comprehensive assessment of the clinical
significance of this combination across many human cancers has not been performed. We
found RB1/TP53 co-mutation as the most frequently observed co-mutation across diverse
cancer types. However, the true frequency of RB1/TP53 concurrent loss may be much higher.
First, copy number data were not available for 32,420 of the cases, and fusion data were only
available for 6 out of the 19 participating centers, so we might have underestimated RB1
loss frequency. Second, in addition to genetic aberrations at the gene loci, several oncogenic
viruses also simultaneously target p53 and pRb proteins, these include: E6 and E7 proteins
from human papillomavirus (HPV), E1A and E1B proteins from adenoviruse and SV40
large T antigen [25,26]. We are unable to estimate the frequency of viral-induced RB1/TP53
co-inactivation in our analysis. Interestingly, RB1/TP53 co-mutation is especially enriched
in small cell carcinomas and neuroendocrine carcinomas. Although pRb is most famous for
its role in regulating cell cycle progression, it can also cooperate with differentiation-specific
transcription factors for lineage specification [27,28]. Hence, the cancer lineage specificity
we observed might be tied to the unique lineages that depend on pRb regulation. However,
the role of p53 loss in lineage dysregulation remains elusive. Apart from small cell and
neuroendocrine lineages, the frequent presence of RB1/TP53 co-mutation in sarcomas
suggests RB1/TP53 co-mutation may not be sufficient to sustain cells in the neuroendocrine
lineage. This agrees with the previous findings from a genetically engineered mouse model
with RB1/TP53/Myc mutations, that depletion of the neuroendocrine lineage driver Ascl1
led to the emergence of osteosarcoma and chondroid tumors [29].

Our analyses revealed that RB1/TP53 co-mutation is associated with poor outcomes.
The presence of RB1/TP53 co-mutation substantially altered cancer dependencies and
therapeutic vulnerabilities. As Rb loss is associated with silencing of YAP and dysregulation
of the cell cycle, many of our differential vulnerability findings agree with previous studies
that investigated cancer vulnerabilities defined by YAP/TEAD activity [30] or differential
cell cycle utilization [31]. The acquired resistance to a wide range of targeted therapy
(RTK, MAPK/ERK, PI3K/AKT) suggests RB1 loss should be a red flag for adopting such
therapies even when actionable mutations are present in the targets. This is already known
for the case of lung adenocarcinoma with EGFR mutations [32]. On the other hand, the
acquired susceptibility to a wide range of compounds as well as chemotherapies that
target DNA replication suggests loss of RB1 could potentially be considered actionable
for targeted therapies. However, SCLC, the cancer type with the highest frequency of
RB1/TP53 co-mutations, is well known for its good initial response to chemotherapy and
notorious for its inevitable relapse. It remains to be determined whether similar refractory
phenomena and mechanisms exist for RB1/TP53 co-mutants in other cancer types.

