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Simple Summary: Esophageal squamous cell carcinoma (ESCC) is a familiar lethal malignance.
Increasing evidence has disclosed that lncRNA is involved in tumorgenesis and progression in various
tumor types. However, the current understanding of angiogenesis-related lncRNAs (ARlncRNAs)
involved in ESCC remains evasive. We developed and validated a six-DEARlncRNA risk score
system among the GSE53624 and GSE53622 set, aiming to identify the novel prognostic targets for
ESCC. Our results showed that the six-DEARlncRNA could be used as an effective independent
prognostic factor of ESCC. Furthermore, the six-DEARlncRNA biomarkers mainly participated in
regulation of the skin and epidermis development, and these processes protected the body from
environmental insults and may have been involved in the progression of ESCC. In conclusion, this
study showed that the six-DEARlncRNA signature could be used as an independent prognostic factor
and may be a valuable target for treatment options in ESCC.

Abstract: Esophageal squamous cell carcinoma (ESCC) is a lethal gastrointestinal malignancy world-
wide. We aimed to identify an angiogenesis-related lncRNAs (ARlncRNAs) signature that could
predict the prognosis in ESCC. The GSE53624 and GSE53622 datasets were derived from the GEO
database. The differently expressed ARlncRNAs (DEARlncRNAs) were retrieved by the weighted
gene co-expression network analysis (WGCNA), differential expression analysis, and correlation
analysis. Optimal lncRNA biomarkers were screened from the training set and the six-DEARlncRNA
signature comprising AP000696.2, LINC01711, RP11-70C1.3, AP000487.5, AC011997.1, and RP11-
225N10.1 could separate patients into high- and low-risk groups with markedly different survival.
The validation of the reliability of the risk model was performed by the Kaplan-Meier test, ROC
curves, and risk curves in the test set and validation set. Predictive independence analysis indicated
that risk score is an independent prognostic biomarker for predicting the prognosis of ESCC patients.
Subsequently, a ceRNA regulatory network and functional enrichment analysis were performed.
The IC50 test revealed that patients in the high-risk group were resistant to Gefitinib and Lapatinib.
Finally, the six DEARlncRNAs were detected by qRT-PCR. In conclusion, we demonstrated a novel
ARlncRNA signature as an independent prognostic factor to distinguish the risk of ESCC patients
and benefit the personalized clinical applications.
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1. Introduction

Esophageal carcinoma is a common disease of the digestive tract worldwide [1].
Esophageal carcinoma is classified into two pathological types: esophageal adenocarcinoma
and esophageal squamous cell carcinoma, which is widely distributed in Asia [2]. Despite
the development of surgical and perioperative management in recent years, the 5-year
outcome is still disappointedly low due principally to the difficulties in early diagnosis
and tumor metastasis of ESCC [3,4]. Therefore, further study is required to identify more
effective biomarkers with reliable clinical significance for ESCC, which will enhance the
evaluation and efficiency of prognosis and therapy, and even improve our understanding
of the underlying molecular mechanisms.

Angiogenesis is a complex physiological process involving numerous signaling path-
ways and active factors [5–8]. LncRNA play vital roles in angiogenesis by directly or
indirectly regulating various molecules involving multiple key steps of angiogenesis [9].
Inhibition of angiogenesis can be beneficial in the prevention of the tumor growth and
metastasis by preventing them from providing nutrients to tumor cells. As angiogenesis
plays an essential role in cancer pathogenesis and treatment, novel therapeutic targets are
required to develop against tumor angiogenesis and lncRNA can be extremely invaluable
in this regard.