5. Conclusions

Overall, our web tool provides a resource for use by the field and future study
on pan-cancer co-mutation landscapes. Our in-depth investigation of RB1/TP53 co-
mutations also provides a roadmap forward for treating cancers with this aggressive
mutation combination.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14174199/s1. Table S1. Screening results for 2850 gene pairs from
76 cancer genes; Table S2. RB1/TP53 co-mutation enrichment analysis across 750 cancer types from
AACR-GENIE v11.0 data; Table S3. Enrichment of RB1/TP53 co-mutation in dead or alive patients;
Table S4. Differential RPPA analysis; Table S5. Differential CRISPR dependency score analysis; Table
S6. Differential RNAi dependency score analysis; Table S7. Differential therapeutic sensitivity from
CCLE data; Table S8. Differential therapeutic sensitivity from CTRP data; Table S9. Differential
therapeutic sensitivity from GDSC data; Table S10. Differential therapeutic sensitivity from PRISM
primary screen data; Table S11. Differential therapeutic sensitivity from PRISM secondary screen
data. Figure S1. Selection of genes by gene panel coverage. The 94 gene panels that feed data
into AACR-GENIE have different gene coverage. To avoid bias in co-mutation analysis, we try to
select genes that are covered by most panels. a. histogram shows the distribution of the number of
genes as a function of the number of gene panels containing the gene. We selected 50 as a cut-off
(drawn as a dashed line) for our study so that the gene we investigate is covered by over half of the
panels. b. Assay coverage by gene and panel. This heatmap indicates whether a gene is (purple)
or is not (cyan) covered in a specific assay. There are 178 genes covered by at least 40 panels in
rows, and all 94 panels from the v11.0 AACR GENIE data in columns. The bar graph on top of
the heatmap shows the number of genes covered by each panel. The bar graph on the right shows
the number of panels covering each gene. The top part of the heatmap that contains the 74 genes
selected by our custom cut-off is enclosed in a rectangle. The bar graph at the bottom shows the
number of samples assessed by the assay. Figure S2. Screen shots from the “comut” web application
for screening result review. Users can specify a gene pair, and whether to include copy number
alterations in mutation for analysis. The resulting table provides mutation counts and frequencies
of single and co-mutations, as well p-values from Fisher’s exact test assuming concurrent (co.pv)
or mutually exclusive (exclusive.pv) co-mutations. p-values adjusted for multiple comparisons are
also provided as “co.padj” or “exclusive.padj”. Table is filterable and downloadable. Full name
and explanation of the table header is provided in a tooltip upon mouseover. For example, in this
snapshot, tooltip for “comutant” is displayed. Figure S3. Genomic aberrations that lead to RB1
and TP53 loss by detailed cancer types. Mutations, copy number alteration, and fusion data were
integrated to determine RB1 and TP53 loss status. Distribution of the genomic alteration events on
RB1 and TP53 were plotted for individual detailed cancer types that have significant enrichment
of RB1/TP53 co-mutation. Overall aberration distribution was also added on top of the plot as “all
combined”. The detailed cancer types were ordered by the total number of co-mutated cases. The
transparency of the stacked bars for each cancer type was determined by the number of cases with
RB1 or TP53 mutations. Figure S4. Co-mutation enrichment tests fail to reach statistical significance
in cancer types with small sample sizes. The distribution of the total number of cases for different
cancer types was compared among groups with different statistical significance from co-mutation
enrichment tests. The cancer types with statistically insignificant RB1/TP53 co-mutation enrichment
tend to have smaller sample sizes. Figure S5. Death rate comparison across different RB1/TP53
oncogenotypes in different cancers. The fractions of dead and alive patients under the four RB1/TP53
oncogenotypes are visualized for cancer types where RB1/TP53 co-mutants were found to be enriched
in the dead patients (see Figure 3a). The transparency of the bars represents the total number of cases
under each oncogenotype. Note that the co-mutants almost always have the highest death rate in
these different cancer types. Figure S6. Association between RB1/TP53 co-mutations and sample type.
Fisher’s exact tests were performed to identify cancer types with RB1/TP53 co-mutations enriched
in metastasis (left) or primary (right) tumors. All hits with a nominal p-value < 0.05 were plotted.
The distribution of samples by RB1/TP53 co-mutation status was visualized as stacked bar plots
for each cancer type. p-values were denoted by asterisks (**, adjusted p-value < 0.05, *, nominal
p value < 0.05). Figure S7. CRISPR essentiality scores by RB1/TP53 mutation status for genes from
differential CRISPR scores analysis. Scaled (z-transformed) gene essentiality scores are plotted in
the top half of the heatmap to clarify the contrast between oncogenotypes whereas untransformed
scores are plotted in the bottom half for better interpretability. t-statistic from lineagead justed linear
model comparing co-mutant to WT cell lines are added to the top of the heatmap. Co-mutation status
of the cell lines was annotated by the colored column right to the heatmap. Note that for the genes
with negative t-values (left half), those with largely negative scores (blue, such as E2F3) are genes
that have become more essential to the cell line with co-mutations. For genes with largely positive
scores (red, such as RB1), the interpretation should be that cell lines with co-mutations did not gain
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additional growth advantage with CRISPR KO of such genes. For genes on the right side, those with
predominantly negative scores (blue, such as CDK4), are genes that have become less essential to
co-mutants, whereas those with predominantly positive scores (red, such as RBL1), are genes that
could confer growth advantage when KO in the co-mutant background.
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