Both coding RNA and non-coding RNA (ncRNA) research demonstrated they are
involved in the regulation of the various normal biological functions and the pathological
processes. It was widely believed that ncRNAs were transcriptional noise initially [10],
nevertheless, mounting evidence have indicated that they may regulate the various pro-
cesses participating in the gene expression, multiple physiological and pathological pro-
cesses [11–14]. Numerous studies indicated ncRNAs were frequently used to construct
prognostic models of diseases in recent years owing to their stable expression in plasma,
serum, and other body fluids [15,16]. These prognostic models are important for early
diagnosis and therapy of diseases and have valuable important clinical significance. Con-
siderable evidence have proved the important role of lncRNAs in both normal development
and tumorigenesis [17,18]. It has been demonstrated that lncRNAs are involved in angio-
genesis [19,20]. For example, overexpressing lncRNA CCAT2 significantly decreased the
level of miRNA-424, increased the glioma cell growth, as well as promoted endothelial
angiogenesis [21]. Lin et al. reported that lncRNA DANCR elevated ovarian tumor growth
by promoting cancer cell angiogenesis [22]. The up-regulation of MYLK-AS1 elevated an-
giogenesis and ultimately enhanced the tumor progression in hepatocellular carcinoma [23].
Lnc-CCDST inhibits the angiogenesis and migration by degrading the DHX9 expression
and destructing the binding of MDM2 to DHX9 in cervical cancer [24]. However, few
studies have comprehensively explored angiogenesis-related lncRNA signature related
prognostic model in ESCC.

In the present study, based on WGCNA and bioinformatics analysis, we identified
DEARlncRNAs and constructed a risk score system of ESCC. Then, we conducted the
prognostic value of the six DEARlncRNAs through KM survival, ROC, and risk curve
analysis. Using univariate and multivariate regression analyses, the risk score was consid-
ered as an independent prognostic risk factor. Developing a nomogram consisting of the
risk score and N stage or TNM stage can predict the ESCC patients’ survival probability
extremely well. By calculating the Pearson correlation between the biomarkers and mRNA,
we predicted the mRNAs targeted by biomarkers and constructed the ceRNA network.
In addition, we stratified the high- and low-risk ESCC groups according to the risk score,
identified the differentially expressed genes (DEGs), and ultimately conducted GO and
KEGG analysis. Then, qPCR was used to detect the expression of the six DEARlncRNAs.
In summary, this study shows that the six-DEARlncRNA signature could be an innovative
prognostic tool in ESCC and perhaps offer alternative drug targets for clinical therapeutics.
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2. Materials and Methods
2.1. Data Collection

The GSE53624 and GSE53622 datasets were obtained from the GEO database (https:
//www.ncbi.nlm.nih.gov/geo/ (accessed on 5 February 2022)). The GSE53624 dataset,
including 119 ESCC patients and 119 normal samples, was used as a training set and test
set. The GSE53622 dataset, including 60 ESCC patients and 60 normal samples, was used
as a validation set [25]. The angiogenesis-related genes (ARGs) were gathered from the
Genecards database (https://www.genecards.org/ (accessed on 5 February 2022)) and
the Molecular Signatures Database (MsigDB) (http://software.broadinstitute.org/gsea/
msigdb/ (accessed on 5 February 2022)). The search term was “Angiogenesis”. Then, 107
ARGs with “score > 5” and “Protein Coding” were screened in Genecards database, and
314 ARGs were screened in MsigDB database. Subsequently, the retrieval results were
combined and duplicates were removed to obtain 363 ARGs. Among them, 63 ARGs were
not discovered in the expression profile of the GSE53624 dataset. Therefore, a total of
300 ARGs were preserved for further study.

2.2. Identification of ESCC-Related lncRNAs Based on WGCNA Analysis

A WGCNA algorithm was performed to develop a co-expression network as well
as to identify ESCC-related lncRNAs in the GSE53624 dataset [26]. In order to check the
overall correlation of the samples, we first clustered the samples and eliminated the outlier
samples to ensure the accuracy of the analysis. Next, we determined the soft threshold of
the data, and verified k and P (k). In addition, the adjacency and similarity were calculated
between lncRNAs, and we found the clustering tree. Meanwhile, the dynamic tree cutting
algorithm was used to segment modules, and the minimum number of genes per module
was 30. Finally, we evaluated the module-traits relationships between each module in
ESCC patients and normal samples, and screened out the module lncRNA with the highest
relations with ESCC.

2.3. Screening of Candidate DEARlncRNAs

The Limma package was used for screening the differently expressed lncRNAs (DEl-
ncRNAs) between ESCC patients and normal samples on 7247 lncRNAs in the GSE53624
dataset [27], with the following cutoff for adjustment: |log2FC| > 1 and p Value < 0.05. We
used the ggplot2 [28] R package and the pheatmap R package to draw volcano maps and
heat maps to demonstrate DElncRNAs expression, separately. Subsequently, we calculated
the Pearson coefficient between ARGs and 7247 lncRNAs. According to the screening con-
ditions with |Cor| > 0.7 and p < 0.01, we obtained the ARlncRNAs. Ultimately, candidate
DEARlncRNAs were obtained by overlapping the ESCC-related lncRNAs, DElncRNAs,
and ARlncRNAs using the Venn diagram.

2.4. Construction of a Risk Model

A total of 119 ESCC samples in GSE53624 dataset were randomly assigned 7:3, and
83 samples were used as the training set. The DEARlncRNAs were screened by univariate
Cox regression analysis, and the univariate cutoff was set to a p value < 0.05. Then, the
DEARlncRNAs were adopted to perform multivariate Cox regression, and the obtained
DEARlncRNAs were used as prognostic biomarkers in this study [29]. The risk models
were constructed using the predict.coxph function of survival package. Meanwhile, we
calculated the risk score of the training set and the validation set. The prognostic formula
was as follows: Riskscore = h0(t) × exp(β1 × 1 + β2 × 2 + . . . + βnXn). In this formula,
β referred to the regression coefficient, for which the Hazard Rati (HR) value can be
obtained after taking the inverse natural log exp(β), ho(t) was the baseline hazard function.
The ESCC patients were separated into high- and low-risk groups based on the median
risk score.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
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2.5. Validation of the Prognostic Risk Model

The survival time of the patients in the two groups was analyzed by K-M survival
curves using the survminer package [30]. Then, ROC curves were adopted to calculate
the AUC area to identify the specificity and sensitivity of the model, and the ROC curves
were plotted using the survival ROC package with 1-, 3-, and 5-years as the survival time
points [31]. Furthermore, the risk models were tested using the rest of 36 samples in the
GSE53624 test set, and K-M survival curves, ROC curves, risk curves, and expression heat
maps in high- and low-risk groups were also plotted. For verifying the applicability of the
model better, we used the GSE53622 validation dataset to verify the risk models. Finally,
we compared the expression levels of biomarkers in normal samples and ESCC samples in
GSE53624 and GSE53622 datasets, respectively. The degree of difference was compared
using wilcox.test method.

2.6. Independence Prognostic of the Risk Model

The correlation between risk score and clinical traits (age, sex, stage, T-stage, N-
stage, alcohol, tobacco) in ESCC patients were evaluated by wilcox.test. To more closely
understand the correlation between DEARlncRNAs and clinical traits, stratified survival
analysis was used to investigate clinical traits for which the risk score had a difference [30].
The relationship between patients’ survival and clinical traits was then analyzed using the
univariate and multivariate Cox regression analysis. We constructed nomogram based on
risk scores and clinical data, and the calibration curves were used to observe deviations
between predicted and actual survival rates.

2.7. Construction of a ceRNA Network

By calculating the Pearson correlation between the biomarkers and mRNA, we pre-
dicted the mRNAs targeted by biomarkers. The mRNAs with |Cor| > 0.7 and p < 0.01
were considered to be the mRNAs targeted by biomarkers. The miRWalk database
(http://mirwalk.umm.uni-heidelberg.de/ (accessed on 5 February 2022)) was used to
predict the related miRNA. We selected the miRNA predicted by miRtarBase and miRDB
for subsequent analysis [32]. Meanwhile, we obtained the sequence of biomarkers lncRNA
through lncipedia database (https://lncipedia.org/ (accessed on 5 February 2022)). Next,
the miRDB database (http://mirdb.org/mirdb/index.html (accessed on 5 February 2022))
was used to predict biomarkers lncRNAs targeting of miRNAs. In this way, we obtained a
binding network of lncRNA-miRNA-mRNA, which was called ceRNA regulation network.

2.8. Identification of DEGs and Functional and Pathway Enrichment Analyses

Firstly, the DEGs between high- and low-risk groups were screened using the limma
package in the R platform [27], and genes with |log2FC| > 1, p value < 0.05 were regarded
as DEGs. The DEGs were shown by volcano plots and heat map. The GO annotation and
KEGG analysis were performed using the ClusterProfiler [33] software package in the R
platform (p = 0.05, q = 0.2).

2.9. Drug Sensitivity Prediction

Chemotherapy was a common way to treat cancer, and drug sensitivity had a great
impact on the therapeutic effect. To explore the sensitivity of drugs in patients with
high- and low-risk groups, pRRophetic R package was applied to extrapolate IC50 by
developing a ridge regression model with 10-fold cross validation [34,35]. Genomics
of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/ (accessed on 5
February 2022)) [36] was adopted to acquire 8 common chemotherapy drugs (Cisplatin,
Paclitaxel, Gefitinib, Bosutinib, Erlotinib, Lapatinib, Bicalutamide, Vinorelbine) and their
genetic profiles. Wilcoxon signed-rank test was applied to test the difference between
groups, with p < 0.05 being a significant difference.

http://mirwalk.umm.uni-heidelberg.de/
https://lncipedia.org/
http://mirdb.org/mirdb/index.html
https://www.cancerrxgene.org/
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2.10. Validation of the Expression of the Six-DEARlncRNA by qRT-PCR

The carcinoma tissue and normal control of 10 patients were used for PCR to verify
the expression of biomarkers. All participants signed informed consent prior to enrollment
in the study. Study protocols were approved by the Ethics Committee of the Anyang
Tumor Hospital, based on the ethical principles for medical research involving human
subjects of the Helsinki Declaration. Total RNA was extracted using the Trizol reagent
(cat.: 356281) provided by ambion company. Then, we used sweScript RT I First strand
cDNA Synthesis All-in-OneTM First-Strand cDNA Synthesis Kit (cat.: G33330-50) from
the Servicebio company for reverse transcription reaction. qRT-PCR was performed using
the 2 × Universal Blue SYBR Green qPCR Master Mix kit (cat.: G3326-05) provided by
Servicebio. Primer sequences were shown in Table S1. GAPDH was used as an internal
reference gene. The qRT-PCR reactions were as follows: 95 ◦C pre denaturation for 1 min,
and then 40 cycles of 95 ◦C denaturation for 20 s, 55 ◦C annealing for 20 s, and 72 ◦C
extension for 30 s. Additionally, the relative mRNA expression was normalized and
calculated according to the 2−44Ct method.

3. Results
3.1. Identification of ESCC-Related lncRNA Based on WGCNA Analysis

The WGCNA was used to analyze the ESCC-related lncRNA based on the GSE53624
dataset. Firstly, we found that the clustering of samples were clear and there were no outlier
samples needed to be deleted (Figure 1A). When the ordinate scale-free R2 approached the
threshold value of 0.85 (red line), the network was close to scale-free distribution and mean
connectivity was close to 0 (Figure 1B). There were 33 modules obtained, and the cluster
dendrogram and clustering plot of module eigengenes were displayed in Figure 1C. Next,
the correlation between modules and clinical characteristics was analyzed. The results
showed that MElightcyan1 module had the most significant correlation with the ESCC
patients (p = 3 × 10−104) (Figure 1D) and this module contained 4448 lncRNAs (Figure 1E).
We used MElightcyan1 as a key module for subsequent analysis.

3.2. Screening of Candidate DEARlncRNAs

We acquired the DElncRNAs expression pattern of the GSE53624 dataset by the Limma
R package. A total of 777 were obtained between ESCC patients and normal samples,
of which 341 DElncRNAs were upregulated and 436 DElncRNAs were downregulated
(Figure 2A). Then, the p value was ranked in ascending order, and the top 100 were selected
to draw a heatmap of DElncRNAs (Figure 2B). The Pearson correlation was evaluated be-
tween 300 ARGs and 7247 lncRNAs in the GSE53624 dataset and a total of 1337 ARlncRNAs
were obtained. Subsequently, 183 candidate DEARlncRNAs were obtained by overlapping
the 4448 ESCC-related lncRNAs, 777 DElncRNAs, and 1337 ARlncRNAs (Figure 2C).

3.3. Construction of a Risk Model

To investigate the effect of key ARlncRNAs on ESCC prognosis, 183 DElncRNAs were
input in univariate Cox regression on 83 ESCC samples from the GSE53624 dataset to
identify robust markers. In total, 10 DEARlncRNAs were retrieved and the forest map
was shown in Figure 3A. Subsequently, the prognostic biomarkers were established using
multivariate Cox regression analysis and 6 DEARlncRNAs (AP000696.2, LINC01711, RP11-
70C1.3, AP000487.5, AC011997.1, RP11-225N10.1) were obtained. Furthermore, we found
that AP000696.2, LINC01711, AP000487.5, and AC011997.1 were risk factors with HR > 1,
while RP11-70C1.3 and RP11-225N10.1 were favorable factors with HR < 1 (Figure 3B).
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Figure 1. WGCNA analysis identified ESCC-related lncRNAs; (A) Clustering dendrogram of samples
with trait heatmap; (B) Graphs of scale-free topology model fit index and mean connectivity versus
soft threshold. Seven was chosen as the most fit soft-power value; (C) Clustering dendrogram of
all differentially expressed lncRNAs; (D) Analysis of the module-trait relationships between ESCC
and normal samples. The MElightcyan1 module was the most relevant to tumor; (E) Scatter plot of
module eigengenes in the MElightcyan1 modules.
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Figure 2. Screening the prognostic DEARlncRNAs in ESCC patients; (A) Volcano plot visualized the
differential expression genes between ESCC and normal samples. The upregulated gene is displayed
in red dot and the downregulated gene is in green; (B) The heat map of the top 100 DElncRNAs. The
row and column represent genes and samples, respectively; (C) Venn plots reveal the overlapping
183 DEARlncRNAs of the DElncRNAs, ARlncRNAs, and WGCNA modulelncRNAs.

Figure 3. Forest map of univariate Cox regression analysis (A) and multivariate Cox regression
analysis (B) for DEARlncRNAs.

3.4. Validation of the Prognostic Risk Model

To evaluate the prognostic prediction of risk genes in ESCC patients, we calculated the
risk score of each patient. Patients in the training set were separated into a high-risk group
(n = 42 patients) and a low-risk group (n = 41 patients) based on the median risk score of
0.860189 (see the Materials and Methods section for details). The Kaplan-Meier survival
analysis showed that the prognosis of the high- and low-risk groups was significantly
different, and the OS of the high risk group was very short (Figure 4A). Then, the ROC
curve was plotted to predict the 1-, 3-, and 5-year survival and the results were shown
in Figure 4B. The results showed that the 1-, 3-, and 5-year AUCs were 0.768, 0.825, and
0.822, respectively. Therefore, the risk model could effectively serve as a prognostic model.
Figure 4C presented the risk score distribution. The expression of six risk genes between
high- and low-risk groups in the GSE53624 training set was shown in Figure 4D. Besides, the
six-DEARlncRNA risk model was used to analyze the test set and the validation set. Using
the remaining 36 samples in the GSE53624 and GSE53622 as test set and validation set, the
survival curves (Figure S1A,B), the ROC curves (Figure S1C,D), and the risk score panels
(Figure S1E,F) between the high-risk groups and the low-risk groups were significantly
different. These results indicated that the risk model can be used as an effective and reliable
predictor for ESCC patient’s prognosis.
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Figure 4. Prognostic values and predictive accuracy of the six-DEARlncRNA. K-M survival curve (A);
time-dependent ROC curve (B); risk score distribution ((C), above); survival overview ((C), below);
and heatmap (D) for patients in the GSE53624 training set assigned to high- and low-risk groups
based on the risk score.

3.5. Independence Prognostic of the Risk Model

Univariate and multivariate Cox regression analyses were used to evaluate the inde-
pendent predictive values of the six-DEARlncRNA signature in ESCC patients. Despite
univariate cox analysis of the GSE53624 and GSE53622 dataset suggested risk score, the
pathological stage and N stage were related to the prognosis of ESCC patients (Figures 5A
and S2A), the multivariable cox regression analyses showed only the risk score was an
independent prognostic indicator (Figures 5B and S2B). We performed a stratified sur-
vival analysis of high- and low-risk groups across clinical traits including different TNM
stages and age. It showed that the risk score based on the six-DEARlncRNA signature in
GSE53624 could effectively predict OS in all subgroups from different clinical traits, includ-
ing age ≤ 59 (p < 0.0001), age > 59 (p = 0.0037), stages I–II of TNM (p < 0.0001), stage III
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(p = 0.00059), N0 and N1 (p < 0.0001), N2 and N3 (p = 0.014), T1 and T2 (p = 0.005), T3 and
T4 (p < 0.0001) (Figure 5C). The survival analysis of all subgroups showed differences in
outcome between the low-risk and high-risk group based on the risk score in GSE53622
(Figure S2C). Meanwhile, the nomogram were constructed in ESCC patients from GSE53624
and GSE53622 dataset (Figures 6A and S3A). It had good discrimination performance with
the C-index of 0.6937 in the GSE53624 and 0.6599 in GSE53622. The calibration curve
analysis showed good agreement with the observed survival probability in GSE53624 and
GSE53622 (Figures 6B and S3B).

3.6. Construction of a ceRNA Network

Firstly, we identified 927 mRNAs targeted by the six DEARlncRNAs through Pear-
son correlation analysis. Next, the miRNAs were predicted based on 927 mRNAs that
have been identified. The miRDB database was used to predict miRNAs targeted by
biomarker lncRNAs. Ultimately, the ceRNA regulatory network was constructed, which
contained 218 nodes and 300 sides (Figure 7). The network contained 6 biomarker lncRNAs,
107 miRNAs, and 105 mRNAs.

Figure 5. A stratified K-M survival analysis across different clinical features in GSE53624. Univariate
(A) and multivariate (B) Cox regression analyses of the association between clinicopathological
factors and overall survival (OS) of patients in GSE53624 dataset. (C) K-M survival curves for OS in
multiple subgroups based on the six-DEARlncRNA risk score.
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Figure 6. Establishment of a nomogram for survival prediction in GSE53624; (A) Nomogram model
consisting of N stage and risk score factors for 1-, 3-, and 5-year OS prediction; (B) Calibration
curves of the nomogram model showing the predicted survival probabilities and the actual ob-
served proportions.

3.7. Identification of DEGs and Functional Enrichment Analyses

There were 98 DEGs between high- and low-risk groups, of which 17 DEGs were
upregulated and 81 DEGs were downregulated (Figure 8A). The DEGs heat map was
shown in Figure 8B. KEGG pathway and GO function analyses were conducted. In total,
54 enriched GO terms were obtained and the top 10 were shown in Figure 8C, including
skin development, epidermis development, primary alcohol metabolic process, and retinol
metabolic process. Meanwhile, the DEGs were significantly enriched in arachidonic acid
metabolic pathway (Table S2).
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Figure 7. The ceRNA network was constructed of the six prognosis-related DEARlncRNAs (purple)
and their target miRNAs (orangered) and mRNAs (green).
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Figure 8. DEGs functional enrichment analysis; (A) The volcano plot of the upregulated and down-
regulated DEGs; (B) Heatmap for the hierarchical cluster analysis of high- and low-risk sample;
(C) Top 10 enriched GO terms for DEmRNAs.

3.8. Drugs Sensitivity Prediction

IC50 was used to assess chemotherapeutic drug (cisplatin, paclitaxel, gefitinib, bosu-
tinib, erlotinib, lapatinib, bicalutamide, and vinorelbine) sensitivity. The results showed
that the IC50 of Gefitinib and Lapatinib were significantly different in the high- and low-risk
groups (Figure 9). It can be indicated that Gefitinib and Lapatinib were more sensitive in
the low-risk group. Therefore, Gefitinib and Lapatinib were not recommended for high-risk
patients to chemotherapy.
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Figure 9. IC50 value of eight common chemotherapeutic drugs showing there were significant
differences between Gefitinib and Lapatinib group. Blue box indicated low risk group, orange box
indicated high risk group, and black dots indicated discrete samples.

3.9. Validation of the Gene Expression by qRT-PCR

We investigated the expression of the six DEARlncRNAs from the GSE53624 and
GSE53622 dataset by wilcox.test. Relative to its expression level in normal tissue, LINC01711,
AP000487.5, and AC011997.1 were remarkably higher, while AP000696.2, RP11-70C1.3, and
RP11-225N10.1 were significantly down-regulated in GSE53624 ESCC tissues (Figure 10A).
Likewise, the changing trend of the expression level of the six DEARlncRNAs in GSE53622
dataset was concordant with the results in GSE53624 dataset (Figure 10B). In order to fur-
ther verify the expression of the biomarkers, we used qRT-PCR to compare gene expression
levels in carcinoma tissue and normal control of 10 patients. The expression level of all six
DEARlncRNAs detected by qRT-PCR was completely consistent with the results of data
mining (Figure 10C).
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Figure 10. The expression of the six-DEARlncRNA was verifed by qRT-PCR. (A,B) The mRNA
expression levels of the six-DEARlncRNA signature in 179 cancer samples and corresponding adjacent
samples from the GSE53624 ((A), n = 119) and GSE53622 dataset ((B), n = 60). Black dots indicated
discrete samples. (C) Expression of six-DEARlncRNA in 10 pairs of ESCC and adjacent normal tissues
by qRT-PCR. ** p < 0.01; *** p < 0.001; **** p < 0.0001.

4. Discussion

For most types of cancers, including ESCC, clinical and pathologic features are the
traditional factors to give insight into potential strategies for treatment and still act as a
prognostic predictor. However, considering the high heterogeneity of ESCC, investigation
of novel and reliable molecular biomarkers and models for ESCC early diagnosis and prog-
nosis is necessary. Angiogenesis is related to the development of tumor growth and metas-
tasis and thus inhibiting angiogenesis has been a novel ESCC anticancer agents [37]. In
esophageal cancer, many studies on lncRNA expression profile have been reported [38,39],
but no angiogenesis-related signature has been applied in this disease at present. There-
fore, elucidating a prognostic angiogenesis-related lncRNA signature is imperative and
meaningful for ESCC patients.

We first employed WGCNA to generate an ESCC-related lncRNA in GSE53624 database
and identified a total of 183 prognosis-related DEARlncRNAs by overlapping DElncRNAs,
ARlncRNAs and WGCNA modulelncRNAs. Later, we developed a six-DEARlncRNA
model including AP000696.2, LINC01711, RP11-70C1.3, AP000487.5, AC011997.1 and RP11-
225N10.1 and this model can divide patients into high and low risk groups in GSE53624
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training set. The performance of this six-DEARlncRNA model was further analyzed in
the GSE53624 test set and GSE53622 validation set through KM, ROC survival curve and
risk curve analysis. Moreover, multivariable analysis confirmed that the risk score of this
prognosis signature was considered as an independent prognostic risk factor. Next, we
further constructed a prognostic nomogram combined signature with N stage or TNM
stage for disease assessment in ESCC patients. Compared with the actual survival rate,
the calibration curve showed moderate consistency. Besides, IC50 detection in high- and
low-risk patients showed that there were significant differences between Gefitinib and
Lapatinib group, showing that the high-risk group were resistant to Gefitinib and Lapa-
tinib. The lncRNA-mRNA-miRNA network analysis was an effective way to analyze the
molecular regulation mechanism and explore the function. A prognosis-related ceRNA
regulatory network was established in ESCC consisting of 6 lncRNAs, 107 miRNAs, and
105 mRNAs. Correlation analysis showed that the risk score could predict the effectiveness
of chemotherapy agents. In summary, our study indicated that the six-DEARlncRNA had
predictive value for diagnosis and treatment in ESCC.

Among the six DEARlncRNAs that composed the prognostic model, AP000696.2,
LINC01711, and AC011997.1 had been reported as potential biomarkers in different cancers.
Evidence suggested that a two-lncRNA signature, including AP000696.2 and ADAMTS9-
AS1, had better predictive performance than traditional tumor markers [40]. The functional
enrichment analysis of the two-lncRNA signature revealed that they may be involved in
the ectoderm and epidermis development, coinciding with our results. Development and
differentiation of the ectoderm into the epidermis was a key step in normal development
and cancer progression, and the two novel lncRNAs might be involved in the ESCC
tumorigenesis and progression [41]. Xu et al. revealed that LINC01711 was upregulated in
esophageal carcinoma and associated with malignant phenotypes and poor prognosis [42].
Existing literature had shown that LINC01711 was included in the prognostic model and
may play essential roles in malignant progression of ESCC, triple negative breast cancer
and fibrosis [43–45]. Shi et al. reported that AC011997.1 was considered as a prognostic
risk factor in ESCC [30].

In contrast to other prognostic models, we mainly focused on the lncRNA associ-
ated with angiogenesis and established a six-DEARlncRNA signature prognosis model
in ESCC. Previous studies have developed several prognosis signature models based on
lncRNA expression in ESCC. Thus, our prognosis model had dual functions since it could
indicate the patient’s prognosis and contribute to select a more appropriate form of antian-
giogenesis treatment for patients. However, lncRNAs were involved in the metabolism,
immune response, and multiple physiological processes, not only in the angiogenesis.
Comparing global investigation of lncRNAs related to ESCC prognosis, our study screened
angiogenesis-related lncRNA, which limited new discoveries associated with other biologi-
cal characteristics and may not provide more broadly potential clinical solutions.

Nonetheless, there are still some limitations in this study. Firstly, although we have
verified the prognostic values and predictive accuracy of the six-DEARlncRNA risk model
in 179 established ESCC patients, and qRT-PCR was used to verify the expression of six-
DEARlncRNA, external validation datasets are still not included in the model. Employing
more dataset and bioinformatics strategies is the way to verify and advance the model in
the future. Secondly, the fundamental experiments are needed to support the proposed
DEARlncRNA signature is involved in angiogenesis. Furthermore, drug sensitivity predic-
tion results is based on public databases and additional in vitro and in vivo experiments are
needed to validate the prediction performance. Finally, the specific functions and potential
molecular mechanisms of the prognostic model need to be further explored.

5. Conclusions

In conclusion, our study identified that the six-DEARlncRNA risk model, including
AP000696.2, LINC01711, RP11-70C1.3, AP000487.5, AC011997.1, and RP11-225N10.1, is
a faithful tool in predicting the prognosis of ESCC patients. In addition, this model can
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distinguish and indicate the sensitivity of chemotherapy drugs (Gefitinib and Lapatinib)
in ESCC, thus preventing patients from suffering unnecessary drug side effects. Further-
more, the established nomogram with good consistency can help to predict ESCC patients’
survival and outcome accurately, thus providing clinical strategies for clinicians.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14174195/s1, Figure S1. Prognostic values and predictive
accuracy of the six-DEARlncRNA. K-M survival curve, time-dependent ROC curve, risk score
distribution, survival overview, and heatmap for patients in the GSE53624 test set (A,C,E,G) and
GSE53622 validation set (B,D,F,H) assigned to high- and low-risk groups based on the risk score.
Figure S2. A stratified K-M survival analysis across different clinical features in GSE53622. Univariate
(A) and multivariate (B) Cox regression analyses of the association between clinicopathological
factors and overall survival (OS) of patients. (C) KM survival curves (high-risk vs. low-risk patients)
for overall survival in multiple subgroups. Figure S3. Construction of a nomogram for survival
prediction in GSE53622. (A) Nomogram model consisting of stage and risk score factors for 1-, 2-,
3-, and 4-year OS prediction. (B) Calibration curves showing the nomogram-predicted survival
probabilities corresponded closely to the actual observed proportions in 1-year prediction. Table S1.
Primer sequences for Real Time quantitative PCR. Table S2. The results of KEGG pathway and GO
function analyses on DEGs.

Author Contributions: Conceptualization: S.C., X.W. and X.L.; methodology: S.C., X.W. and X.L.;
software: L.D., Z.G., S.L. and Y.Z.; validation: S.C., X.W. and X.L.; formal analysis: L.D., Z.G., S.L.
and Y.Z.; investigation: S.C. and X.L.; resources: J.L. and H.Y.; data curation: S.C. and J.L.; writing—
original draft preparation: S.C. and X.W.; writing—review and editing: S.C. and X.W.; visualization:
L.D., Z.G., S.L. and Y.Z.; supervision: H.Z. and F.Z.; project administration: H.Z. and F.Z.; funding
acquisition: S.C. and F.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Joint Construction Project of Medical Science and Technology
Research Program in Henan Province (LHGJ20210882) and Major Projects of Science and Technology
Department in Anyang City (ZDKJJS2020006).

Institutional Review Board Statement: This study was conducted in accordance with the Declaration
of Helsinki and approved by the Ethical Review Committee of Anyang Tumor Hospital (approval
number: 2022WZ10K01; date of approval: 12 July 2022).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Arnold, M.; Soerjomataram, I.; Ferlay, J.; Forman, D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut

2015, 64, 381–387. [PubMed]
2. Abbas, G.; Krasna, M. Overview of esophageal cancer. Ann. Cardiothorac. Surg. 2017, 6, 131–136. [CrossRef] [PubMed]
3. Napier, K.J.; Scheerer, M.; Misra, S. Esophageal cancer: A Review of epidemiology, pathogenesis, staging workup and treatment

modalities. World J. Gastrointest. Oncol. 2014, 6, 112–120. [CrossRef] [PubMed]
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